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Traffic flow digital twin generation 
for highway scenario based 
on radar‑camera paired fusion
Yanbing Li  1* & Weichuan Zhang 2

Autonomous driving is gradually moving from single-vehicle intelligence to internet of vehicles, 
where traffic participants can share the traffic flow information perceived by each other. When the 
sensing technology is combined with the internet of vehicles, a sensor network all over the road 
can provide a large-scale of traffic flow data, thus providing a basis for building a traffic digital twin 
model. The digital twin can enable the traffic system not only to use past and present information, 
but also to predict traffic conditions, providing more effective optimization for autonomous driving 
and intelligent transportation, so as to make long-term rational planning of the overall traffic state 
and enhance the level of traffic intelligence. The current mainstream traffic sensors, namely radar and 
camera, have their own advantages, and the fusion of these two sensors can provide more accurate 
traffic flow data for the generation of digital twin model. In this paper, an end-to-end digital twin 
system implementation approach is proposed for highway scenarios. Starting from a paired radar-
camera sensing system, a single-site radar-camera fusion framework is proposed, and then using the 
definition of a unified coordinate system, the traffic flow data between multiple sites is combined to 
form a dynamic real-time traffic flow digital twin model. The effectiveness of the digital twin building 
is verified based on the real-world traffic data.

With the progress of computing power and communication technology, real-time environmental perception 
and path planning can be realized in recent years, which promotes the rapid development of autonomous driv-
ing technology. An important research direction of autonomous driving is the realization of single-vehicle 
self-driving. However, the perception capability of an individual vehicle is limited to its surroundings, which 
has limited benefits for improving the operational efficiency of large-scale traffic. In order to achieve efficient 
autonomous driving, current trend is to connect vehicles to each other as well as to connect vehicles and road 
facilities1,2. By sharing traffic flow information, vehicle motion and road traffic control can be jointly optimized 
for improving overall traffic efficiency3,4. This is the concept of the internet of vehicles (IoV)5.

As an important application of internet of things (IoT) technology in intelligent transportation, IoV enables 
the task of environmental sensing to be accomplished not only by sensors on vehicles but also by roadside sens-
ing devices6. When the IoV is formed, for a vehicle on the road, it can get the traffic condition of a broader area, 
e.g., a city, at a certain moment, which is useful for long-term driving planning. In addition, when the traffic flow 
state of an area is obtained, the perceived traffic flow data can be utilized for generating a traffic digital twin (DT) 
model. Based on the DT model, the traffic flow state at future moments can be predicted7, which will provide 
more knowledge for autonomous driving of vehicles and traffic light control of roads8,9. Therefore, it will greatly 
enhance the function of intelligent transportation in cities10.

In IoV solutions for autonomous driving, the large amount of traffic flow information is updated in real time, 
which leads to a big challenge for computational systems since it must complete information collection and 
processing in a very short time and provide decision guidance for autonomous vehicles. With the help of DT 
technology, intelligent transportation systems have the potential to solve such challenges.

A typical autonomous driving application is the trajectory prediction of traffic participants. For an autono-
mous vehicle, its behavior needs to depend on the trajectory prediction results of its surrounding traffic partici-
pants. Although existing machine learning techniques, such as deep neural networks, provide excellent prediction 
approaches, model updating is a key issue in practical applications. DT model is precisely an effective way to 
address online model updates. A DT model of surrounding vehicles is built for providing real-time information 
input to a long short term memory (LSTM) neural network in order to keep the network dynamically updated 
and achieve real-time prediction of surrounding vehicle trajectories7. This study shows us the key role played 
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by the DT model in making decisions for individual autonomous vehicles. It is a local real-time replica of the 
physical world that can provide the necessary digital information for individual autonomous driving decisions.

DT model on a larger scale is used to analyze and predict the state of traffic flow at the city level, which pro-
vides traffic control decisions for city managers to alleviate road congestion8. Based on the traffic flow informa-
tion collected by multiple sensors, city-level traffic flow DT models are built to accurately predict the traffic flow 
status on city roads even if data is missing in some areas.

The above studies discuss the important role played by DT technology in the development of autonomous 
driving and intelligent transportation. However, the generation of DT models is a prerequisite for their applica-
tion. The accuracy of the DT model can directly affect the effectiveness of subsequent applications. Therefore, it 
is important to establish an effective DT model based on sensors. Currently, traffic flow information acquisition 
by roadside sensors mainly relies on cameras11. With the development of radar technology, more and more 
millimeter wave (mmWave) radars have been used for roadside sensing12. It is well known that radar has good 
radial distance and speed measurement accuracy as well as all-weather working capability, these features make 
radars and cameras work well together13. Combining the features of radar and camera sensing and fusing the 
information of the two sensors can provide more accurate traffic flow information for building traffic DT model.

In terms of sensor fusion purpose, radar camera fusion can be mainly divided into target detection and rec-
ognition oriented fusion and target tracking oriented fusion. In the target detection and recognition oriented 
fusion, the consideration is how to improve the detection or recognition accuracy14–17. For instance, a radar and 
camera fusion framework is proposed, where the camera is used for more accurate detection in the region of 
interest provided by the radar, thus effectively reducing false alarms from the radar detections15. Target classifica-
tion based on radar and camera fusion for roadside application is studied16, in which enhanced evidence theory 
is employed for belief assignment to solve target classification in extreme light conditions.

The above methods are able to obtain high target detection and recognition performance, but for traffic DT 
scenarios, accurate target location information is required for subsequent motion prediction and state evolu-
tion. Therefore, target tracking oriented fusion is more appropriate for DT applications. There have been some 
tracking oriented sensor fusion studies18–21, in which the improvement of target tracking accuracy have been 
discussed. In these studies, two strategies are usually used for the acquisition of target fusion trajectories. The 
first is track-to-track fusion, in which the radar and camera track the target separately to form their respective 
trajectories, and then inter-sensor fusion is performed based on the sensor trajectory output. The second is 
detection-to-detection fusion, in which the radar and camera do not track the target, but input the detection 
results into a fusion filter, which directly outputs the fused target trajectory.

These fusion methods play an active role in improving the sensing capability of single vehicle or intelligent 
traffic systems. For the high accuracy acquisition of traffic flow information in IoV applications, this paper con-
siders a DT model generation approach based on roadside radar and camera sensor fusion in highway scenarios. 
The vehicles are tracked in real time by using radar-camera pairs distributed at multiple roadside sites and a DT 
model of traffic flow on the road is formed. Combining the respective advantages of radar and camera, the DT 
model constructed by sensor fusion has better location accuracy and robustness to light and weather conditions, 
which can provide reliable traffic flow information for subsequent smart traffic applications. The main contribu-
tions of this paper are as follows. 

1.	 An end-to-end generation approach from raw sensory data to a highway DT model is proposed. Based on 
pairs of radar camera sensors, vehicles are tracked to form a DT model of highway traffic flow, which provides 
information for subsequent traffic optimization.

2.	 A novel road feature-based radar camera calibration method is proposed. The mounting errors of the radar 
and camera are automatically calibrated using intermediate belt features on the highway. The proposed 
method aligns the two sensors in space without the support of additional equipment.

3.	 Combining the measurement error distribution characteristics of radar and camera, a Kalman filter frame-
work-based sensor data fusion method is proposed.

The rest of the paper is organized as follows: first, radar and camera models for traffic flow sensing is introduced, 
then the DT model generation approach is presented. Finally, the effectiveness of sensor calibration based on 
scene-feature and highway DT model generation based on sensor fusion is verified by real-world scenario 
experiment.

Sensor model for DT generation
Radar model.  The most advanced mmWave radar sensors utilize frequency modulated continuous wave 
(FMCW) technology, where chirp sequence modulation with stretching processing is usually used for trans-
mitted waveform and received processing. Meanwhile, multiple-input multiple-output (MIMO) structure are 
employed for increasing the effective antenna array aperture and number22,23. MmWave radar detects targets by 
emitting a set of chirp sequence as follows.
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where M is the total number of chirps in the sequence, with pulse repetition time (PRT) of chirps Tr , 
ts = (m− 1)Tr , is the slow-time, which is used to measure time change over multiple RPTs, tf  denotes the 
fast-time, which is used to measure time change in a single chirp, t = ts + tf  , is the total time, �t is the chirp 
amplitude, fc is the carrier frequency, with the chirp sweep bandwidth B and the chirp time width T, γ = B/T 
is the chirp rate.

When the transmitted chirp sequence meets a target, the sequence will be scattered by the target, and return 
to the radar after a delay caused by the propagation of the transmitted signal in free space. Then the echo signal 
is received by the radar and mixed with the transmitted signal in the receiver for obtaining the beat-frequency 
signal in terms of Eq. (1). The beat-frequency signal is22

where R and vr are the radial distance and the velocity of the target respectively, c is the speed of light, τ represents 
the delay between the transmitted and the received signals, fb is the beat frequency, fd is the Doppler frequency, 
and � is the wavelength of the transmitted signal.

It is worth to note that the above analysis is for one receiver antenna channel. When the radar has receiver 
antenna array with N elements, each antenna element will receive chirp sequences independently. By using the 
first antenna array element as a reference, and assuming that the antenna array element interval is d and the 
azimuth angle of the target relative to the radar antenna normal is θ , the target echo received by the antenna 
array element can be expressed as22

A typical mmWave radar signal processing flow is shown in Fig. 1. The transmitter antenna array emits chirp 
sequence, then the chirp sequence interacts with the target and returns to the receiver antenna array, followed by 
a stretching process for obtaining the radar signal cube. In this case, the target range and velocity can be obtained 
by a constant false-alarm rate (CFAR) detector after applying range FFT and Doppler FFT, aka range-Doppler 
processing, to the beat-frequency signal in terms of Eq. (2), and the target azimuth angle can be obtained by 
beamforming which is realized by the array FFT22. After the radar signal processing stage, the target ground 
plane position expressed in polar coordinates can be obtained.

Camera model.  The camera senses the environment by mapping objects onto the image plane. In traffic DT 
generation, the inverse process of this mapping is needed. Specifically, the camera model using the pinhole imag-
ing principle is shown in Fig. 2, the camera detects the object from the image plane xiyi and restores the object’s 
position in the image to the camera coordinate system xcyczc for obtaining the ground position of the target.

After establishing the image coordinate and the camera coordinate system as shown in Fig. 2, the rule for 
mapping objects in the physical world to images is24

where ς is the focal length. In the traffic scenario, the targets of interest are moving on the ground, and the 
mounting height of the camera can be obtained by measurement. Under the assumption that the ground is flat, 
the uc coordinate of the target can be considered as known, i.e., equal to the mounting height of the camera. In 
this way, the transformation from the image coordinate system to the camera coordinate system can be derived 
from Eq. (4) as

The target position in the image can be obtained using state of the art image detection methods such as YOLO 
and Fairmot25,26. Then the position of the target on the ground can be obtained in terms of Eq. (5).
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Methods of digital twin generation
Coordinate systems.  In city-scale highway traffic flow sensing applications, a large number of radars and 
cameras will be deployed at different locations. Since the measurement of target positions by different sensors is 
usually performed in their own local coordinate systems, these sensors need to be spatially aligned for making 
the target positions consistent across sensors. A feasible way to alignment of sensors can be realized by choos-
ing a unified coordinate system (UCS)27,28. The most common UCS is the WGS-84 system (World Geodetic 
System)29, in which the position of the target is uniquely determined by longitude, latitude, and altitude. When 
all sensor measurements are converted to WGS-84 system coordinates, spatial alignment can be achieved for all 
targets in the area covered by these sensors. A typical conversion process from sensor local coordinates system 
to WGS-84 system is illustrated in Fig. 3. It can be seen from Fig. 3 that the transformation from the sensor 
local Cartesian (LC) coordinate system, i.e., xyz, to WGS-84 system requires the help of intermediate coordinate 

Figure 1.   Signal processing flowchart of chirp sequence modulation and MIMO structure.

Figure 2.   Pinhole camera model.
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systems. In this work, the intermediate coordinate systems can be selected as the local east-north-up (ENU) 
coordinate system, i.e., x′y′z′ , and Earth-centered Earth-fixed (ECEF) coordinate system, i.e., XYZ. It is worth 
noting that radar sensor measurements of targets are defined in a local polar (LP) coordinate system. In order 
to convert a target position measured by a radar sensor to WGS-84 system, it is necessary to first convert the LP 
coordinate to a LC coordinate. According to Fig. 3, the transformation process can be summarized as follows: 

1.	 Conversion of the LP (R, θ) to LC xyz with the same origin. This is for radar sensor only.
2.	 Conversion of the LC xyz to ENU x′y′z′ with the same origin and the same z axis.
3.	 Conversion of the ENU x′y′z′ to ECEF XYZ.
4.	 Conversion of the ECEF XYZ to WGS-84.

Although the use of WGS-84 can solve the sensor alignment problem in arbitrary scenes, it also brings an 
increase in computational complexity, i.e., each sensor needs to complete the transformation to WGS-84 before 
post-processing can be performed. In the data fusion application of radar and camera, the choice of UCS can 
be based on the deployment location of the radar and camera. When the radar and camera are installed close 
enough, the effect of earth curvature can be neglected and there is no need to select WGS-84 system as UCS. 
In fact, three coordinate systems can be chosen as UCS depending on the relative deployment positions of the 
cameras and radars. The details are shown in Fig. 4. For highway sensing, the radar and camera are deployed in 
pairs at a certain site with the same location. Therefore, LC is adequate to be used as a UCS for a radar-camera 
paired site.

In this work, radar-camera pairs are used for highway scene sensing, hence LC is chosen as UCS for sensor 
fusion. LC in this work is defined as follows: the direction normal of the sensor is y-axis, pointing to the right 
of the sensor and perpendicular to the y-axis is x-axis, pointing above of the sensor and perpendicular to both 
x-axis and y-axis is z-axis. Based on the radar and camera models, the output of radar measurements are defined 

Figure 3.   Coordinate systems for DT generation.

Figure 4.   UCS selection in three sensor deployment cases.
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in a LP coordinate system, which measures the slant distance R and azimuth θ of the target, and the output of 
camera measurements are defined in camera coordinate, which measures the two-dimensional (2D) position 
of the target. In sensors fusion, the radar and camera outputs need to be transformed from their correspond-
ing measurement coordinate systems to the UCS. In this case, the radar LP to LC transformation is defined as

As shown in Fig. 2, the camera coordinate to LC conversion is defined as

It is worth noting that since both the radar and the camera measure 2D coordinates of the target in the ground 
plane, the z coordinate in LC is considered as a constant.

Adaptive system calibration based on road feature.  After determining the UCS, the sensors need to 
be calibrated before post-processing. The main contents of system calibration is the output data registration of 
the radar and camera.

In this work, the system calibration of the first case as shown in Fig. 4 is considered, i.e., the radar and the 
camera are paired in the same location. The schematic diagram of radar and camera normal error is shown in 
Fig. 5. It can be seen from Fig. 5 that the presence of installation and manufacturing errors make the radar nor-
mal and the camera normal not parallel to each other in actual deployment. Due to the error angle β between 
radar and camera normal, the target positions detected by radar and camera cannot appear in the same position 
even in the same coordinate system. If the radar LC coordinate system is chosen as the UCS, the target position 
detected by the camera needs to be compensated for the normal error angle before it can be converted to UCS.

When the radar and camera are installed at the same position, there is a rotational transformation relation-
ship between the radar LC and the camera LC due to the angular error between their normal lines. Meanwhile, 
when the focal length of the camera is unknown, the target positions measured by the camera and the radar have 
a scale-transformation relationship. Therefore, the relationship between radar and camera LC coordinates is an 
affine transformation, and there is no translation in the transformation because the origin of their coordinate 
system overlaps. Hence, the transformation of camera LC to radar LC is given as

(6)
{

xr = R sin(θ)
yr = R cos(θ)

.

(7)
{

xc = vc

yc = wc .

Figure 5.   Sensors deployment schematic for radar-camera calibration.
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where E is the scaling transformation, ρx and ρy are the scaling factors of the corresponding coordinate axis 
respectively, F is the rotation transformation, gr = [xr , yr] and gc = [xc , yc] is the target coordinates in radar LC 
and camera LC respectively. The affine transformation in Eq. (8) can be solved using some point cloud registra-
tion techniques30,31. However, with the help of road features in highway scenario, we can simplify this registra-
tion process. In the highway scenario, the intermediate belt is a major straight line feature. If the straight line 
corresponding to the belt can be localized from the detection results of radar and camera respectively, then the 
angle between the two straight lines is the angle deviation β between the radar normal and the camera normal.

Hough transform is an effective linear detection technique that can be used to detect highway intermediate 
belt in the results of radar and camera32,33. The transform maps a line to the Hough parameter space to accu-
mulate the number of points, where the line can be obtained by threshold detection. The line function defined 
in Hough transform is

where the coordinate (x, y) is used to describe the target position for sensors, while each point (η,φ) in Hough 
parameter space represents a line in the input 2D position matrix. The score of corresponding point in the 
parameter space can be measured as

where L denotes that the line satisfies with Eq. (9). After obtaining all the scores of parameter space, lines can be 
extracted if Hp(η,φ) is greater than a specified threshold, and line position in input matrix is

It is worth noting that the input matrix can be either target positions detected by the radar or an image recorded 
by the camera. After obtaining the intermediate belt straight line detected by the radar, i.e., �lr , and the camera, 
i.e., �lc , respectively, the angle β between the two straight lines can be calculated as

and the rotation transformation can be obtained in terms of Eq. (8), then the affine transformation defined in 
Eq. (8) is simplified as

In this case, the remaining calibration work is to estimate the scaling transformation matrix E . Some vehicle 
targets in the highway scenario can be selected as feature points. For instance, the detected positions for three 
vehicles by radar and camera form two triangles respectively as shown in Fig. 5a. The relationship between these 
two triangles is scale-transformed, and the scaling transformation can be derived in terms of Eq. (13) as

where ∗ denotes matrix transposition. It is worth noting that the target number should satisfy N ≥ 2 to ensure 
that [Gc

F(G
c
F)

∗]−1 exists.
After the scaling transformation E and rotation transformation F are obtained, the conversion from camera 

LC coordinates to radar LC coordinates can be realized in terms of Eq. (8).

Radar‑camera fusion detection and tracking.  According to sensor characteristics, radar is more accu-
rate in distance and velocity measurements, while camera is more accurate in angle, height and target class 
measurements34. The measurement accuracy of radar and camera usually has the distribution as shown in Fig. 6. 
Based on their respective advantages in target measurement, a novel radar-camera fusion framework is pro-
posed in this section.
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After the target positions detected by the radar and camera are converted to the UCS, the targets tracking 
based on sensors fusion can be realized. Since the goal is to obtain the target trajectory after sensor fusion, the 
Kalman filter (KF) framework is adopted in this paper for achieving both fusion and subsequent tracking35,36. For 
radar-camera fusion in traffic applications, the target dynamics and measurements of sensors can be modeled as 
a system which has the same state equation and multiple measurement equations

where k is the discrete time, A is the state transfer matrix, uk is the state vector, i.e., the target position determined 
by the target motion equation, grk and gck is the measurement vector of radar and camera respectively, ε and ζ 
are the process noise and measurement noise with covariance matrices ℵ and ℜ respectively. It is worth noting 
that the state-to-measurement matrix C is equal to identity matrix, since both the state space and measurement 
space are in the UCS. Sensors fusion can be achieved by either state vector fusion or measurement fusion, and 
the latter one has been shown to provide better performance35,36. In this paper, the measurements of the radar 
and camera are combined for establishing a target tracking framework which is suitable for traffic scenarios.

In traffic sensing application, as shown in Fig. 6, the measurement of the radar has a large variance component 
level in the x-axis, while the measurement of the camera has a large variance component level in the y-axis. After 
setting the measurement covariance matrix ℜr and ℜc for radar and camera according to the measurement error 
distribution characteristics, sensor information fusion is achieved in two parts: 

1.	 The target measurement positions fusion of radar and camera, which is computed as 

2.	 The fusion of radar and camera measurement errors, which is computed as 

With the fusion results of measurement ḡk and measurement covariance ℜ̄ , denote I as the identity matrix, the 
implementation flow of the fusion tracking approach is shown in Fig. 7.

DT generation approach for highway scenario.  In a nutshell, the approach of DT model generation is 
shown in Fig. 8. For highway scenario, radar-camera pairs can be deployed at multiple sites along the road, and 
each pair of radar and camera is responsible for traffic flow sensing in a local area. For a single site, the radar and 
the camera acquire their respective sensory data. The radar obtains 2D position and velocity information of the 
target after signal processing. The camera obtains the 3D position information of the target by image processing 
followed by a image plane to UCS conversion. In UCS, the detection data of the two sensors are fused and the 
trajectory of the target is obtained by the fusion Kalman filter as shown in Fig. 7, which completes the generation 
of local traffic flow DT.

When the traffic flow data of all sites are obtained, the traffic flow information of each site is converted to 
WGS-84 system by coordinate conversion, and the DT model of the whole highway scenario can be generated.

Here are some factors to consider in DT model generation: 

(15)uk =Auk−1 + ε,

(16)
grk =Cuk + ζ r ,

gck =Cuk + ζ c ,

(17)ḡk = grk +ℜr
(

ℜr +ℜc
)−1(

gck − grk
)

.

(18)ℜ̄ =
[

(

ℜr
)−1

+
(

ℜc
)−1

]−1
.

Figure 6.   Measurements error distribution for different sensors.
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Figure 7.   Fusion Kalman filter framework.

Figure 8.   End to end DT generation approach.



10

Vol:.(1234567890)

Scientific Reports |          (2023) 13:642  | https://doi.org/10.1038/s41598-023-27696-z

www.nature.com/scientificreports/

1.	 Besides detecting the 2D position of the target, the radar can be used to measure the target velocity more 
accurately. In practice, the radar velocity information can be output as needed.

2.	 The camera provides a more accurate measurement of the width, height, and class of the target, besides 
detecting the 2D position of the target. These information can be output in practice as attached attributes 
based on demand.

3.	 After DT model generation, target locations in the DT model need to be exported in practical applications. 
Similar to the coordinate system considered for sensor fusion, the model output also requires the selection 
of coordinate system according to practical applications. The presentation of the DT model in WGS-84 coor-
dinate system is not required. It depends on whether a large-scale scene needs to be modeled and whether 
that DT model needs to be fused with the map system. When fusion with the map system is required, traffic 
target information needs to be transformed to WGS-84. When fusion with the map system is not required, 
for single-site models, the target information can be output directly in the LC. For small-scale models, such 
as several intersections, transformation to ENU coordinate system is sufficient, and for large-scale models, 
such as city level and above, transformation to ECEF is sufficient.

Experimental results and discussion
Data collection and performance evaluation metrics.  We tested the proposed DT model generation 
approach based on a real highway scenario. In the experiment, a traffic radar and a camera were used for data 
collection. The experiment was located on an overpass on the highway, and the radar and camera were installed 
at the same location with a height of 8 m from the ground as shown in Fig. 9a,b respectively. The highway in the 
experiment scenario is a bidirectional six-lane road with a separation zone in the middle of the road, as shown 
in Fig. 9c. The technical parameters of the radar and camera are shown in Tables 1 and 2 respectively.

We employ the multiple object tracking accuracy (MOTA) metric37, which is commonly used in multi-target 
tracking, to measure the performance of fusion tracking. The MOTA in time t is defined as

Figure 9.   Experimental scenario. (a) Data acquisition equipment configuration, (b) Sensors deployment, (c) 
Highway scenario.

Table 1.   The radar system parameters.

Parameter name Value

Operating frequency (GHz) 24

Ranging accuracy (m) 0.8

Speed measuring accuracy (m/s) 0.03

Angle measuring accuracy (°) 0.4

Horizontal field of view (°) 45

Vertical field of view (°) 29
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where MIt , FPt , and MMEt are the number of misses, of false positives, and of mismatches, respectively. GTt is 
the number of objects in the scene. From Eq. (19), The MOTA can be seen as derived from 3 error ratios, i.e., 
the ratio of misses (ROM),

the ratio of false positives (ROFP),

and the ratio of mismatches (ROMM),

In the experiment, the target is detected by the radar and camera separately. The radar obtains the target’s position 
information by transmitting FMCW waveform, performing FFTs processing on the target echoes and detecting 
the target by CFAR. The camera uses Fairmot to detect the position of the target in the video. After getting the 
detection results from the radar and camera, the proposed fusion Kalman filter is used to track multiple targets in 
the scene during the generation of the traffic flow DT. The tracked trajectories are counted to obtain quantitative 
MOTA results, while the results for the intermediate metrics ROM, ROFP, and ROMM are obtained too. In the 
performance results, tracking results of radar only and camera only are also given for comparison. Meanwhile, 
two fusion tracking strategies, i.e., heuristic fusion with adaptive gating (HFAG)20 and track-to-track fusion 
(TTF)19, are employed, and compared with the detection-to-detection fusion proposed in this paper.

Results and discussion.  Radar echo signals and camera video were recorded simultaneously during the 
experiment. The target positions measured by radar and camera are converted to their respective LC systems and 
the car flow detections are drawn in Fig. 10a. It can be seen that the car flow detections are not aligned before 
calibration due to the spatial errors between the two sensors. Specifically, the directions of car flows from differ-
ent sensors are not the same, and the scales in the y-direction are also inconsistent. Taking the radar LC system 
as UCS, the calibration results of the car flow detections are shown in Fig. 10b. It can be seen that the normal 
error and the scale inconsistency between the two sensors have been corrected, and the car flow directions are 
kept consistent. In this case, the position difference between the detection points of radar and camera is mainly 
caused by two factors. The first factor is the calibration residual, which is reflected in the overall deviation of the 
detections between the radar and camera as shown in Fig. 10b. The second factor is the measurement error of the 
sensors themselves. From the zoomed-in plot as shown in Fig. 10c, the x-position error of the radar detections is 
about 1m, and the x-position error of the camera detections is about 0.2 m. After the target tracking by the fusion 
Kalman filter, the position error is further eliminated and accurate target position information can be obtained.

It is worth noting that it is necessary to choose proper measurement accuracy sensors according to the 
application requirements in practice. For example, we want to obtain a DT model with lane level accuracy in 
this experiment, hence the measurement error of the selected sensor at x-position, usually for radar, should be 
less than 3 m, considering that the width of the lane is usually larger than 3 m.

The performance of target tracking is evaluated using the measured traffic flow data of the highway scenario. 
To quantitatively evaluate the MOTA metrics, we manually labeled 1000 frames of data in the experiment, and 
the trajectory output results of the tested methods were labeled with missed detection, false positives and mis-
matches. The quantitative results of the target tracking in the DT model are shown in Table 3. It can be seen that 
the performance of target tracking is improved by sensor fusion with respect to either radar only or camera only 
method. Among the three tested fusion methods, the HFAG method uses a predefined correlation gate, and if the 
scene does not match the predefined gate in practice, the tracking performance will be degraded. Compared with 
the HFAG method, the track-to-track fusion and the proposed method obtain better performance, however, the 
track-to-track fusion requires at least 3 Kalman filtering processes, i.e., the respective Kalman filtering of radar 
and camera, and a fusion Kalman filtering, which increases the computational burden in practice.

(19)MOTA = 1−

∑

t (MIt + FPt +MMEt)
∑

t GTt
,

(20)ROM =

∑

t MIt
∑

t GTt
,

(21)ROFP =

∑

t FPt
∑

t GTt
,

(22)ROMM =

∑

t MMEt
∑

t GTt
.

Table 2.   The camera system parameters.

Parameter name Value

Image resolution 1920 × 1080

Focal length (mm) 15

Horizontal field of view (°) 8.1

Vertical field of view (°) 4.5
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A DT model is generated for the highway scenario using the fusion tracking results of the car flow from radar 
and camera. The digitized car flow locations are mapped to the WGS-84 coordinate system, then the DT model 
is displayed by using the WGS-84 coordinates on a satellite map corresponding to the experimental site pro-
vided by AutoNavi as shown in Fig. 11a. The yellow rectangle represents the vehicle target, and the solid yellow 
dot on the rectangle represents the vehicle front facing. The scenario video of the same moment is also given in 
Fig. 11b. The corresponding cars are marked by red numbers in both Fig. 11a,b, it can be seen that the relative 
positions between cars in the DT model are correctly reflected compare with the scenario video. Meanwhile, 
the DT projection on the satellite map are correct and accurate, since the cars all appeared in the correct lanes. 
In addition, there are several details worth noting here: 

1.	 As can be seen in the video shown in Fig. 11b, Car 1 is changing lanes at this moment, and as can be seen in 
the DT model on the satellite map shown in Fig. 11a, Car 1 is also on the dashed line on the ground between 
the two lanes.

2.	 In the video, Car 3 travels to the end of the ground arrow marker, and in the satellite map, the DT model of 
Car 3 travels to the same spot of the ground arrow marker.

3.	 In the video, Car 8 and Car 9 are driving side-by-side in adjacent lanes, with Car 9 slightly behind Car 8 by 
about half a body length, and this position relationship between Car 8 and Car 9 is reflected by their DT 

Figure 10.   Radar-camera calibration. (a) Detections of car flows before sensor calibration in radar and camera 
LCs, the axes of the two LC systems are overlapped and drawn together, (b) Detections of car flows after sensor 
calibration in UCS, (c) Car tracks outputed by fusion Kalman filter after sensor calibration in zoomed-in UCS.

Table 3.   The tracking performance of different methods.

Target tracking methods ROM (%) ROFP (%) ROMM (%) MOTA (%)

Radar only 8.7 0.7 2.7 87.9

Camera only 3.3 2.1 0.8 93.8

HFAG20 3.1 1.1 0.7 95.1

TTF19 2.7 0.63 0.66% 96.0

The proposed method 2.3 0.61 0.71 96.38
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models in the satellite map. It is worth noting that this side-by-side traffic status is a challenging corner case 
for radar tracking due to the low angle resolution, which can be successfully solved by fusion with camera.

Conclusion
In this paper, an end-to-end generation approach for DT model based on radar and camera fusion is proposed 
for highway scenario. Starting from the raw data of sensors, the deployment error of the sensing system is 
calibrated using the road feature information to make the radar and camera pointing consistent. After sen-
sor calibration, the data from different sensors are transformed into a UCS and the targets are tracked in this 
coordinate system using fusion Kalman filter to obtain accurate motion trajectory. As a result, a DT model of 
the traffic flow is built. Finally, the DT model can be optionally transformed to the desired coordinate system 
for post-processing. The effectiveness of the proposed method is verified by building a DT model of the traffic 
flow in a real highway scenario.

Using the DT model built for the highway scenario, road conditions can be dynamically captured in real time 
and extrapolated for the real physical world state. Based on this prediction information the traffic efficiency of 
the road can be optimized, and further, the DT model can be iterated by the real physical world situation. So on 
and so forth, using the interaction of digital and physical twins will effectively enhance the functionality of the 
intelligent transportation system. In the above application, the method proposed in this paper is a candidate for 
obtaining the DT model of traffic flow.

Based on the progress of the current work, the following directions for subsequent research are available: 

1.	 When there is target missing from any sensor in the radar-camera pair, how to deal with such target and 
improve the tracking accuracy is the work that needs to be continued on the basis of this paper.

2.	 Limited by the current experimental conditions, we are unable to build a digital model for a larger scale 
scenario, which will be the focus of our subsequent work.

3.	 When the information of multiple sites is connected to form a DT model of a large scene, the target associa-
tion between sites will be a complex problem if there is a coverage overlap area between the sensors of each 
site, and the handling of this problem will determine the accuracy of the DT model, which is the direction 
of subsequent research.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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