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Screening of lactic acid bacteria 
strains isolated from Iranian 
traditional dairy products for GABA 
production and optimization 
by response surface methodology
Mohammad Reza Edalatian Dovom 1*, Mohammad Bagher Habibi Najafi 1, 
Paria Rahnama Vosough 1, Neda Norouzi 1, Seyyed Javad Ebadi Nezhad 1 & Baltasar Mayo 2

A total of 50 lactic acid bacteria (LAB) isolates from Iranian traditional dairy products (Motal and 
Lighvan cheeses, and artisanal yogurt) were screened for gamma-aminobutyric acid (GABA) 
production. Firstly, a rapid colorimetric test was performed to evaluate the glutamate decarboxylase 
(GAD) activity among the LAB isolates examined. Thin layer chromatography (TLC) was then 
performed on selected strains to identify isolates with high/moderate GABA producing capacity, and 
a GABase micro-titer plate assay was employed to quantify GABA. Finally, two Lactococcus (Lac.) 
lactis strains were selected for GABA production optimization via Response Surface Methodology 
(RSM) following Central Composite Design (CCD). Forty-one out of the 50 isolates showed GAD 
activity according to the colorimetric assay. Eight isolates displayed strong GAD activity, while nine 
showed no activity; low to moderate GAD activity was scored for all other isolates. GABA production 
was confirmed by TLC in all isolates with high GAD activity and in four selected among isoaltes with 
moderate activity. Among the Lactococcus strains tested, Lac. lactis 311 and Lac. lactis 491 were 
the strongest GABA producers with amounts of 3.3 and 1.26 mM, respectively. These two strains 
were subjected to GABA production optimization applying RSM and CCD on three key variables: 
Monosodium glutamate concentration (MSG) (between 25 and 150 mM), incubation temperature 
(between 25 and 37 °C), and pH (between 4.0 and 5.0). Optimal conditions for GABA production by 
Lac. lactis 311 and Lac. lactis 491 of temperature, pH and MSG concentration were, respectively, 
35.4 and 30 °C, pH 4.5 and 4.6, and MSG concentration of 89 and 147.4 mM, respectively. Under the 
above conditions, the amount of GABA produced by Lac. lactis 311 and Lac. lactis 491 was 0.395 and 
0.179 mg/mL, respectively. These strains and the optimal culture conditions determined in this study 
could be used for the biotechnological production of GABA or applied in food fermentations for the 
development of naturally GABA-enriched foods.

Abbreviations
LAB  Lactic acid bacteria
GRAS  Generally recognized as safe
GABA  Gamma-aminobutyric acid
GAD  Glutamate decarboxylase
NADP  Nicotinamide adenine dinucleotide phosphate
MSG  Monosodium glutamate
TLC  Thin layer chromatography
rep-PCR  Repetitive extra genic profiling PCR
RSM  Response surface methodology
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CCD  Central composite design
Rf  Retention factor

Lactic acid bacteria (LAB) are among the most essential and common Gram-positive bacteria which are not only 
widely distributed in nature and naturally exist in traditional fermented foods, but also extensively involved in 
industrial food fermentations due to having a reputation of being “Generally Recognized As Safe” (GRAS). The 
use of pure cultures of lactic acid bacteria for fermentation of cucumbers, cabbage, olives, and other products 
has been explored for several decades with varying degrees of success. However, at present pure cultures are 
exploited only on a limited commercial scale for these  commodities1–4. LAB also offer special functions that 
are considered beneficial, such as antioxidant and antimicrobial activities, as well as the formation of bioac-
tive compounds such as, among others, peptides, organic acids, and short-chain fatty  acids5–9. Because of their 
significant beneficial effects, there are currently noteworthy researches on LAB and attract many industrial 
 interest10. Gamma-aminobutyric acid (GABA) is considered as one of the well-known bioactive compounds; 
it is a four-carbon, non-protein amino acid formed by different organisms including microorganisms, plants, 
and  animals3,11,12. This amino acid-derived compound serves as the main inhibitory neurotransmitter in the 
mammalian central nervous system and, as such, it leds to hypotension, contributes to gut-to-brain signaling 
and has tranquilizer  effects7,13–16. Several studies show that GABA contributes to other physiological functions, 
such as regulating of sleeplessness and depression, enhancing the plasma level of growth hormone, controlling 
the quorum-sensing systems by acting as a signal molecule between eukaryote cells and pathogens, reducing 
the inflammation in rheumatoid  arthritis10,17–19. As a bioactive compound, the application of GABA varies from 
pharmaceuticals to functional fermented  foods20. Therefore, it is an ever-growing demand for highly effective 
GABA biosynthesis, and hence, substantial efforts have been made in this field. Biological methods applying 
microorganisms are more promising; thus many GABA-enriched products are obtained by  fermentation21–25. 
Biosynthesis of GABA from glutamate occurs by the action of the glutamate decarboxylase (GAD), a pyridoxal 
5-phosphate-dependant enzyme (EC 4.1.1.15) that is responsible for the conversion of L-glutamate into  GABA3,24. 
The wide distribution of GAD among eukaryotes (plants, animals, and fungal strains) and prokaryotes has been 
reported by several  studies26,27. However, LAB, besides all beneficial and technological properties, have been 
introduced as the most promising group of microorganisms in which they are capable of producing a high level 
of GABA due to high GAD  activity28. The effort to screen for new GABA-producing LAB still attracts attention, 
though numerous strains have already been isolated and characterized. Thus, it seems that further research 
on the isolation and characterization of GABA-producing LAB is demanded to provide novel starters for the 
nutraceutical and functional fermented foods  industry10. The diversity of new GABA-enriched foods ranges from 
cereal-based to dairy-fermented products, including sourdough, bread, cheese, fermented tea and vegetables, 
traditional Asian fermented foods, and dairy and soy  products1,29. As mentioned above, by further screening, 
the isolation sources should be diversified as much as possible, including traditional fermented foods to achieve 
new GABA-producing LAB strains. This leads to a more comprehensive application area and higher flexibility of 
starter  cultures11. According to the literature, raw milk cheeses have been identified as a valuable source of micro-
bial biodiversity and new LAB strains with health-promoting  properties14. Though currently, there are several 
different types of researches and industrial interest in the biological examination of the potential of traditional 
dairy  LAB30–32. So far, no GABA-producing LAB have been reported from Iranian traditional fermented foods. 
Recently Azizi et al. (2017) have claimed that most of the isolates from Motal cheese could be used as starters or 
adjunct-starters in novel fermented functional foods. Besides having antimicrobial  properties33, the production 
of bioactive compounds, such as GABA, could potentially substantiate the functionality claimed for such cultures.

Hence, the present study aims to screen for GABA-producing LAB from various Motal and Lighvan cheeses 
and yogurt samples which are among the preeminent and most appreciated traditional Iranian dairy products.

Materials and Methods
Chemical and Media. The commercial GABase kit and all chemicals such as NADP + (Nicotinamide ade-
nine dinucleotide phosphate), α-ketoglutarate, monosodium glutamate (MSG), Triton X-100®, and GABA were 
purchased from Sigma-Aldrich (St. Louis, MO, USA). M17 and de Man, Rogosa, and Sharpe (MRS) broth media 
were obtained from Quelab (Quelab Laboratories Inc., Canada).

LAB strains and growth conditions. A total of 50 LAB isolates previously isolated from Iranian tradi-
tional dairy products (Motal  cheese33, Lighvan  cheeses31,34, and Iranian  yogurt35), identified using molecular 
techniques and 16S rRNA gene sequencing, were screened for GABA production (Table 1). All examined iso-
lates, including lactobacilli (Lactobacillus, Lactiplantibacillus, and Levilactobacillus) (27 isolates), Lactococcus 
(20 isolates), and Streptococcus (3 isolates), were kept frozen in MRS (lactobacilli) or M17 (lactococci and strep-
tococci) broth with 15% glycerol at -80 °C. Pre-cultures were made by adding 20 µL of stock culture to 10 mL 
fresh medium. Lactobacilli strains were grown in MRS medium, while M17 medium was used for lactococci 
and Streptococcus (St.) thermophilus strains. Based on the types, incubations were done at 30 or 37ºC for 24–48 h 
under aerobic or anaerobic conditions.

Qualification screening of LAB isolates. Determination of GAD activity. Glutamic acid decarboxylase 
(GAD) assay is a rapid colorimetric test used to assess the GABA-producing potential among LAB isolates. Sam-
ple preparation for GAD activity determination was done as described by Lacroix et al.36. An overnight grown 
culture of each isolate (5 mL) was washed with 0.9% (w/v) NaCl solution and centrifuged at 5000 × g (20 min, 25 
ºC). Cells were suspended in 500 µL of GAD reagent solution (pH = 4), which consists of L-glutamic acid (1 g), 
Triton X-100 (300 µL), NaCl (90 g), and bromocresol green (0.05 g) in 1 L deionized water. After anaerobic in-
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Table 1.  GAD activity, Colorimetric results and GABA contents (mg/ml) of lactic acid bacteria isolated from 
Iranian traditional dairy products. (+ +  + +): High,(+ + +): Medium, (+ +): Low, ( +) : very Low, (–):No GAD. 
ND: not determine.

No Strain Code Species Source GAD activity Colorimetric results
GABA content (mg/
ml)

1 43 St.thermophilus Iranian yoghurt  +  +  +  + Blue 0.02 ± 0.003

2 74 St.thermophilus Iranian yoghurt  +  +  + Greenish blue 0.01 ± 0.001

3 78 St.thermophilus Iranian yoghurt  +  +  + Greenish blue 0.01 ± 0.001

4 4 Lb. delbrueckii ssp. 
bulgaricus Iranian yoghurt  +  +  + Greenish blue 0.02 ± 0.001

5 51 Lb. delbrueckii ssp. 
bulgaricus Iranian yoghurt  +  + Green ND

6 62 Lb. delbrueckii ssp. lactis Iranian yoghurt  +  + Green ND

7 64 Lb. delbrueckii ssp. lactis Iranian yoghurt  +  + Green ND

8 65 Lb. delbrueckii ssp. lactis Iranian yoghurt  +  + Green ND

9 67 Lb. delbrueckii ssp. lactis Iranian yoghurt  +  +  + Greenish blue 0.04 ± 0.054

10 69 Lb. delbrueckii ssp. lactis Iranian yoghurt  +  +  + Greenish blue 0.07 ± 0.003

11 73–1 Lb. delbrueckii ssp. lactis Iranian yoghurt  + Greenish yellow ND

12 73–2 Lb. delbrueckii ssp. lactis Iranian yoghurt  + Greenish yellow ND

13 76 Lb. delbrueckii ssp. lactis Iranian yoghurt  +  +  + Greenish blue 0.06 ± 0.004

14 86 Lb. delbrueckii ssp. lactis Iranian yoghurt  + Greenish yellow ND

15 97 Lac. lactis ssp. lactis Fresh Lighvan milk  + Greenish yellow ND

16 206 Lac. lactis ssp. lactis Fresh Lighvan milk  +  + Green ND

17 208 Lac. lactis ssp. lactis Fresh Lighvan cheese  + Greenish yellow ND

18 219 Lac. lactis ssp. lactis Fresh Lighvan cheese  + Greenish yellow ND

19 220 Lac. lactis ssp. lactis Fresh Lighvan milk  +  + Green ND

20 261 Lac. lactis ssp. lactis Lighvan Curd  +  +  +  + Blue 0.04 ± 0.002

21 290 Lac. lactis ssp. lactis Lighvan Curd  +  + Green ND

22 311 Lac. lactis ssp. lactis Lighvan Curd  +  +  +  + Blue 0.34 ± 0.006

23 412 Lac. lactis ssp. lactis Fresh Lighvan milk  +  + Green ND

24 433 Lac. lactis ssp. lactis Lighvan Curd  +  + Green ND

25 447 Lac. lactis ssp. lactis Lighvan Curd  +  + Green ND

26 449 Lac. lactis ssp. lactis Lighvan Curd  +  + Green ND

27 451 Lac. lactis ssp. lactis Fresh Lighvan milk  +  + Green ND

28 454 Lac. lactis ssp. lactis Fresh Lighvan milk  +  +  +  + Blue 0.08 ± 0.001

29 466 Lac. lactis ssp. lactis Fresh Lighvan milk  +  + Green ND

30 473 Lac. lactis ssp. lactis Lighvan Curd  +  + Green ND

31 485 Lac. lactis ssp. lactis Lighvan Curd  + Greenish yellow ND

32 487 Lac. lactis ssp. lactis Fresh Lighvan milk  +  + Green ND

33 491 Lac. lactis ssp. lactis Fresh Lighvan milk  +  +  +  + Blue 0.13 ± 0.017

34 506 Lac. lactis ssp. lactis Lighvan Curd  +  + Green ND

35 M2 Lb. brevis Motal cheese  +  +  +  + Blue 0.12 ± 0.004

36 M3 Lb. brevis Motal cheese – Yellow ND

37 M4 Lb. brevis Motal cheese  +  +  +  + Blue 0.36 ± 0.015

38 M5 Lb. brevis Motal cheese  +  + Green ND

39 M6 Lb. brevis Motal cheese – Yellow ND

40 M7 Lb. brevis Motal cheese – Yellow ND

41 M8 Lb. brevis Motal cheese – Yellow ND

42 M9 Lb. brevis Motal cheese – Yellow ND

43 M11 Lb. brevis Motal cheese  +  + Green ND

44 M12 Lb. brevis Motal cheese  +  +  +  + Blue 0.18 ± 0.006

45 M13 Lb. brevis Motal cheese – Yellow ND

46 M15 Lb. casei Motal cheese – Yellow ND

47 M16 Lb. plantarum Motal cheese  +  + Green ND

48 M17 Lb. plantarum Motal cheese – Yellow ND

49 M18 Lb. plantarum Motal cheese  +  + Green ND

50 M19 Lb. plantarum Motal cheese – Yellow ND
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cubation for 4 h at 37ºC, GAD activity was visually examined by color change. The development of a greenish or 
blueish color was considered as low or high GAD activity, respectively. However, no color change (yellow) was 
considered with no  activity36.

Thin layer chromatography (TLC). To identify isolates with high and moderate GABA producing ability, a 
TLC assay was performed as described by Lee et al.37. Briefly, strains were inoculated in their respective broth 
medium supplemented with 0.5% monosodium glutamate (MSG) and incubated at their optimal temperature 
for 24 h. To test the presence of GABA, supernatants were collected by centrifugation (8000 × g, 4ºC, 5 min) and 
then 2 µL of each filtered supernatant was spotted on a TLC plate (Silica gel 60 F254). TLC was conducted using 
n-butanol:acetic acid:water ratio of 5:2:2 (v/v/v). The silica gel plate was subsequently developed by spraying 
with a 2% ninhydrin solution and heating at 105ºC for 5 min.

DNA extraction and strain typing by rep-PCR. Total genomic DNA was extracted from GABA-
producing isolates using a commercial kit (High Pure PCR Template Preparation Kit; Roche, Basel, Switzer-
land), following the manufacturer’s instructions. To assess the interspecies diversity between isolates, repetitive 
extragenic profiling PCR (rep-PCR) was done using BoxA2R (5´-ACG TGG TTT GAA GAG ATT TTCG-3´) as 
reported by Koeuth et al.38. In brief, reactions were performed in 25 µL volume containing 2 µL purified DNA, 
12.5 µL Red master mix (Ampliqon, Odense, Denmark), 9.3 µL Nuclease-free water, and 1.2 µL of the primer. 
Thermal conditions were as follows: an initial step of denaturation at 95 °C for 5 min, followed by 35 cycles of 
denaturation and annealing at 94 °C for 29 s, 40 °C for 1 min, and at 68 °C for 8 min; with a final extension at 
68 °C for 10 min. PCR products were then electrophoresed using 1.5% agarose (Merck, Darmstadt, Germany) 
gel at 75 V for 90 min. DNA safe stain (0.75 µL/100 mL) (Sina Clon Bio Science, Tehran, Iran) was used for visu-
alization of the gel and the bands photographed under UV light by Gel Doc System. The similarity of the patterns 
was expressed by the Simple Matching (SM) coefficient, and the clustering was performed using the Unweighted 
Pair Group Method with Arithmetic Mean (UPGMA) method, with the Multivariate Statistical Package (MVSP) 
software version 3.13d31.

GABA determination. Quantitative measurment of GABA in broth medium was done by a GABase micr-
otiter plate assay as described by Tsukatani et al.39. Bacterial isolates were grown in MRS broth medium contain-
ing 0.5% MSG for 2 days at their optimal growth temperature. The reactive mixture contained 750 mM sodium 
sulfate, 10 mM dithiothreitol, 1.4 mM NADP + , 2.0 mM α-ketoglutarate in Tris–HCl buffer (80 mM, pH 9.0) 
and GABA-T (Gamma-aminobutyrate glutamate aminotransferase) (Sigma-Aldrich). The mixture was added to 
each well (in a 96-well microtiter plate) in a final volume of 90 µL. The initial absorbance was read at 340 nm with 
a microplate reader (BioTek, ELX 808) before adding a 10 µL sample of a standard GABA solution. The substrate 
of NADP + turns to NADPH in the presence of GABA and α-ketoglutarate after incubation at 30-37ºC for 1 h. 
To calculate the GABA content formed by each isolate, the difference between initial and final absorbances at 
340 nm was compared to standard curves of calibrated GABA solutions.

Optimization of GABA production using response surface methodology (RSM). Optimization 
of GABA production in MRS medium and studying the interaction of key parameters were done using response 
surface methodology (RSM). A Central Composite Design (CCD) of RSM was applied to optimize the 3 effective 
variables: MSG concentration (between 25 and 150 mM), incubation temperature (from 25 to 37 °C), and pH 
(4.0–5.0). Varying these three independent parameters, a total of 20 experiments for each isolate were designed 
and performed. The statistical software Design Expert 10.0.7.0 was used for data  analysis12,40. Laboratory-scale 
fermentations were set up to investigate optimal parameters for GABA production by selected isolates. Bacterial 
isolates were inoculated into falcon tubes containing 50 mL MRS broth medium with different concentrations 
of MSG with initial pH adjustment and incubated at different temperatures for 48 h to reach optimum GABA 
production. After 48 h of incubation, samples were withdrawn from the each falcon tube to determine GABA 
content.

Statistical analysis. To analyze the results related to the potential of GABA production by examined bac-
teria, Duncan’s one-way analysis of variance (ANOVA) was applied using the SPSS software (ver. 16), while to 
optimize the conditions of GABA production, RSM with Design Expert 10.0.7.0 software was used.

Results
Screening of GAD activity. Total number of LAB isolates and the results of their previous  identification31,33–35 
are presented in Table 1. These isolates include members of lactobacilli (of the genera Lactobacillus, Lactiplanti-
bacillus, and Levilactobacillus) (27 isolates), Lactococcus (20 isolates), and Streptococcus (3 isolates).

The GAD activity of the 50 isolates from Iranian traditional dairy products are also summarized in Table 1. 
The cultures of the isolates Levilactobacillus (Lb.) brevis M2, M4 and M12; Streptococcus (St.) thermophilus 43, 
and Lac. lactis 261, 311, 454, and 491 developed a strong blue color, consistent with a high GAD activity. No color 
change was observed for the isolates M3, M6, M7, M8, M9, M13, M15, M17, and M19; thus these are considered 
not to have GAD activity. Other isolates with greenish-blue, green and greenish-yellow color were considered 
as having medium, low and very low GAD activity, respectively. Fourteen isolates, including all high and some 
with moderate GAD activity were selected for subsequent experiments. GAD assay results revealed that most 
of the GAD-positive isolates were isolated from cheese (Lighvan and Motal); whereas, only one isolate from a 
traditional yogurt exhibited high GAD activity.
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Genetic analysis of isolates. Lactobacilli, Streptococcus and Lactococcus species were targeted by rep-
PCR to evaluate the intramolecular diversity among the isolates, as well as to assess whether isolates with GAD 
activity belonging to the same species were replicates or independent strains. Further, typing of the strains could 
serve for selecting different strains for GABA production optimization. The different patterns of similarity were 
clustered using the SM coefficient by the UPGMA method. Given the reproducibility of the assay around 94 
(Fig. 1), isolates sharing a percentage of similarity > 94% were considered to belong to the same strain. Figure 2 
a, b, c and d are the profiles obtained from 3 isolates of Lb. brevis, 4 isolates of Lac. lactis, 3 isolates of St. ther-
mophilus and 4 isolates of Lb. delbrueckii. Lb. brevis M2 and Lb. brevis M12 strains showed 100% similarity. Lac. 
lactis 311 and Lac. lactis 454 strains had 100% similarity. St. thermophilus 74 and St. thermophilus 43 also had 
100% similarity. These strains can be multiple isolates. Lactobacillus (Lb.) delbrueckii 69 and Lb. delbrueckii 67 
also showed very high homology. The relation between the intra-species diversity with GABA production in 
these species showed that GABA production was significantly different between isolates with high similarity and 
comparable between isolates with low similarity. Unlike other examined strains, there was no significant differ-
ence in GABA production in St. thermophilus isolates with high and low similarity.

Confirmation of GABA by thin layer chromatography. Isolates that showed no GAD activity by the 
colorimetric method were excluded from further analyses. Based on the results of GAD activity, we selected 14 
isolates corresponding to the species St. thermophilus (three), Lb. delbrueckii (four), Lac. lactis (four), Lb. brevis 
(three) for further studies. The GABA production was confirmed by observing red spots on the TLC plates 
(Fig. 3). The spot mobility from the culture supernatant of the 14 isolates was consistent with GABA, as a reten-
tion factor (Rf) value (0.77 cm) of the sample matched with the GABA standard. Thus, all 14 selected isolates 
were considered as GABA producers.

GABA’s of strains show the same retention factor (Rf) value as the GABA standard (= 0.77 cm). The reten-
tion factor was defined as the ratio of the distance traveled by the center of a spot to the distance traveled by the 
solvent front.

Quantitative GABA production measurement. GABA production of selected strains was quantified 
using a GABase microtiter plate enzymatic determination. As shown in Table 1, GABA production varied widely 
ranging from 0.01 to 0.36 mg/L (equivalent to 0.12 and 3.52 mM). All Lb. brevis isolates from Motal cheese 

1.00.880.760.640.520.400.28

UPGMA

Simple Matching Coefficient

Lb. brevis M4
Lb. brevis M4
Lb. brevis M4
Lb. delbrueckii 67
Lb. delbrueckii 67
Lb. delbrueckii 67
Lac. lactis 311
Lac. lactis 311
Lac. lactis 311

M 1 2 3
311

1 2 3
M4

1 2 3
67

M

Figure 1.  Repeatability of the rep-PCR typing assay with primer BoxA2R after analysing three randomly-
selected isolates (311, M4, and 67) in three independent experiments (1, 2, and 3). Below, dendogram of 
similarity of the patterns obtained clustered by the UPGMA method using the Simple Matching coefficient. 
The dotted red line indicates the repeatibility considered in this work (94%) to separate isolates from strains. M, 
molecular weight marker.
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exhibited a high ability to produce GABA (> 1 mM), while the highest GABA concentration was produced by Lb. 
brevis M4. Our findings further revealed that all isolates belonging to Lac. lactis have a medium to high GABA 
producing ability, while all Lb. delbrueckii cultures presented a low level of this ability.

RSM design. Although Lac. lactis isolates produced less GABA than the Lb. brevis isolates, the former spe-
cies is the most economically-important starter component in  cheese43, which prompted us to select two differ-
ent strain of this species, Lac. lactis 311 and Lac. lactis 491, for GABA production optimization by RSM method-
ology. The selected two Lac. lactis strains are different strains according to the rep-typing results.As stated in the 
corresponding section, a CCD (central composite design) was performed based on a single variable factor test at 
a time and considering three independent variables: MSG concentration (mM), Temperature (°C), and pH. The 
20 different combination set ups based on CCD and the corresponding GABA concentration for both predicted 
and experimental values are listed in Tables 2 and 3, respectively.

The interaction effect of these factors on GABA production concentration by Lac. lactis 311 is described by 
the following equation:

where R is the concentration of GABA (mg/mL) and A, B and C are coded values of the independent variables, 
viz., MSG, temperature and pH, respectively.

(1)
R =0.18+ 0.023× A+ 0.019× B+ 5.429E− 003× C+ 2.363E− 003× AB− 1.937E

− 003× AC+ 3.863E− 003× BC− 0.016× A
2
− 0.020× B

2
− 0.013× C

2

Figure 2.  rep-PCR typing profiles obtained with primer BoxA2R for the 14 lactic acid bacteria isolates 
producing GABA and belonging to the species Levilactobacillus brevis (A), Lactococcus lactis (B), Streptococcus.
thermophilus (C), and Lactobacillus delbrueckii (D). Besides each of the gels, a dendogram of similarity of 
the different patterns clustered by the UPGMA method using the Simple Matching Coefficient is shown. M, 
molecular weight marker. Red lines show the repeatibility of the typing method (94%).

GABA

MSG

491 454 311 261 M12 M4 M2 4 69 67 76 78 74 43

Figure 3.  TLC analysis of GABA produced the 14 lactic acid bacteria isolates, as compared to the retention 
factor (Rf) of a commercial GABA standard (= 0.77 cm).
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Table 2.  Three independent variables set of 20 experiments were designed and performed at five levels and 
one repetition for GABA concentration by Lac. lactis 311.

Run

Variables GABA (mg/ml)

MSG (X1) T (X2) pH (X3) Experimental value Predicted value

1 87.5 41 4.5 0.345 0.351

2 25 37 5 0.310 0.308

3 25 37 4 0.340 0.289

4 150 25 5 0.301 0.295

5 87.5 31 4.5 0.389 0.381

6 150 37 5 0.350 0.385

7 150 25 4 0.280 0.260

8 87.5 31 4.5 0.370 0.381

9 150 37 4 0.370 0.358

10 25 25 4 0.193 0.194

11 87.5 31 4.5 0.390 0.381

12 87.5 31 4.5 0.388 0.381

13 192.6 31 4.5 0.390 0.365

14 87.5 20.9 4.5 0.175 0.196

15 5 31 4.5 0.285 0.279

16 87.5 31 4.5 0.380 0.381

17 25 25 5 0.231 0.222

18 87.5 31 4.5 0.400 0.381

19 87.5 31 3.6 0.278 0.281

20 87.5 31 5.3 0.324 0.327

Table 3.  Three independent variables set of 20 experiments were designed and performed at three levels and 
one repetition for GABA concentration by Lac. lactis 491.

Run

Variables GABA (mg/ml)

MSG (X1) T (X2) pH (X3) Experimental value Predicted value

1 87.5 31 4.5 0.174 0.172

2 150 37 4 0.163 0.164

3 25 25 5 0.089 0.089

4 150 37 5 0.176 0.176

5 192.6 31 4.5 0.169 0.169

6 87.5 31 5.3 0.144 0.145

7 87.5 41 4.5 0.147 0.147

8 5 31 4.5 0.108 0.108

9 87.5 31 3.6 0.128 0.128

10 87.5 31 4.5 0.172 0.172

11 150 25 5 0.125 0.126

12 87.5 31 4.5 0.173 0.172

13 87.5 31 4.5 0.177 0.172

14 25 37 5 0.133 0.122

15 87.5 31 4.5 0.179 0.172

16 150 25 5 0.127 0.130

17 87.5 31 4.5 0.175 0.172

18 25 25 4 0.083 0.083

19 25 37 4 0.107 0.107

20 87.5 20.9 4.5 0.088 0.088
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Three-dimensional surface plots were generated to estimate the effect of the combinations of the independent 
variables on the GABA production using Design Expert software. The 3D plot in Fig. 4A shows the interaction 
effect of MSG and temperature, keeping pH at its central level 4.5. According to the 3D plot, predictably, the 
GABA concentration increased with increasing MSG concentration and the increase of temperature. Neverthe-
less, in the low MSG concentration, increasing GABA concentration was more sharply compared to a higher 
concentration. The maximum concentration (3.83 mM) was observed with MSG in concentration of 89 mg/mL 
and temperature of 35.4 °C.

Figure 4B presents the 3D plot showing the dependency of GABA concentration on MSG concentration 
and pH, keeping the third factor (temperature) at its central level of 31 °C. The graph predicted that the highest 
GABA concentration by relevant strain at 35.4 °C was observed with the mid pH (4.5) and MSG concentration 
(89 mg/ml). However, GABA concentration at lower pH remained approximately constant by increasing MSG 
concentration. The 3D curve showing the interaction effect of temperature and pH has shown in Fig. 4C. The 
low GABA concentration was observed with the lowest temperature and lowest pH. The maximum GABA con-
centration (3.83 mM) was observed with pH (4.5) and temperature (35.4 °C).

Equation 2 explains the interaction effect of the independent variables on GABA concentration by Lac. lactis 
with strain code 491:

Figure 5A showed that with increasing the concentration of monosodium glutamate and increasing the tem-
perature, the amount of GABA formed increased. This trend is in agreement with the results reported elsewhere 
by other  authors41,42.

An increase in the amount of GABA was observed with increasing MSG and pH to 89 mg/ml and 4.59, 
respectively, at a constant temperature (Fig. 5B). When the concentration of monosodium glutamate was kept 

(2)
GABA =0.39+ 0.032× A+ 0.048× B+ 6.314E− 003× C− 0.011× AB− 7.459E

− 004× AC− 0.014× BC− 0.019× A
2
− 0.043× B

2
− 0.028× C

2

Figure 4.  3D plots showing the interaction effect of three variables for GABA production by Lac. lactis 311. (A) 
surface-response curve showing the interaction effect of MSG and temperature, keeping pH at its central value; 
(B) 3D curve for the interaction of MSG and pH, keeping temperature T at its central value; (C) 3D curve for 
the interaction of temperature and pH, keeping MSG concentration at its central value.
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constant, the GABA level increased sharply with increasing temperature, but increased pH led to the produc-
tion of low amounts of GABA (Fig. 5C). The incubation temperature is another important factor that may affect 
GABA production. In addition to the stability and biological activity of the enzyme, temperature also affects the 
thermodynamic equilibrium of the reaction.

Selection of optimal treatment and validation of model. The results of GABA production by two 
examined strains showed the optimal conditions for GABA production by Lac. lactis 311 and Lac. lactis 491 had 
a temperature of 35.4 and 30 °C, a pH of 4.5, 4.6 and a concentration of 89 and 147.4 mM of MSG, respectively. In 
the above conditions, the amount of GABA production by these two strains was 3.83 and 1.73 mM, respectively. 
Examination of the results in Fig. 6 shows that the points with a good approximation are on the straight line and 
the values obtained experimentally are in a good agreement with the values predicted by the model and showed 
the accuracy of the equation model.

Discussion
Regarding the Motal cheese isolates in this study, the results are consistent with previously reported levels by 
Ebadi Nezhad et al. (2020)44. GABA production begins in the exponential growth phase and increases near to 
the stationary phase due to an increased in GAD activity, which agrees with GAD being an intracellular enzyme 
produced in response to acidic  conditions45. The nutrient sources required for the GABA production by bacteria 
include the primary sources of carbon, nitrogen (including GABA substrate, glutamic acid) and  minerals46.

To avoid the use of replicates from the optimization studies, a strain-level typing scheme by rep-PCR was 
employed. Knowing intra-species diversity also helps to know how diverse the extend of GABA production is in 

Figure 5.  3D plots showing the interaction effect of three variables for GABA production by Lac. lactis 491. A, 
surface-response curve showing the interaction effect of MSG and temperature, keeping pH at its central value; 
B, 3D curve for the interaction of MSG and pH, keeping temperature T at its central value; C: 3D curve for the 
interaction of temperature and pH, keeping MSG concentration at its central value.
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closely-related and unrelated strains of the same  species10. As for many other phenotypic traits, large phenotypic 
variations have occasionally been reported for genetically closely-related LAB  strains47. Typing of LAB isolates 
from Koozeh and Lighvan cheese by rep-PCR with BOXA2R primer and typing of GABA-producing LAB isolates 
with rep-PCR by (GTG)5 primer has been previously reported by  others10,31. As in this work, high intraspecies 
diversity was reported in the referred studies.

Presumptive detection of GABA production by LAB species by TLC, followed by its confirmative identifica-
tion and quantification by High-performance liquid chromatography (HPLC) has been previously reported to 
be a successful strategy by Zhang et al.48. These authors reported that the mobility spot of the culture supernatant 
of BC114 strain was basically consistent GABA standard and could be preliminarily identified as GABA within 
a negligible margin of error. The measured sample from the fermentation broth (a complex matrix), may also 
result in incomplete agreement with pure GABA  standards48. The strain under investigation, Lb. plantarum 
BC114, showed the highest GABA production as measured by HPLC, which reached a value of 1.52 ± 0.07 g/L48. 
Tanamool et al.49 also used the TLC method to screen GABA-producing lactic acid bacteria strains. These authors 
found that among 44 LAB, the isolates L10-11 clearly produced the highest GABA based on the TLC  results49. 
In our results, 14 isolates among 50 LAB were considered as GABA producers. Valenzuela et al.25 showed the 
ability of Lb. brevis to produce GABA is consistent with other reported levels for Lb. brevis LMG6906 (0.29 g/L). 
Lb. brevis CECT8183 isolated from Spanish cheese by Diana et al.17 produced 0.1 g/L of GABA. Lb. brevis BJ20 
produced 0.002 g/L in a fermented sea tangle solution, which is a popular traditional marine food in Korea based 
on brown  seaweed50. Lb. brevis PM17 was among the most potent studied isolates by Franciosi et al.9. By contrast, 
no significant GABA production was detected for any St. thermophilus strain isolated from yogurt products, 
compared to lactobacilli and Lactococcus species in study. According to the literature, large numbers of strains 
from these genera from various fermented foods are indicated as GABA-producing  LAB13. There are many pub-
lications reporting variable GABA production levels by different LAB species. Among other factors, production 
could be affected by the GABA detection methods. For instance, Lb. delbrueckii PR1 (63 mg/kg) and Lac. lactis 
PU1 showed the highest GABA  concentrations9. The results of Ly et al.10 showed Lb. futsaii, Lb. namurensis and 
Lb. plantarum to produce high amounts of GABA in the range of 1.7–2 g/L. Hwang et al.51 have examined GABA 
production by two Lac. lactis strains in MRS containing 5% MSG at 30 °C. Maximum GABA production was 
observed after 40 h (1.37 g/L). Redruello et al.52 studied the effect of 6 Lac. lactis GABA-producing strains in 
cheese making. GABA accumulated at concentrations up to 0.457 g/Kg in cheese. Galli et al.53 revealed GABA 
content of their fermented milks by two mix starters (Lac. lactis and Lb. rhamnonus or Lb. paracasei) 0.185 and 
0.319 g/L, respectively by adding 249 mg/L MSG. Santos-Espinosa et al.54 demonstrated the highest GABA 
concentration (0.086 g/L) in fermented milk with Lac. lactis L-571 at 37 °C with 3 g/L of glutamate substrate. 
In a study conducted by Tajabadi et al.55 the optimum conditions for maximum GABA production by Lb. plan-
tarum Taj-Apis362 were an initial glutamic acid concentration of 497.97 mM, culture temperature of 36 °C, initial 
pH of 5.31 and incubation time of 60 h, which produced 0.74 g/L of GABA.

GABA-producing ability is linked to the activity of GAD enzyme in  LAB56. The source of LAB might affect 
GAD activity and GABA production capacity, as it was speculated that acidified foods could probably be the 
natural niche of GABA  producers10. Li et al.57 identified and characterized the GABA-producing lactic acid 
bacteria and claimed that most LAB strains are able to produce the highest amount of GABA in the range of pH 
4 to 5 at 30 to 50 °C and in the presence of glutamic acid. For this reason, this temperature and pH range was 
used in their  study57. GABA production occurs under acidic conditions. LAB metabolism mainly leads to the 
production of organic acids such as lactic and acetic acid. This means that they have to frequently face acidic 
stress and therefore, they have developed different mechanisms to cope with acidic conditions such as the GAD 
pathway. Laroute et al.58 claimed the activation of this pathway occurred after changing the pH to 4.6 and during 

Figure 6.  Model validation for Lac. lactis 311 (a) and Lac. lactis 491.
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the stationary phase. Their results are consistent with our results which optimum pH for GABA production in 
two examined isolates is 4.5 and 4.6. As reported by Laroute et al.58 a dose of 152 mM glutamate, increased the 
production of GABA by Lac. lactis NCDO 2118. This dosage of glutamate is similarly optimum dose for GABA 
production in our examined isolate (Lac. lactis 491). The findings of our work showed Lac. lactis 311 produced 
more GABA in lower concentration than Lac. lactis 491. The probable reason that lower concentrations of 
MSG can increase the efficiency of GABA production in comparison to higher concentrations of it, is that large 
amounts of MSG increase the osmotic pressure of cells and disrupt bacterial metabolism, leading to a decrease 
in GABA efficiency by bacteria 59. Although the optimal concentrations of MSG are different for various micro-
organisms in GABA production, some researchers have proven that excessive MSG could inhibit cell growth 
and minimize GABA  production60,61. Lu et al.62 showed that the highest concentration of GABA production by 
Lac. lactis isolated from kimchi was at 34° C (3.68 g/L). These results are similar to our results about Lac. lactis 
311. However, they stated that the optimal pH of GABA production was in the range of 7–862, which was not in 
compliance with the results obtained in our study.

Conclusions
In the present study, firstly, LAB isolates were screened for GABA production according to a qualitative method 
based on a colorimetric assay. Significant variability in GABA production was encountered among the differ-
ent species and strains tested. GABA-producing strains were then subjected to a TLC analysis to detect strains 
with high GABA producing ability. Response surface methodology was finally used to optimize conditions for 
maximum GABA production in two Lac. lactis strains, taking into account the variables affecting the response. 
The selected strains and the culture conditions producing the highest amounts of this bioactive compound could 
be used to develop GABA-enriched functional foods or in other biotechnological applications.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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