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Machine learning modeling 
for the prediction of plastic 
properties in metallic glasses
Nicolás Amigo 1*, Simón Palominos 2 & Felipe J. Valencia 3,4

Metallic glasses are one of the most interesting mechanical materials studied in the last years, 
but as amorphous solids, they differ strongly from their crystalline counterparts. This matter can 
be addressed with the development and application of predictive techniques capable to describe 
the plastic regime. Here, machine learning models were employed for the prediction of plastic 
properties in CuZr metallic glasses. To this aim, 100 different samples were subjected to tensile tests 
by means of molecular dynamics simulations. A total of 17 materials properties were calculated and 
explored using statistical analysis. Strong correlations were found for stoichiometry, temperature, 
structural, and elastic properties with plastic properties. Three regression models were employed for 
the prediction of six plastic properties. Linear and Ridge regressions delivered the better prediction 
capability, with coefficients of determination above ∼80% for three plastic properties, whereas Lasso 
regression rendered lower performance, with coefficients of determination above ∼60% for two plastic 
properties. Overall, our work shows that molecular dynamics simulations together with machine 
learning models can provide a framework for the prediction of plastic behavior of complex materials.

Metallic glasses (MGs) are one of the most interesting materials synthesized in the last years due to their excep-
tional combination of strength and elasticity 1,2. As any other amorphous material, MGs are strongly sensitive 
to several parameters such as atomic composition, 3,4 synthesis process, 5 cooling rate 6, or processing require-
ments 7. A relevant difference with their crystalline counterparts is that MGs possess limited ductility, making 
difficult the investigation of plasticity. This way, computational simulations and predictive models can shed light 
on the characterization of mechanical response, as well as to establish relationships between materials properties.

Supervised learning algorithms have been applied in materials science for different research purposes at both 
experimental and theoretical levels. Sun et al.8 predicted the efficiency of organic photovoltaic materials by using 
different types of ML models on a database of over 1700 donor materials. Design of molecular structures with 
tailored chemical and structural properties was shown by Gebauer et al.9, where generative neural networks were 
used to this aim. Drug discovery is another research area that has benefited from ML, as shown in the review 
of Vamathevan and co-workers, where applications of several techniques are discussed 10. Other authors have 
contributed in the acceleration of first principles calculations 11,12, which are accurate in materials modeling but 
lack of computational efficiency to handle large scale systems. On the other hand, machine learning stands for 
an alternative approach to construct classical inter–atomic potentials with adaptive force fields in function of 
the atomic environment leading to more reliable energy calculations within their boundary of validity 13. ML 
techniques have also been employed to predict macroscopic materials properties. For example, melting points of 
ionic liquids were predicted using tree–based ensemble methods on a large combination of cations and ions 14. 
Gaussian process regression was carried out to design copper alloys with enhanced strength and electrical con-
ductivity 15. Regarding mechanical behavior, neural networks have been used to extract elastoplastic properties 
of engineering alloys 16, yield strength and ultimate tensile strength of aluminum alloys 17, stiffness, strength, and 
toughness of composites 18, yield stress of high entropy alloys 19, and both Young’s modulus and ultimate tensile 
strength of graphene–reinforced metal matrix nanocomposites 20.

Metallic glasses (MGs) are materials with remarkable properties, but suffer from lack of ductility 21,22. Exten-
sive research has been conducted at the atomic scale to address this matter, mainly based on molecular dynamics 
simulations (MD). Some examples include cooling history and its influence on the initial plastic flow 23, shear 
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localization during homogeneous deformation 24, atomic composition and shear band (SB) formation 25, shear 
transformation zones (STZs) and SB structures 26,27, evolution of atomic structure during plastic regime 28,29, 
among many others 30. Despite the vast amount of literature, no systematic relationships have been established 
between structural, elastic and plastic properties. In this work, we propose ML models to predict the plastic 
behavior of CuZr MGs based on several materials properties set as predictors (input features), including stoi-
chiometry, sample dimensions, structural properties, temperature, potential energy, and elastic properties. To 
this aim, 100 different samples were simulated using MD simulations and subjected to tensile tests to obtain 
plastic quantities such as yield stress, flow stress, ultimate tensile stress, among others. Statistical analysis and 
ML techniques were carried out to explore correlations between properties and to establish predictive models.

Methods
Simulation setup. A set of 100 Cux Zr100−x MGs were constructed under different random conditions. 
Alloy composition x ranged from 36 to 64 atomic percent, while the initial dimensions of Lx , Ly , Lz were in the 
range of 16.2–25.9 nm, 6.48–9.72 nm, and 1.62–4.86 nm, respectively. The larger length of Lx was deliberately 
imposed in order to obtain a larger axial dimension to conduct tensile tests. Periodic boundary conditions were 
set in all directions. Samples were kept in the melt at 2500 K for 10 ns and then quenched to 50 K at a constant 
cooling rate Rc , which was set in the range of 1010 −−1011 K/s. Lower values were excluded to avoid long simu-
lation times. Relaxation at a target temperature (T) was conducted for 1.0 ns while keeping zero pressure, where 
T ranged from 50 to 300 K. Thus, atomic composition, dimensions, cooling rate, and temperature were different 
for the 100 samples. MGs were modeled with the interatomic potential developed by Cheng et al. 31. This intera-
tomic potential was fitted according to a wide variety of crystal structures simulated following ab initio MD, 
together with elastic constants and phonon frequencies obtained from experiments. Validation of the model was 
performed against experimental and ab initio data, including cohesive energies, lattice parameters, bulk modu-
lus, among others. Furthermore, the interatomic potential has been employed in several works, such as dynamic 
arrest 32 and shear modulus prediction 33. Uniaxial tensile tests were carried out with a constant strain rate of 
108 s−1 by loading the x direction and keeping zero pressure along the y and z directions. Temperature was kept 
constant at T, which corresponds to the relaxation temperature of the sample. MD simulations were performed 
with the LAMMPS package 34 using an integration timestep of 1.0 fs.

Machine learning modeling. ML modeling involves several steps in order to be conducted. Data acqui-
sition and inspection are required for proper feature selection, followed by feature engineering for supervised 
learning. Then, statistical metrics are computed to assess the performance of the ML models. A brief summary 
of the processing pipeline is displayed in Fig. 1.

In stage 1, a total of 17 materials properties, called features hereafter, were retrieved from the 100 samples. 
Thus, each feature had a total of 100 observations. A brief description of each feature is given in the following. 
Percentages of Cu species together with the total number of atoms Na , were obtained from the total atomic com-
position. The percentage of Zr atoms was not considered since it depends directly on Cu. Dimensions ( Lx , Ly , Lz ) 
together with temperature (T) and cooling rate ( Rc ) were also considered. The coordination number (CN) and 
the average degree of five–fold local symmetry (W) were obtained from structural characterization, while the 
Young’s Modulus (E), Poisson’s Ratio ( ν ), resilience ( uR ), yield stress ( σY ), ultimate tensile stress ( σUTS ), flow 
stress ( σF ), drop stress ( σD ), and toughness ( uT ) were obtained from the stress–strain curves. Here, E and ν cor-
respond to elastic properties, while uR , σY , σUTS , σF , σD , and uT correspond to plastic properties. We note that 
resilience and yield stress represent the beginning of plasticity, and thus can be considered as plastic indicators 35. 
A similar approach was adopted by Zhang et al. 19. In this work, σY was calculated following the offset criterion 

Figure 1.  Scheme of the processing pipeline: from data inspection to model assessment. Structural and elastic 
properties were employed as predictors, while plastic properties were considered as responses.
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with εoffset = 0.002 , σUTS corresponded to the maximum stress, σF was obtained from the average stress between 
0.15–0.20 strain, and σD was the difference σUTS − σF . More details on the calculation of the 17 features can be 
found in the supplementary material.

Statistical exploration was performed by computing the mean, the standard deviation, quartiles, among oth-
ers. The Spearman’s correlation coefficient ρ was calculated to assess the degree of correlation between each pair 
of features. The coefficient was obtained as

where di is the difference between the two ranks of the pair of features, and n is the number of observations. 
Features with relevant degrees of correlation were retained in the pipeline and standardization was performed 
on them as follows

where x and sx are the mean and the standard deviation of the sample x, respectively. Such transformation scales 
the features to a distribution with mean of zero and variance of one.

In stage 2, regression models were constructed with structural and elastic properties as predictors and plastic 
properties as outcomes. Predictors with significant correlation with plastic properties were considered to this aim, 
while predictors with low correlation were excluded. The most basic form of regression is linear regression, in 
which least squares approximation is used on a set of explanatory variables to predict an outcome. Penalization 
of regression coefficients was also considered by means of Ridge regression with L2 regularization 36 and Lasso 
regression with L1 regularization 37. All models were trained and tested following 10–fold cross–validation. This 
means that data was divided into ten parts, where the first 10% is used for testing and the rest for training. The 
selection procedure is repeated ten times to ensure that each part is used for testing 38. In stage 3, two metrics 
were calculated to assess the performance of the regression models. The coefficient of determination ( R2 ) was 
calculated on both the training and testing set to evaluate the capability of predictors to explain the outcomes. 
R2 is defined as

where n is the number of observations, yi is the true value, ŷi is the predicted value by the regression model 
and y is the mean value of y. Since R2 varies from zero (no predictive capability) to one (maximum predictive 
capability), its value can be represented as a percentage.

The root mean squared error (RMSE) was obtained to assess the prediction capability of the models on both 
the training and testing sets. RMSE is defined as

Data analysis and ML modeling were carried out using Pandas 39 and Scikit–learn 40 libraries for the Python 
programming language.

Results and discussion
Mechanical behavior. Tensile tests were carried out to obtain mechanical properties from the stress–strain 
curves. Figure 2a shows the average curve calculated by considering all samples and the black bars denote stand-
ard deviations. Elastic behavior is distinguished up to ∼ 0.03 strain. Here, the standard deviations are small, 
which is expected since elastic regime does not differ remarkably among different CuZr MG compositions 41. 
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Figure 2.  (a) Average stress–strain curves for the 100 samples. Standard deviations are denoted by the black 
bars. (b) Stress–strain curves of 12 samples were selected randomly.
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During the onset of plasticity, the standard deviations increase significantly, corresponding to different values 
of yield ( σY ) and ultimate tensile stress ( σUTS ). Qualitatively, all samples display a similar softening behavior, 
but they differ quantitatively in the flow stress. Standard deviations do not vary significantly during this stage, 
indicating that the differences between curves remain constant with strain. In order to obtain more details of 
the elastic and plastic behaviors, the stress–strain curves of 12 samples randomly selected are shown in Fig. 2b. 
Overall, all curves exhibit the same pattern of the average curve, and the differences in stress are in the range of 
the standard deviations. The large ductility displayed by all samples has been previously reported in both experi-
mental and simulation studies when dimensions are in the order of 100 nm. This behavior has been attributed 
to size effects that suppress deformation localization and failure 42–44. In addition, radial distribution functions 
were calculated to check whether the samples remained in amorphous state during the tests. As shown in Fig. S2 
of the supplementary material, no relevant changes were found. Following our results, it can be concluded that 
all samples presented comparable elastic and plastic regimes. From a statistical point of view, this indicates that 
the possibility of observing outliers is reduced.

Univariate analysis. An overview of the structural and mechanical properties, together with other vari-
ables such as temperature and atomic composition, is provided by means of univariate statistical analysis. The 
results are shown in Table 1. Cu present a mean of 50.38, with values ranging from 36 to 64 as expected from the 
initial configurations. The number of atoms (Na ) is relatively small for the current trends in MD simulations. 
However, such issue is overcome by considering a large number of cases, and thus, resulting in a wide range of 
MG properties. The length of the samples (Lx ) is significantly larger than both the width and height (Ly , Lz ) as 
expected from the construction procedure. All cooling rates (Rc ) fall into the range of 1 to 10 ×1010 K/s, with 
most cases around 4− 5× 1010 K/s. These values are widely adopted in MD studies due to limitations in simu-
lation times 32,33,45,46. Regarding temperature, typical values of MD simulations were considered. with limiting 
cases at 50 and 290 K. Temperature is known to induce fluctuations at the atomic scale and to induce plasticity 
at lower yield stress 46,47. Thus, the range considered here leads to different stress values in the plastic regime. The 
coordination number (CN) shows little variation, ranging from 12.3 to 13.1, which can be explained from Voro-
noi polyhedra analysis. As discussed in previous works, large populations of high–centrosymmetric polyhedra 
are usually found in CuZr MGs, with coordination numbers close to 12. Slightly higher values are observed here, 
since the CN calculated from radial distribution functions consider the first neighbor shell with a cutoff radius 
of 3.7 Å, in contrast to the method of Voronoi polyhedra that considers the neighboring atoms in the Voronoi 
cell  48. These populations of high–centrosymmetric polyhedra lead to average degree of five–fold local sym-
metry (W) close to 0.57, similar to the findings of other authors 49. Reported values of Young’s modulus (E) and 
Poisson’s ratio (ν ) of CuZr MGs are close to 50–60 GPa and 0.3–0.4, respectively, with increasing values at larger 
contents of Cu. Such ranges are in agreement with results published in literature 50–52. The yield stress (σY ), ulti-
mate tensile stress (σUTS ), drop stress (σD ), and flow stress (σF ) have small standard deviations, which is expected 
from the relatively small black bars observed in the average stress–strain curve. Although our results are in the 
range of those reported in previous works 24,26,52,53, the comparison is not straightforward since boundary condi-
tions can affect the stress values 47. Resilience (uR ) and toughness (uT ) also present small variations, with values 
close to 0.03 and 0.33, respectively, as observed from the mean and the median. Unfortunately, little information 
is available in the literature regarding both quantities for CuZr MGs, being difficult to deliver comparisons. The 
distribution of each property is shown in Sect. 3 of the supplementary material.

Table 1.  Descriptive statistics for each feature under consideration.

Variable x s Min Q1 Median Q3 Max

Cu (%) 50.38 8.67 36.00 42.75 49.50 58.00 64.00

Na 33291 13231 12880 22334 31460 40658 72000

Lx (nm) 21.0 3.2 16.2 18.1 20.9 23.8 25.9

Ly (nm) 8.4 1.0 6.5 7.5 8.4 9.4 9.7

Lz (nm) 3.2 1.1 1.6 2.3 3.2 4.2 4.9

Rc ( ×10
10 K/s) 4.97 3.59 1.00 1.75 4.00 8.00 10.00

T (K) 180.6 74.2 50.0 130.0 180.0 235.0 290.0

CN 12.7 0.2 12.3 12.5 12.7 12.9 13.1

W 0.57 0.027 0.54 0.55 0.56 0.58 0.64

E (GPa) 56.99 3.95 47.28 54.89 56.83 59.48 67.85

ν 0.40 0.01 0.39 0.39 0.39 0.40 0.42

σY (GPa) 1.74 0.19 1.29 1.63 1.74 1.86 2.23

uR (GJ/m3) 0.030 0.005 0.018 0.028 0.030 0.033 0.041

σUTS (GPa) 2.51 0.29 1.89 2.30 2.49 2.72 3.31

σD (GPa) 1.03 0.15 0.72 0.91 1.05 1.15 1.38

σF (GPa) 1.48 0.19 1.10 1.33 1.48 1.59 2.09

uT (GJ/m3) 0.332 0.040 0.251 0.309 0.328 0.358 0.443
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Correlation between variables. Possible correlations between the 17 different features were explored 
by means of Spearman’s correlation coefficient resulting in the heatmap shown in Fig.  3. Limiting values of 
-1.00/1.00 correspond to a perfect negative/positive monotonic association, while zero values represent no asso-
ciation. Correlations between features with themselves are excluded from the analysis. From the heatmap, three 
evident relationships can be distinguished. Each of them correspond to a strong correlation between Lx , Ly , Lz 
with Na , which is straightforward from the direct relationship between dimensions and total number of atoms.

Both CN and W present strong positive and negative correlations with Cu. It has been previously identified 
that Cu species are associated to high–centrosymmetric polyhedra 24,25, which in turn possess larger coordination 
numbers and increased degree of five–fold local symmetry 49,54. Although Zr atoms are also related to polyhedra 
with high CN and W values, such as 〈0, 1, 10, 4〉 and 〈0, 1, 10, 5〉 , these populations are usually small compared to 
Cu species 25,55,56. From these considerations, it is straightforward to understand the high correlation between 
CN and W. Na , Lx , Ly , Lz exhibit no correlation with other variables, indicating that dimensions do not have 
any relevant effect on the materials properties. The cooling rate presents negative correlations with most elastic 
and plastic properties. This behavior is expected since Rc has been identified as a rejuvenation mechanism that 
leads to increased energy states 57. A similar pattern is distinguished for temperature, where negative relation-
ships between T and E, σUTS , σD , σY are observed as reported in previous works 58,59. This can be interpreted 
from kinetic energy, since it favors atomic mobility and nucleation of shear transformation zones (STZs). The 
positive correlation between T and ν has been previously reported in the literature for conventional alloys and 
CuZr MGs 60,61 and it can be understood from the enhanced lateral strain at higher temperatures. CN and W 
exhibit positive variations with elastic and plastic properties. Larger values of these quantities correspond to 
highly–densely–packed structures which are less prone to deform under external perturbation 62. Both elastic and 
plastic properties, excluding the Poisson’s ratio, show positive variations with Cu (and thus negative variations 
with Zr). Previous works have reported that high–centrosymmetric polyhedra compose the structural backbone 
of CuZr MGs. Hence, larger Cu contents endow enhanced rigidity, whereas the opposite behavior occurs with 
Zr atoms 63. In the case of Poisson’s ratio, increased stiffness reduces the degree of lateral strain, explaining the 
negative correlation between Cu and ν . Such behavior has been reported for Cu contents below 60%, whereas a 
change of this trend occurs at larger contents 64. Finally, correlations between elastic and plastic properties are 

Figure 3.  Spearman’s correlation heatmap for all variables. Red color represents negative correlations and green 
corresponds to positive correlations.
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all positive as explained previously from stiffness and resistance. The exception here is ν , whose value decreases 
as rigidity increases.

Among the structural and elastic properties, some of them presented high degree of correlation, particularly, 
Cu, CN, and W, which rendered values close to one. Since input features with large degrees of correlation can 
impact negatively the ML models, only Cu was retained and the others three were excluded. Materials proper-
ties significantly correlated with plastic properties ( σY , uR, σUTS, σD , σF , uT ) were selected for further analysis. 
To this aim, the absolute value of each correlation coefficient was calculated and a threshold of 0.5 was set. 
Some features presented significant correlations with most plastic properties, but failed in some cases (see for 
instance Cu with σY , uR , and σD ). In such situation, the threshold criterion is neglected and the feature is kept. 
To further understand the relationship between these features, scatter plots were constructed resulting in Fig. 4. 
Monotonic trends are clearly distinguished in all cases. Here, large degrees of dispersion are observed for Cu 
and T as reflected from a relatively low correlation coefficient in the range of 0.3–0.7 (see Fig. 3). For the elastic 
properties E and ν , the degree of dispersion is reduced, which is explained from the higher values of ρ in the 
range of 0.6–0.9. Since plastic properties are correlated with structural and elastic properties, a ML model can 
be constructed to predict the plastic behavior of MGs. In the following section, regression models are proposed 
to accomplish this task.

Machine learning analysis. ML models were prepared using highly correlated features. The materials 
properties Cu, T, E, ν , were employed as predictors (input features), and the six plastic properties σY , uR , σUTS , 
σF , σD , uT were set as outcomes, resulting in the following regression models

where i = [1, 6] correspond to {σY , uR, σUTS, σF , σD , uT } , and wi,j are the regression coefficients. What is remark-
able of this model is that it aims to predict the plastic behavior based on materials properties that do not involve 
irreversible deformation of the sample. Two different metrics were obtained to assess the performance, R2 and 
RMSE.

Figure 5 shows the results for linear, Ridge, and Lasso regressions. The predictive capability of both linear and 
Ridge regressions is quite similar. Remarkable values are observed for R2 in the case of σUTS , σF , and uT ( > 80% ), 
whereas it decreases for σY , σD (∼ 70% ) and uR (∼ 50% ). Interestingly, Lasso regression rendered lower coef-
ficients of determination for the six plastic properties, with values above ∼70% for two of them ( σUTS, uT ) and 
below ∼60% for the other four. A similar behavior is distinguished for RMSE, where linear regression and Ridge 
regression delivered comparable results, whereas Lasso rendered higher values. Lasso algorithm is known to 
reduce the number of features during the regression process. Here, only two features were retained: temperature 
and Young’s modulus. Therefore, the lower performance of Lasso can be attributed to the exclusion of relevant 
materials properties for regression. Larger standard deviations were obtained for σY , uR , and σD when compared 
to the other plastic properties. Extraction of both σY and uR from the stress–strain curve is not straightforward 
as compared to other properties, which leads to higher variability. In the case of σD , its calculation involves the 
difference of σUTS and σF . Therefore, the standard deviation of σD depends on the variability of the two afore-
mentioned quantities. It is worth to mention that the training set rendered better performance on both metrics 
( R2 and RMSE) and lower standard deviations than the testing set, since the ML models were constructed using 

(5)yi = wi,0 + wi,1Cu+ wi,2T + wi,3E + wi,4ν,

Figure 4.  Relationships between materials properties and plastic properties in CuxZr100−x MGs.
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the testing set. Overall, Linear and Ridge regressions exhibited the better performance for the prediction of 
plastic properties due to relatively high R2 and low RMSE compared to the Lasso regression, suggesting that both 
regression models can be useful tools to determine the plastic behavior of MGs.

From the previous discussion, in the three models σUTS and uT presented the largest degree as reflected from 
R2 . Some insights can be gathered from the relationship between both plastic properties with the predictors in 
Eq. (5). It has been well–established that Cu species are related to high–centrosymmetric structures in CuZr MGs, 
leading to increased resistance but lower ductility 25,64. Temperature is another parameter that strongly affects 
plastic behavior. As reported for both crystalline and amorphous metals, higher temperatures reduce the ultimate 
tensile stress and increase ductility due to enhanced atomic mobility. In contrast, lower temperatures hinder the 
onset of plasticity and reduces ductility 65–67. The Young’s modulus has been reported to be in direct relationship 
with the fracture strength 68,69, whereas for the Poisson’s ratio, higher values correspond to a higher possibility 
for the material to shear under external stress 70–72. Therefore, the four predictors are strongly related to plastic 
behavior of MGs, and when combined together, regression models can be constructed for the prediction of 
ultimate tensile stress and toughness.

Conclusion
Research of metallic glasses at the atomic scale is an active field that has been evolving through the years. Rela-
tionship between plastic behavior with other materials properties has been observed, leading to the question 
whether plasticity can be systematically predicted from the initial structure. In this work, statistical analysis 
showed that strong correlation exists between certain properties. For example, Cu content, Young modulus, 
and temperature were correlated with five–fold local symmetry, yield stress, flow stress, among others. These 
observations encouraged the development of supervised learning for the prediction of plastic behavior. Thus, 
by using materials properties, such as species content, temperature, and elastic properties, regression models 
were constructed for the prediction of ultimate tensile stress, drop stress, flow stress, and toughness. Linear and 
Ridge regression accomplished this task with the better performance as observed from the high coefficient of 
determination for the prediction of three plastic properties, whereas Lasso regression presented overall lower 
prediction capability. An interesting result from the machine learning models is that plastic behavior can be 
predicted from properties whose calculation do not involve irreversible mechanical deformation of the sample. 
This formulation offers new opportunities for the prediction of mechanical behavior of materials without car-
rying out deformation tests.

With the advances in computational simulations, increasing data is available, favoring the use of supervised 
learning models. This work showed that prediction of materials properties benefits from these state of the art 
techniques. Since molecular dynamics simulations involve thousand to millions of atoms, more studies using 
machine learning methods should emerge in the near future. While our work was limited to CuZr MGs, we 
expect that upcoming works could extend this contribution to other amorphous solids.

Figure 5.  Coefficient of correlation ( R2 ) and RMSE for the plastic properties (a) σY , (b) uR , (c) σUTS , (d) σD , (e) 
σF , and (f) uT . RMSE curves were horizontally–displaced for visualization purposes.
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Data Availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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