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Optimising remanufacturing 
decision‑making using the bees 
algorithm in product digital twins
Mairi Kerin  1*, Natalia Hartono 1,2 & D. T. Pham  1

Remanufacturing is widely recognised as a key contributor to the circular economy (CE) as it extends 
the in-use life of products, but its synergy with Industry 4.0 (I4.0) has received little attention when 
compared to manufacturing. An agglomeration of I4.0 technologies and methodologies is reflected 
in the emerging digital twin (DT) concept, which has been identified as a life-extending enabler. This 
article captures the design and demonstration of a DT model that optimises remanufacturing planning 
using data from different instances in a product’s life cycle. The model uses a neural network for 
remaining useful life predictions and the Bees Algorithm for decision making within a DT. The model 
is validated using a real case study. The findings support the idea that intelligent tools within a DT can 
enhance decision-making if they have visibility and access to the product’s current status and reliable 
remanufacturing process information.

Abbreviations
α	� An action in the remanufacturing function that causes an environmental impact (shipping, disas-

sembly, storage etc.)
λ	� Time functions
B	� Management of unwanted asset (burden)
BA	� Bees Algorithm
BoL	� Beginning of Life
BoP	� Bill of Process
ca	� Cost of assembling product per unit of time
cc	� Cost of recycling component
CCA​	� Cost of component assembly
CCC​	� Cost of component recycling
CCD	� Cost of component disposal
CCR​	� Cost of component reincarnation
CCS	� Cost of component storage
CCU​	� Cost of component reuse
cd	� Cost of disassembly per unit of time
cdp	� Cost of disposal
CE	� Circular Economy
ch	� Cost of holding component per unit of time
cp	� Cost of procuring component
CPD	� Cost of product disassembly
CPF	� Cost of product finishing
cph	� Cost of preserving component for storage
CPR	� Cost of product recovery
cr	� Cost of reincarnating component per unit of time
CRF	� Cost of remanufacturing function
cru	� Component revenue from reuse
cs	� Cost of shipping per km
cu	� Cost of preparing component for reusing per unit of time
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DMM	� Decision-Making Module
DT	� Digital Twins
DTA	� Digital Twin Aggerate
DTE	� Digital Twin Environment
DTI	� Digital Twin Instance
DTP	� Digital Twin Prototype
E	� Environmental benefits
eBoM	� Engineering Bill of Materials
ECA	� Environmental impacts of component assembly
ECC	� Environmental impacts of component recycling
ECD	� Environmental impacts of component disposal
ECP	� Environmental impacts of component procurement
ECR	� Environmental impacts of component reincarnation activities
ECS	� Environmental impacts of component storage
ECU	� Environmental impacts of reuse
ed	� Environmental impact of disassembly of component per unit of time
edp	� Environmental impact of disposal
eh	� Environmental impact of holding per unit of time
EoL	� End of Life
ep	� Environmental impact associated with the procurement of a part
EPD	� Environmental impacts of product disassembly
EPR	� Environmental impacts of product recovery
er	� Environmental impact per unit of time in reincarnation
ERF	� Environmental impact from remanufacturing function
erc	� Environmental benefits associated with reusing the material over virgin material
eru	� Environmental benefits associated with reusing the component over a new component
es	� Environmental impacts of shipping
ES	� Environmental savings
eu	� Environmental impact as a result of preparing a component for reuse
f	� Remanufacturing facility
fr	� Routes through to reincarnation from reuse
fu	� Routes through to available for sale from reuse
GPS	� Global Positioning System
H	� Number of man-hours
HiVE	� High-value entity
HMI	� Human–Machine Interface
i	� Product
I4.0	� Industry 4.0
IoT	� Internet of Things
j, k..z	� Components
J	� Function representing the link between process time and man-hours
l	� Distance in km
m	� Missing component
MoL	� Middle of Life
mrc	� Material revenue from recycling
NA	� Nature-inspired Algorithms
nc	� Need to recycle
nd	� Need to disassemble component 1 or 0
ndp	� Need for disposal
nh	� Need to hold component
nr	� Need to reincarnate component
nsl	� Component destined for recycling or disposal
Nu	� Need to reuse
OS	� Optimal solution
qi, qj	� Product quality, component quality
qmin	� Min quality of component for use in remanufactured product
RasPi	� Raspberry Pi
rBoM	� Remanufacturing Bill of Materials
rBoP	� Remanufacturing Bill of Process
ro	� Routes through the remanufacturing function
sl	� Component destined for reincarnation or reuse
SP	� Sales price of the remanufactured product
SRDM	� Smart Recovery Decision-Making
ta	� Time to assemble product
td	� Time it takes to disassemble
th	� Time component in storage
TQ1	� Function representing impact of q on disassembly time
TQ2	� Function representing impact of q on reincarnation time
TQ3	� Function representing impact of q on reuse time
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tr	� Time to reincarnate component
TS	� Function representing impact of second-life destination on disassembly time
tu	� Time to prepare component for reuse
WD	� Weighted deviation
x	� Represents reincarnation, reuse, recycling, or disposal (1, 2, 3 or 4)
y	� Impact categories (energy, material consumption, emissions to air and water, waste generation)

Remanufacturing, as defined by the British Standards Institution1, is a key strategy to increase resource circu-
larity and sustainability2. Research into smart remanufacturing systems is increasing in popularity, with recent 
discussions focusing on how technology from Industry 4.0 (I4.0), as applied in the manufacturing sector, can 
increase efficiency and digitalisation in remanufacturing3–5. However, differences between the two sectors means 
that direct application of I4.0 technology from the former to the latter may not be practicable6.

‘Core’ is used to describe a used part or product, that can have a second life after being re-processed. This is 
a generic term that crosses industries and sectors. The supply of core, which is the input to the remanufacturing 
process, is unpredictable in terms of quantity and quality. Some remanufacturers actively manage the process 
of core acquisition, while others do not have that luxury7. Quality ‘classes’ are regularly used to categorise and 
incentivise return, but classification is often performed at the core supplier or collection sites7 with the business 
having already invested in what may end up being a non-remanufacturable product. Cores may be dirty, dis-
torted or worn. The original product may not have been designed with disassembly in mind or may have been 
built with easy to assemble, but difficult to disassemble, one-way or irreversible fittings. Additionally, depending 
on customer demand and remanufacturing business capabilities, partial, targeted and destructive disassembly 
operations can complicate routings further8.

The remanufacturing process steps that follow disassembly often vary and can lead to hybrid assemblies 
combining new and refurbished components. The demand for remanufactured products and components is also 
highly volatile9. Variability in supply and demand makes for complex business models and processes that require 
flexibility that until recently could only be realised manually. This has led to a sector that exhibits low levels of 
technology utilisation10. However, as technology and information systems advance and become more accessible, 
new opportunities arise to improve the management of uncertainties by providing near real-time information 
about a product’s in-use performance, making predictions around its EoL time and state, and autonomously 
assessing the multidimensional needs of the core and the business11.

Following a literature review in section “Literature review”, an automated Decision-Making Module for 
remanufacturing is developed, discussed and evaluated using a case study. Section “Automated decision-making 
module model” reports on the sustainable performance metrics that could be used to make an informed decision 
in remanufacturing. Section “Case study” covers the decision-making module model and its structure. Sec-
tions “Results” and “Discussion”, respectively, present and discuss the results of using the DMM in a case study. 
Section “Conclusion” summarises the paper and outlines further research opportunities.

Literature review
Only 6% of the work reviewed by Rizova et al.12 has attempted to accommodate more than two remanufactur-
ing uncertainties in one decision-making process. Using the list of uncertainties by Rizova et al.12, namely, (1) 
demand for remanufactured products, (2) returns quality, (3) returns quantity, (4) lead time, (5) returns timing 
and (6) routing, it has already been shown that product DTs, which are digital models with details of how the 
product was used throughout its service life, can offer information on 2, 3, 4 and 5. On the other hand, a process 
DT, which models the remanufacturing operation, is likely to yield data enabling remanufacturers to handle 
611. In combining the two DTs to create an end-to-end DT, all uncertainties could be contested to some degree. 
This highlights how significant the transformation of remanufacturing decision-making could be following the 
integration of DTs and the impact they could have on certainty and stability in this sector.

Ultimately, the output of the decision-making activity required by remanufacturers, as a function of the DT, is 
twofold. First, a decision should be made on whether a product should be recovered based on the opportunities 
available. Second, a set of operational principles is used to optimise the downstream activities for given business 
objectives. In remanufacturing, these objectives are normally economically based, but environmental targets are 
becoming more prevalent13, and social elements are also emerging14.

Each business is likely to have its own set of objectives, but if remanufacturing itself is to be recognised as 
developing sustainably, it too needs balanced economic, social and environmental performance15. This is referred 
to as balancing the triple bottom line16 and further challenges decision-makers, as social and environmental 
metrics are not always quantitative. To analyse the cost–benefit, the remanufacturing process needs to be fully 
understood, specifically the disassembly process.

Finding the optimised disassembly routing means solving a non-deterministic polynomial-time complete 
problem17. This type of problem crosses disciplines and appears to be well researched18, including in less studied 
sectors such as remanufacturing, as documented recently in Zhou et al.19. There are many manual and automated 
methods available that can be enhanced or hybridised to improve solution speed, search space and/or accuracy. 
Nature-inspired algorithms (NA) appear to be the most prominent and include ant, bee, and fruit-fly colony 
optimisation as well as immune response and particle swam methods.

Metaheuristic algorithms are widely used due to their adaptability and have been shown to be effective when 
applied to product disassembly models20,21. Previous research into resolving disassembly problems using the 
Bees Algorithm (BA) reports that it is superior in terms of time and quality when seeking to find the optimal 
solution20–24. As a result, the BA has been selected as the tool to extract the disassembly sequence from the 
information contained in the DT. The BA is a population-based metaheuristic that was inspired by the activities 
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of honeybees when foraging for nectar. The algorithm introduced by Pham et al.25 has gained attention due to 
its successful application across an array of case studies and its use in solving complex optimisation problems 
faster than the exact method21,26.

This research explores the inner workings of the decision-making module (DMM) identified in11 and depicted 
in Fig. 1 as a key element of a remanufacturing-centric DT. The questions that will drive this exploration include 
‘what are the key variables that need to be incorporated into the DMM to come to a decision?’ and ‘if the remanu-
facturing business is to be managed to CE principles, how do the outputs of the DT feed into to triple-bottom 
line assessment and the decision as to whether or not an EoL product is recovered’? A multilevel digital twin 
(DT), incorporating a product and process DT, has been proposed to improve and automate decision-making 
for remanufacturing with the aim of improving the visibility of inbound core quantity, quality, demand, and 
processing opportunities11. In this research, a simulated product is digitally connected to a virtual version of the 
same product to trial the prediction modelling proposed.

Automated decision‑making module model
An end-to-end DT, comprising both product and remanufacturing process DTs, may enable autonomous deci-
sion-making. In the DT the decision-making takes place in the DMM.

With reference to (Fig. 1), the DMM will need to accommodate changing business inputs (demands, limita-
tions, and risks) and utilise the beginning-of-life (BoL) and middle-of-life (MoL) data available from the DTs. 
The outputs are similar to those described in smart recovery decision-making (SRDM)27 and include recovery 
alternatives as well as product and process operational plans. Reverse logistics options are also considered in the 
module making use of the product and processing locations, an output that was out of scope in Meng et al.27. 
The “optimal” solution depends on the inputs and the applied evaluation criteria.

Decision‑making module inputs and outputs.  Product DT.  A product DT comprises a real product 
in real space, a virtual product in virtual space, and the connections of data and information that tie the ‘prod-
ucts’ together28. The system design used in this work has been described in detail in11.

Process DT.  This couples the production system with its digital equivalent29. It is similar to the product DT, as 
it enables assessment and simulation of potential scenarios feeding key information into the DMM.

Business demands, limitations, and risks.  Relate to the business expectations and experiences that are not cap-
tured or managed by the product or process DTs but will influence the decision.

Decision on whether to recover an EoL product.  This output indicates to the business the worthiness of product 
recovery.

Reverse logistics options.  If the decision to recover an entity or not lies with the business, it can be data-driven. 
Similarly, if an entity recovery is a foregone activity (contractual, etc.), options on when and where it should 
be recovered from can be evaluated using DT information. The cost of the reverse logistics operation from an 
economic, environmental, and social perspective can be assessed using the entity GPS and remanufacturing 
facility locations.

Recovery options.  Relates to the choices that the remanufacturer can make to optimise bottom-line benefits 
once the entity has been made available. Selecting the most appropriate level of disassembly (complete, partial, 

Figure 1.   Inputs to and outputs from the decision-making module.
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targeted, destructive) and reassembly (complete, partial, hybrid, built-to-order, build-to-stock) is key to manag-
ing a sustainable business.

Remanufacturing plan (product).  Relates to the requirements of the existing product to start its second life 
via the remanufacturing process. The remanufacturing bill of materials (rBoM) can be estimated based on the 
MoL BoM and quality and performance degradation data from the DT. The remanufacturing bill of process 
(rBoP), much like the manufacturing BoP, defines the activities that need to happen to translate the product 
from one state to another, balancing triple-bottom-line performance and technical competence. In this case, 
the rBoP takes the product from EoL back to BoL. The remanufacturing routings can be generated and may 
include disassembly and rebuilding sequence plans, process steps, machine operations, materials, slave parts 
and performance targets. Accurate estimations of remanufacturing bills can benefit line balancing, scheduling 
and production planning30.

Remanufacturing plan (process).  This output considers line balancing, scheduling, planning, demand manage-
ment, core acquisition and inventory holding, relying heavily on the process DT, targeting the best scheme for 
managing tasks and demands while being limited by technical constraints.

Module self‑evaluation and improvement.  A smart decision-making module can make assessments and carry 
out improvements to optimise itself, but the system should allow for human intervention and preference selec-
tion. In the remanufacturing sector, process planning is heavily dependent on the skills and knowledge of expe-
rienced individuals, and this needs to be accommodated31.

Before generating the outputs, the decision of whether to remanufacture needs to be made. This will be done 
by evaluating the triple bottom line as described in the next section.

Model structure.  The model (Fig. 2) is built on a scenario where a remanufacturing business can choose 
whether to recover a HiVE from its MoL/EoL user. If the costs associated with recovery and remanufacturing 
out-weight the business opportunities from a triple-bottom-line perspective, the business will not recover it 
(other CE practices may be applicable, but these are out of scope). To make this evaluation, the business needs to 
identify the best remanufacturing strategy that balances profits, environmental effects, and social impact for the 
given HiVE location and quality from the DT, within the constraints of existing technological capabilities and 
management policies. Time will be used as a leading variable that will influence economic, environmental, and 
social measures. It has been assumed that if a process takes longer, it will require more investment and a larger 
workforce while generating a greater environmental load. Only the benefits to the business from the point that 
the HiVE becomes available for remanufacturing until it is ready for its second life meeting the expectation that 
it will be equivalent to, or better than, the manufactured equivalent, not considering multiple life cycles, are in 
scope.

The model assumes that product recovery will not be triggered without product demand, as the core func-
tion of this sector is to remanufacture. The decision of whether to recover the product is evaluated in the DMM. 
Those that are recovered are first disassembled. Disassembly can be either complete, partial, or targeted with 
components progressing to a reincarnation phase (normally referred to as remanufacturing but not used in this 
instance to avoid confusion) that can include any combination of cleaning, repairing, machining, assembly, 
testing and finishing or filtered into reuse, recycling, disposal, or storage material flows. Reincarnation has been 
used to describe the processes normally associated with remanufacturing, as BoL assets can be made from EoL 
products and components.

Figure 2.   Relationships between DMM and the remanufacturing functions.
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The demand for products and/or components drives the reincarnation and reuse functions. The entire incar-
nation of product i may be processed through remanufacturing. However, any component j of product i that 
needs to be replaced due to damage, missing parts, or needing an upgrade can be sourced from the store or 
component reuse. Alternatively, new components can be procured (or manufactured). Components with poor 
quality identified after disassembly may be recycled or disposed of and are lost to the system in this scenario. 
The routing for each approach is different.

Modifying the formulations of32 and Meng et al.33 to evaluate the options available utilising real data from the 
DT prior to product recovery, the economic, environmental and social impacts of remanufacturing the HiVE can 
be defined. All variables used can be found in the nomenclature. As the economic indicators of remanufacturing 
are more mature, development will commence.

Evaluating the economic growth impact in the DMM.  In a simplified form from an economic per-
spective, the potential profit, P, is the sales price of the remanufactured product, SP, minus the total cost of 
performing the remanufacturing function, CRF (Eq. 1).

With reference to Fig. 2, CRF includes the cost incurred by product recovery and disassembly CPR and CPD, 
respectively, as well as component storage, CCS, reincarnation activities, CCR​, reuse, CCU​, recycling CCC​, and 
disposal CCD (Eq. 2). CPA and CPF are the cost of product assembly and finishing (including testing, certifying, 
and final assembly, labelling and painting, etc. assumed to be a single value specific to the product family). Other 
miscellaneous costs will be assumed to be absorbed by others in this model.

CPR (Eq. 3) can be calculated from the shipping costs, cs, of product i per kilometre, and the distance, l 
between the product location, available from the DT, and the remanufacturing facility, f.

CPD (Eq. 4) relates to whether component j needs to be disassembled from the product nd, the cost of disas-
sembly per unit of time cd, the time it takes to disassemble td, a time function TQ1 given product quality, from 
the DT, of qi, and the time function TS assuming that more time will be taken to disassemble products into com-
ponents destined for a second life by remanufacturing or reuse sl, over those that will be recycled or disposed of, 
nsl. With the CAD, BoM and component relationship information available in the DT, the disassembly sequence 
can be extracted to match the requirements of the remanufacturing demand. Comprehensive lists of attributes 
for disassembly in remanufacturing can enable the integration of such systems34.

CCS (Eq. 5) results from the need to hold components nh, which have been identified as having second life 
potential but cannot be used in the existing product and are also not recycled or disposed of. If component j 
needs to be stored nh, ch is the cost of holding per unit of time and th is the time in storage, then

Following disassembly or recovery from storage, the components can take one of four remanufacturing 
option routes (decision variables), namely, reincarnation, reuse, recycling, or disposal. rox represents the routes 
where x ∈ {1, 2, 3, 4} respectively. As described previously, the reincarnation processes, CCR (Eq. 6), in the 
remanufacturing function refer to the repair, upgrade, rebuild, etc. of the product or hybrid of components to 
match or better the quality of a new equivalent. Having already been disassembled, the components may need 
to be cleaned, machined (additive or subtractive) or repaired nr. An estimation of the work that may be required 
could be made in the process DT using the information from the product DT comparing the “as manufactured” 
with the “current state” instances. Herein offers an opportunity to map product requirements to process capabili-
ties to create suitable production plans. A production line enabled with physical and virtual reconfigurability for 
individualised product manufacturing, as discussed by Leng et al.35, could complement this.

The cost per unit of time in reincarnation is cr. The time tr to complete these reincarnation activities is 
affected by the quality of the received component. An estimate of product quality is provided by the DT as qi, 
but the component quality will depend on the MoL environment and utilisation. A DT at the component level 
or inferred quality from the performance metrics and/or failure mode data would need to be available to esti-
mate component RUL and quality. This was not demonstrated in the previous chapters, but it is assumed to be 
possible with improvements in data analytics, diagnostics, and prognostics. To continue, qj = qi in this model 
and a time function TQ2 that translates the impact of the different quality levels on time taken to reach qmin will 
be applied, where qmin is the minimum quality needed for the component to be successfully incorporated into 
a remanufactured product. Once ready for reassembly, components can be built into products alongside new 
(procurement) or spare parts (reuse) if needed. CCP (Eq. 7) is the total component purchasing costs where 
the costs to procure a part or service cp to replace one that will be retained for reuse, has failed, is damaged, is 
consumable, or upgradable (with the original destined for recycling or disposal) or is missing when the product 
was recovered are also included.

(1)P = SP − CRF

(2)CRF = CPR + CPD + CCS + CCR + CCU + CCC + CCD + CPA+ CPF

(3)CPR = csilf

(4)CPD =
∑

j

(ndjcdjtdj(TSslj + nslj)TQ1)

(5)CCS =
∑

j

(nhj(chjthj + cphj))
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where

where m is a missing part.
With the parts already disassembled, there may be cost associated with preparing a component for reuse CCU​ 

(Eq. 8), related to time tu and quality qj to feed into either the reincarnation frj or reuse fuj flow. Additionally, as 
P in Eq. (1) only considers the remanufactured product, CCU​ includes the revenue cruj generated directly from 
the sale of components.

The cost of recycling CCC​ (Eq. 9) comes from the sum of the costs minus the material sales revenue mrc 
from the component in question nc. Material-level data and component weights from the DT BoM enable this 
assessment. Product-level recycling is not considered, as it is assumed that the product is only recovered from 
the end user if it has remanufacturing potential. It is also assumed that this activity is a transaction, and the 
process of recycling is out of scope.

Similarly, the cost of component disassembly CCD (Eq. 10) includes disposal cost cdp for components set 
for this route only ndp. No revenue opportunities are expected from the disposal option. Component weights 
from the DT may support this.

As the aim is to build a unit for the market, the cost of product assembly CPA (Eq. 11) with na representing 
the components required to assemble the new product, the total costs per unit of time incurred from assembling 
is expressed in ca and the time is ta.

Constraints are similar to those used in Meng et al.33 and are documented in Eqs. (11–19). Equation (11) states 
that each component can either include (1) or not (0) from disassembly, storage, reincarnation, reuse, recycling, 
or disposal. Equation (12) limits each component to only one of the remanufacturing options x , but at least 
one component needs to be disassembled and processed through ro1 to meet the product demand Eq. (13), but 
Eq. (14) ensures that the number of components disassembled is less than or equal to the total number of parts z 
in the assembled product i. Equation (16) relates to predecessors in the disassembly process. Equation (17) limits 
the flow of components through reuse to either reincarnation or reuse ready for sale, while Eq. (18) balances the 
number of components not destined for a second life with those that are recycled or disposed of. Equation (19) 
constrains the time functions to real numbers greater than zero.

(6)CCR = roj1 =
∑

j

nrj
(

TQ2crjtrj
)

+ CCP

(7)CCP =
∑

j

cpj(roj2 + roj3 + roj4 +mj)

(8)CCU = roj2 =
∑

j

nuj
(

TQ3cujtuj
(

frj + fuj
)

− cruj
)

(9)CCC = roj3 =
∑

j

ncj(ccj −mrcj)

(10)CCD = roj4 =
∑

j

ndpjcdpj

(11)CPA =
∑

j

najcajtaj

(12)frj , fuj , mj , ndj , nsl, nhj , nrj , nuj , ncj , ndpjsl ∈ {0, 1}

(13)
∑

x

rojx = 1 ∀j

(14)
∑

j

ndj ≥ roj1 ≥ 1

(15)
∑

j

ndj ≤ z

(16)ndj ≥ ndk ∀j ∈ Pk

(17)
∑

j

(frj + fuj) = 1 ∀j
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Evaluating the environmental stewardship impact in the DMM.  The potential environmental ben-
efits, E result from the environmental savings made through remanufacturing a product and making it available 
to the customer, as opposed to one made from virgin material and processes ES, minus the impact to the envi-
ronment from the remanufacturing function, ERF (Eq. 20).

Referencing Fig. 2, ERF includes the environmental impacts of product recovery, EPR, disassembly, EPD, 
component storage, ECS, reincarnation activities, ECR, reuse, ECU, recycling, ECC, disposal, ECD, assembly, EPA 
and product finish, EPF (Eq. 21). EPF is the environmental impact of product finishing assumed to be a single 
value specific to the product family. Other miscellaneous environmental impacts, such as those from facility 
systems, will be assumed to be absorbed by others in this model.

Environmental impacts can be categorised as energy (J) and material consumption (kg), emissions to air and 
water (kg), and waste generation (kg)36. These can be referred to as environmental impact eαy , where α is the 
action (shipping, disassembly, storage, etc.) and y ∈ {1, 2, 3, 4, 5} reflects the impact categories. EPR (Eq. 22) 
can then be calculated from the environmental impacts of shipping es, which will likely include the energy 
consumption from fuel and emissions to air (Eq. 19) for the journey between the product and facility locations 
available from the DT.

EPD (Eq. 23) relates to the environmental impact of disassembly of component j per unit of time ed and the 
time it takes to disassemble td. Energy consumption is likely to be a key impact in both automated and semi-
automated disassembly processes in remanufacturing I4.0 of the future, as electronic and/or pneumatic tooling 
will be prevalent and demanding of substations or compressor units. The scale of the impact will be proportional 
to utilisation time. Joining methods and attributes such as tightening torques can be extracted from the DT to 
estimate separation, tooling and fixturing energy requirements.

ECS (Eq. 24) results from the potential need to preserve components for storage. This can often utilise mate-
rials and generate solid waste from bagging, or if a protective coating is applied directly, emissions to water via 
application or energy consumption and pollutants from the wash-off process. Depending on the time in storage, 
multiple applications or layering of methods may be required. Material properties of components can be extracted 
from the ‘as designed’ DT to direct preservation methods. Therefore, if component j needs to be stored, eh is the 
environmental impact of holding per unit of time and th is the time in storage.

The four remanufacturing option routes remain the same as in section “Evaluating the economic growth 
impact in the DMM”. As already presented, within the reincarnation activity, components may need to be cleaned, 
machined (additive or subtractive) or repaired before assembly, testing and finishing can occur. Many of these 
processes will come with environmental impact and the potential for all five categories being represented. Exam-
ples include powering spindles, water for coolant systems in machine tools, the heating and use of wash solutions 
in cleaning, the addition of new materials or replacement parts, product testing emitting emissions, wastewater 
and heat energy, or volatile organic compounds from paint applications. Estimations for these activities can be 
made by comparing the current and future state DTs.

The environmental impact per unit of time in reincarnation is er ECP (Eq. 26) is the environmental impact 
associated with the procurement of a part or service to replace one that will be retained for reuse, has failed, is 
upgradable, or is missing ep.

where

Similar to the equivalent costing equations in section “Evaluating the economic growth impact in the DMM”, 
there could be some environmental impact generated as a result of preparing a component for reuse eu, and 

(18)nslj =
∑

j

(

ncj + ndpj
)

(19)� = TS, TQ1, TQ2, TQ3{� ∈ R|� > 0}

(20)E = ES − ERF

(21)ERF = EPR + EPD + ECS + ECR + ECU + ECC + ECD + EPA+ EPF

(22)EPRy = esyilf

(23)EPD1 =
∑

j

(ndjedy1jtdj(TSslj + nslj)TQ1qi)

(24)ECSy =
∑

j

(nhjehyjthj)

(25)ECRy = roj1 =
∑

j

nrj(TQ2qjeryjtrjyj )+ ECP

(26)ECPy =
∑

j

epyj(roj2 + roj3 + roj4 +mj)
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these ought to be evaluated, as reusing a product does not guarantee an environmental benefit37. However, these 
impacts are likely to be less than those associated with reincarnation, recycling and disposal, as this option is 
generally associated with a lower level of product change, energy expenditure and value leakage38. As E in Eq. (20) 
only considers the remanufactured product, ECU (Eq. 27) captures the environmental benefits associated with 
reusing the component over a new component eru.

The environmental impacts of component recycling ECC (Eq. 28) come from the energy and materials used 
and wastes generated when returning a component to useable material. The total benefits associated with reusing 
the material over virgin material erc are also considered.

Similarly, the environmental impact of disposal edp includes emissions to water and solid waste for those 
components set for this route only ndp. As disposal is recognised as the last option in the CE loop39, no envi-
ronmental benefits are expected. The weight of solid waste can be predicted using the material and CAD data, 
while the water waste estimate may need to come from a measured or inferred value, both made available in 
the current state DT.

The environmental impacts incurred from assembly and testing, etc. are expressed in ea. The ‘as manufac-
tured’ DT can support here.

Constraint equations Eqs. (12–19) are applicable.

Evaluating the social wellbeing impact in the DMM.  As previously discussed, the social pillar of sus-
tainability is the least researched to date. Therefore, the equations that drive this element of the evaluation will 
be based on the three distinct social groups, the employee, customer, and community40. The first will be based 
on job opportunities similar to that proposed by Meng et al.33, but instead of being dependent on the weight of 
recoverable material, it will use time. This works on the assumption that tasks requiring longer to perform than 
others within the scope already defined are proportional to the number of people who could be employed to 
complete the task. In this regard, the more people who can be employed, the better it is for society.

The second element is driven by the relationship between the customer/user and remanufacturer and made 
possible by the DT. With a suitable HMI, the customer can make the DT data available to EoL service providers 
when they no longer require the product so that remanufacturers can evaluate processing options. The remanu-
facturer uses these data to decide whether to recover the HiVE. This places data-driven decision-making at the 
forefront of remanufacturing planning, but if the remanufacturer decides not to recover the HiVE, it may become 
an unwanted burden to the user. This would be seen as having a negative social impact.

The final element relates to community impact and is based on the relationship between reused or remanu-
factured components and recycled material to those being discarded. The greater the quantity, volume or weight 
of material going through remanufacturing or recycling compared to disposal, the better it is for society.

Starting with the employees, of the remanufacturing activities segregated in Fig. 2, there are four that include 
time variables. These are disassembly, storage, reincarnation, and reuse. Assuming all man-hours H are valued 
the same, then J is the function that relates process time to man-hours.

With regard to the burden B of managing a product offered to the remanufacturing business, the impact is 
positive if the remanufacturing business recovers it or negative if it does not.

Finally, the volume-based ratio of reused, remanufactured, and recycled material Vr to those going to disposal 
Vd is R.

A single value related to the social impact S is required. To ensure that each element is represented accord-
ingly, a weighted deviation method based on Dehghanian and Mansour41 can be used as described in Eq. (34).

(27)ECUy = roj2 =
∑

j

nuj(TQ3euyjtuj(frj + fuj)− eruyj)

(28)ECCy = roj3 =
∑

j

ncj(ecyj − ercj)

(29)ECD = roj4 =
∑

j

ndpjedpyj

(30)EPA =
∑

j

najeayjtaj

(31)H =
∑

j

Jj(tdj + tsj + trj + tuj)

(32)B =∈ {−1, 1}

(33)R =
Vr

Vd
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The weighted deviation (WD) utilises the distance between the solution and the ideal to find the best match 
for the decision-maker’s requirements. If n represents the three elements H, B and R, wn are the weightings 
applied to n by the business. f (s)n  and f (∗)n  are the nth objective function values of the solution, s, and the ideal, 
*. The lower the WD, the closer it is to the decision-maker’s request.

This model has focused on the CE’s triple bottom line but does not include the extended ‘technological 
advancement’ or ‘performance management’ elements, as clarity on how these elements may be quantified is 
lacking in the literature. Research development, the advancement of high-tech products and conformance to 
guidelines, regulations and policies are all relevant and have the potential to influence the desire to remanufacture 
with incentives or secondary market drivers. Additionally, not considered in the model are resource allocation 
and availability, both of which are assumed to be finite.

Model evaluation method.  The DMM aims to optimise the disassembly sequence and provide the most 
cost-effective remanufacturing function for each component based on the data documented in the “Raw data” 
tab within Kerin et al.42. The raw data include a high-level list of parts and disassembly process predecessors, a 
component interference matrix built as per Percoco and Diella43 and a set of values for populating the calcula-
tion. These values assume the remanufacturing facility is based in the UK where this research was conducted.

A MATLAB version of the BA disassembly planning tool by Hartono23, displayed as a flow chart in Fig. 3, 
is utilised in the DMM to calculate the best disassembly sequence solution, the routing, and the cost associated 
with each targeting the minimisation of CRF.

The BA consists of five parameters that need to be set in the initialisation. In this work, the number of scout 
bees (n) = 10, the number of selected sites (m) = 5, the number of elite sites (e) = 1, the number of selected site bees 
(nsp) = 5, and the number of elite site bees (nep) = 10. The stopping criterion is the maximum number of itera-
tions. The feasible disassembly sequence is generated by scout bees from the predecessor list and the component 
interference matrix (“Raw data” tab in Kerin et al.42). The n scout bees are sorted by their fitness values and those 
that are fittest are considered to have located the elite site (e) and selected sites (m). The nep bees search the elite 
site and its neighbourhood and the nsp bees forage the selected sites and their surroundings. The remaining 
bees (n–m) randomly explore the wider solution space. The bees are sorted by their fitness values and the best 
disassembly sequence plans are saved until the specified maximum iteration number is reached. The neighbour-
hood search strategies use swap, insert and mutation operators. The solutions consist of a disassembly sequence, 
disassembly recovery mode, and objective function.

Case study
Following on from11 a high-value entity simulator and associated digital twin prototype (HiVE-DTP) is built 
using a networked Raspberry Pi (RasPi) Zero W microcontroller board connected to a DHT22 AM2302 digital 
temperature and humidity sensor for local ambient temperature and humidity, a BMP180 pressure sensor to 
measure barometric pressure and NEO-6M GPS Module with EEPROM and Built-in Active Antenna APM2.5 

(34)WDs =

3
�

n=1

wn





�

�

�
f
(s)
n − f ∗n

�

�

�

f ∗n





Figure 3.   Flow chart of the Bees Algorithm used in the DT23.
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for location. The data collected locally are blended with publicly available whole-life performance information 
from44 to simulate an ageing, digitally connected product.

In an optimal DT solution, the virtual entity is expected to be accurate “from a micro atomic level to the macro 
geometrical level”45. With the technology available at this time (along with the fact that the HiVE is simulated), 
micro- and macro-level accuracy is unobtainable and medium fidelity is targeted. A balanced approach to the 
depth of twinning and the twinning rate is needed to keep the experimental system stable enough to perform 
(speed, processing, and data handling limitations) but also to synchronise parameters at a frequency that dem-
onstrates the concept of the DT. Limited by the processing power of the RaspPi, the DTP is updated at least 
every 120 s.

The numerical demonstration utilises a large industrial engine as a case study. At approximately 2T in weight, 
they are of high material value with long life cycles. Many remain in service after 20 years. The information 
for this case study was gathered from interviews with experienced assembly and strip mechanics and process 
engineers, as well as from freely available technical literature and cross-referenced with data from Smith and 
Keoleian36.

The disassembly process taken by the operations team is highly dependent on the target component(s) and 
the state of the core. With almost 4000 components in the BoM for this case study product, the designers have 
worked hard to design for disassembly to facilitate servicing, so the amount of interconnectivity between the 
parts is limited. However, the nature of the diesel engine makes for some complicated assemblies that have been 
simplified significantly for this assessment. There are several different routes that can be taken in many scenarios, 
but the main disassembly relationship structure used in this demonstration is shown in Fig. 4.

For this case study, complete disassembly of the EoL engine core and rebuilding to form a remanufactured 
engine was assumed. From the relationship matrix, a list of predecessors and an interference matrix can be gener-
ated. The raw data used in the model can be found in the “Raw data” tab within Kerin et al.42.

Model verification.  To verify the disassembly planning tool by23 and its use in the DMM, the script was 
modified to utilise a single set of data from the HiVE-DTP with predefined component routings. Components 
were identified as 1–40, and their potential routings were 1 = reuse, 2 = reincarnation, 3 = recycle and 4 = dispose. 
The product quality was set to q = 0.543. The location (latitude and longitude) of the product and remanufactur-
ing facility were provided by the DT. These were 51.5074°, 0.1278° and 52.7101°, 2.7521°, respectively. MAT-
LAB’s Mapping Toolbox function ‘deg2km’ was used to translate these points to a singular distance value in 
km. In parallel, a manual assessment (see “Supporting info and Manual Ass.” tab in Kerin et al.42) of the same 
data was performed. The results were compared and found to be identical. The CRF from both the computed 
model and manual assessment was £29,058.84. With a newly manufactured product sales price of approximately 
£38,000, a remanufactured goods sales price of 20–40% below46 would result in a target selling price of £26,600 
(70% of new).

The above validation exercise demonstrated (1) that the model was functioning correctly and (2) its proximity 
to the target selling price suggested it had the potential to generate profitable solutions with the raw data available. 
Two runs of the DMM are displayed in Table 1, including the sequence of disassembly, routing of components 
and the associated costs. Both disassembly sequences were assessed and declared viable.

Model optimisation.  In a fully automated disassembly cell, the sequence, as long as it was viable, would 
matter less as the system memory would manage the process and have awareness of all components and prod-

Figure 4.   High-level disassembly precedence relationship between engine components.
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uct build level. However, the process data used in this case study are based on human disassembly. While the 
sequences generated and presented in Table 1 were viable, they did not offer a logical structure for human-
managed disassembly. Following the sequence suggested by the algorithm would demand the operator to change 
the direction and logical flow of the work content. To weigh the disassembly process to drive a more human-
friendly solution, a disassembly matrix was generated that applied a penalty to a change in disassembly direction 
of + 1 min for 90° and + 2 min for 180°. The disassembly time matrix can be found in the “Disassembly time 
matrix” tab in Kerin et al.42.

In addition, the model was designed to allow the remanufacturing routings to be managed in two ways. First, 
a ‘fixed’ mode that enabled the routings to be predefined would suit already established or flexible processes. This 
mode was used to validate the results with the manual process. Second, a ‘self-assigned’ mode works to identify 
the best routing available from the potential options, as defined in the raw data, suitable for flexible disassembly 
and management processes. The results in section “Results” utilise the ‘self-assigned’ mode.

Results
All results are documented in the ‘Results’ tab in Kerin et al.42. A sample of the DMM output at q = 1 is presented 
in Tables 2 and 3.

As seen in Table 2, the BA works to identify the disassembly sequence that provides the cheapest remanu-
facturing function cost for the inputs provided. Similarly, it looks to optimise the routing of the components to 
minimise expenditure (Table 3).

The DMM was run with quality varying by 0.1 units from 0 to 1.0 and distance by 100 km from 0 to 5000 km 
to evaluate the relationships that would determine whether the product should be recovered for remanufacturing. 
Working with a breakeven of £26,600, Fig. 5 displays the effects of changing quality and distance between the 
product and remanufacturing facility on the cost to complete the remanufacturing function, CRF.

Using this set of raw data, there appears to be little opportunity to recover and make a profit out of the 
remanufacturing of this product, identified as the area below the grey breakeven plane. At q ≤ 0.7 , the DT 
would suggest that the product was not worth recovering and that the user should look to find an alternative 
EoL solution for it. At q > 0.8 , there could well be an opportunity to generate a profit and fulfil a customer order. 
At q = 0.8 , the influence of distance is seen with those products closer to the facility profitable, in contrast to 
those located further away.

As the raw data were generated from a multitude of sources, there may be a case for caution over the exact 
resultant values; however, what has been demonstrated is that the model can be run in the DT to provide a 
numerical assessment of the potential profits obtainable from a product in MoL using the DT as the conduit that 
will enable a data-driven decision by the remanufacturers as to whether or not a product should be recovered 
and how best it may be processed.

Discussion
The output of the DMM provides evidence that a DT can provide valuable information for remanufacturing 
businesses. It offers an automated assessment of a product’s potential to generate revenue assuming the product 
is in demand. For a fully flexible, highly automated disassembly and rebuilding process, the BA provides a solu-
tion that can be used to drive the remanufacturing process plan and enable accurate forecasting to feed forwards 
replacement part purchasing and reusable components or remanufactured product sales.

The implementation of the directional change penalty matrix to support a more human manageable process 
to match the case study inputs did offer a slightly more logical disassembly process when discussed with skilled 
operators, but ultimately, this element needs more consideration and could be an interesting progression of this 
work. Should this model be applied to other applications, more emphasis needs to be placed on this element of 
the remanufacturing process and the inputs available from the DT process. In this work, only the inputs from 
the product DT were truly considered.

The environmental and social elements of the model have not been tested as part of this research, as their 
similarity to the economic element meant doing so would add little value. The BA has already been proven to 
solve multiobjective optimisation problems47 and could be used to resolve the complete model. Raw data for the 
environmental and social elements could also be difficult to capture without the comprehensive engagement of 
a remanufacturing business.

Table 1.   DMM algorithm output and validation.

Result using fix route (mode U = 1, R = 2, C = 3, D = 4)

Run 1

Sequence 27 16 38 25 5 14 36 13 34 28 37 9 11 35 39 4 32 30 33 23 24 19 3 29 15 40 21 22 18 31 17 20 2 26 10 7 6 12 8 1

Mode 4 1 3 3 4 2 4 3 3 2 3 1 2 4 1 1 1 1 3 3 3 1 4 3 3 1 3 3 3 1 3 3 2 1 2 2 3 2 3 2

BestCost (£) 29,058.44

Run 2

Sequence 5 38 30 13 25 24 27 28 23 32 9 17 26 16 15 40 39 4 14 36 35 33 29 22 21 34 37 19 20 3 18 11 31 10 2 7 6 8 12 1

Mode 4 3 1 3 3 3 4 2 3 1 1 3 1 1 3 1 1 1 2 4 4 3 3 3 3 3 3 1 3 4 3 2 1 2 2 2 3 3 2 2

BestCost (£) 29,058.44
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Table 2.   BA-generated disassembly sequence results at q = 1.

Quality 
(q)

Distance 
(km) Disassembly sequence (by part number)

1 0 13 32 17 35 9 15 39 24 38 25 16 21 14 30 11 26 5 10 4 23 22 40 36 7 34 27 3 33 28 20 2 37 29 8 6 19 18 12 31

1 100 39 38 14 13 9 5 32 25 17 27 33 35 4 24 26 30 16 11 15 23 28 22 10 20 40 36 7 34 3 21 29 8 37 2 19 18 6 12 31

1 200 39 13 27 33 9 15 35 38 40 16 22 11 36 34 25 24 14 30 5 21 17 37 4 20 28 23 3 32 29 2 6 26 10 19 7 18 12 31 8

1 300 39 24 35 16 17 38 5 27 14 28 32 30 4 9 13 23 11 15 33 25 40 22 20 26 29 10 36 7 34 8 37 19 21 3 2 18 6 31 12

1 400 39 35 14 27 16 36 38 34 33 37 13 25 5 17 4 9 15 24 26 21 30 32 22 20 11 10 3 40 28 23 2 6 29 19 7 8 18 12 31

1 500 39 36 24 5 13 14 34 17 37 38 9 35 16 27 33 32 4 28 11 15 3 22 40 21 20 25 26 10 7 8 2 30 23 19 18 29 31 6 12

1 600 39 35 5 24 25 13 4 27 9 15 38 16 32 17 26 22 30 21 14 36 11 20 28 33 34 40 37 29 10 7 8 3 23 2 6 19 18 31 12

1 700 39 14 24 17 32 5 13 25 26 4 35 16 9 38 30 11 15 22 40 10 36 7 27 21 28 8 34 23 3 37 33 29 20 2 19 6 18 31 12

1 800 13 39 9 36 38 17 32 34 16 27 37 11 15 24 40 14 35 5 30 22 33 28 4 25 21 20 3 23 19 29 26 18 2 31 10 6 12 7 8

1 900 13 5 25 4 24 9 30 17 39 14 23 16 26 11 10 15 36 7 34 35 3 27 22 8 37 28 19 33 40 29 32 20 38 21 2 18 31 6 12

1 1000 13 39 5 32 17 38 9 27 24 4 35 25 11 15 16 22 40 26 20 33 30 28 21 29 14 23 10 36 7 8 34 3 37 2 6 19 18 31 12

1 1100 39 13 30 35 17 23 16 25 26 14 9 15 38 22 40 24 20 5 36 34 37 11 4 10 19 7 3 32 27 28 18 31 33 29 8 21 2 6 12

1 1200 39 24 27 16 35 9 11 15 36 40 25 14 30 5 4 21 32 22 33 28 17 20 13 26 29 34 38 37 23 10 7 19 3 2 8 6 18 12 31

1 1300 13 36 39 30 14 24 27 34 35 9 5 11 15 37 16 17 33 22 32 38 4 20 28 23 3 21 19 29 2 40 25 6 18 31 12 26 10 7 8

1 1400 13 25 39 5 24 36 14 30 35 38 16 27 23 9 34 28 11 15 17 40 37 21 19 33 4 32 3 26 10 22 18 7 20 29 2 31 6 8 12

1 1500 39 14 27 17 33 36 24 30 23 9 15 11 34 37 35 21 16 5 32 13 38 28 4 25 22 40 26 3 10 20 29 7 8 19 18 2 6 12 31

1 1600 39 27 14 16 9 15 17 24 22 38 36 34 5 32 11 30 23 35 13 37 19 18 21 28 33 29 4 40 31 25 20 26 10 3 7 8 2 6 12

1 1700 13 27 9 15 33 17 11 24 25 5 4 38 26 14 35 21 16 10 36 7 40 22 34 8 3 37 20 30 23 28 39 2 29 19 6 32 18 31 12

1 1800 13 25 17 39 5 27 35 33 14 30 23 24 9 11 15 28 4 16 40 22 20 29 38 26 10 36 7 34 37 32 8 3 19 18 31 21 2 6 12

1 1900 39 35 13 17 24 36 27 30 38 32 16 34 33 25 14 37 9 15 28 26 21 23 11 29 22 19 20 5 18 10 4 7 31 3 8 2 6 40 12

1 2000 39 36 14 27 33 24 16 13 9 35 30 23 25 32 28 34 29 11 15 17 40 22 21 5 37 20 4 3 2 19 38 18 6 12 26 31 10 7 8

1 2100 13 24 30 23 14 17 36 32 27 33 28 35 39 9 15 11 34 38 16 37 19 18 25 40 5 21 22 4 29 26 31 20 3 2 6 10 12 7 8

1 2200 39 36 5 27 33 4 35 9 15 11 34 32 17 13 16 14 22 38 25 3 21 30 26 28 23 20 29 37 24 2 40 10 19 6 18 31 7 12 8

1 2300 39 9 25 27 28 13 11 15 32 30 24 14 16 40 22 23 35 5 4 21 38 33 36 29 34 17 26 20 10 3 37 19 18 31 2 7 6 12 8

1 2400 39 16 24 32 30 36 23 9 27 11 15 17 33 5 25 38 34 37 35 21 14 19 40 22 13 28 29 20 26 10 18 31 7 8 4 3 2 6 12

1 2500 13 35 9 17 39 32 14 11 15 30 25 38 26 5 40 16 22 10 36 7 23 4 27 24 20 33 21 34 3 2 8 6 28 37 19 29 18 12 31

1 2600 39 35 9 38 11 15 24 17 27 33 36 28 5 30 23 16 4 29 21 34 14 37 40 32 3 19 22 20 2 6 25 18 31 12 13 26 10 7 8

1 2700 39 27 38 5 24 9 15 16 13 32 11 25 14 28 33 40 4 22 17 30 23 29 35 20 26 21 10 36 7 8 34 3 37 2 6 19 18 31 12

1 2800 13 36 39 30 38 34 37 23 25 14 17 35 26 24 5 9 27 32 33 28 4 29 3 11 15 19 40 16 10 22 7 18 20 31 21 8 2 6 12

1 2900 39 13 24 17 14 30 27 23 5 16 25 33 35 38 9 28 11 26 4 10 15 36 7 29 40 8 22 21 32 20 34 3 2 6 37 19 18 12 31

1 3000 39 5 16 25 27 33 32 36 35 28 34 38 37 9 15 22 24 40 17 21 14 4 30 3 20 13 26 2 6 29 23 19 18 12 11 10 31 7 8

1 3100 13 25 39 5 9 15 16 38 32 11 30 17 27 24 26 28 33 35 14 40 23 10 36 7 29 22 4 20 8 21 34 3 37 2 6 19 18 31 12

1 3200 13 27 30 17 32 39 14 28 33 9 29 11 15 24 38 25 23 26 35 21 40 16 5 10 36 7 8 22 4 20 34 37 3 2 6 19 18 12 31

1 3300 13 16 25 32 35 5 38 36 39 24 34 9 17 26 27 28 11 15 37 22 30 20 40 21 23 14 33 19 18 29 10 7 4 31 8 3 2 6 12

1 3400 39 35 9 15 16 17 24 22 27 40 13 32 30 38 5 25 14 4 20 11 26 28 33 10 29 36 7 8 21 34 23 3 37 19 18 31 2 6 12

1 3500 13 17 25 9 27 16 24 28 35 14 26 5 33 32 11 10 15 38 40 4 21 22 20 39 36 7 30 8 29 34 3 37 23 19 2 18 6 31 12

1 3600 39 5 14 32 4 36 13 9 15 30 25 17 35 26 38 16 34 27 28 3 40 22 20 24 37 23 19 33 21 29 11 10 7 8 18 31 2 6 12

1 3700 13 9 39 38 30 32 27 28 24 11 15 17 25 5 16 23 26 14 4 10 35 22 21 20 40 33 36 7 34 8 29 37 19 3 18 31 2 6 12

1 3800 39 25 17 16 24 27 5 13 38 32 28 4 9 14 11 15 26 30 10 22 40 36 7 33 8 29 20 35 34 21 37 23 3 2 6 19 18 31 12

1 3900 39 5 24 16 32 30 4 27 14 25 9 17 11 15 13 36 28 35 26 38 22 23 33 29 34 20 21 3 37 10 7 8 40 2 6 19 18 31 12

1 4000 39 9 27 14 30 38 35 32 13 16 24 11 17 25 23 26 10 15 36 7 33 21 28 34 37 8 40 29 19 18 31 5 4 3 22 20 2 6 12

1 4100 13 17 9 15 38 36 27 32 39 5 40 35 16 28 25 22 30 23 14 26 11 21 20 4 10 7 24 33 8 29 34 3 37 2 6 19 18 31 12

1 4200 39 16 27 9 15 5 40 25 32 13 22 38 4 35 14 36 21 11 34 28 33 30 24 3 23 29 17 26 10 7 8 37 19 18 31 20 2 6 12

1 4300 13 9 16 27 28 38 30 36 17 25 26 35 32 11 15 24 40 33 5 4 29 34 39 14 23 37 10 3 22 20 21 19 7 18 31 2 8 6 12

1 4400 13 5 16 35 17 9 27 38 11 15 14 32 33 4 39 21 25 26 10 22 28 40 24 30 20 29 23 36 7 34 3 2 8 37 6 19 18 12 31

1 4500 13 25 32 27 16 38 28 5 24 39 36 17 26 9 15 22 14 4 40 33 30 11 35 34 29 20 37 3 10 21 2 7 6 8 23 19 18 12 31

1 4600 39 17 27 36 9 15 25 38 28 34 40 30 13 23 37 14 16 24 35 21 5 26 4 22 20 32 19 3 33 18 29 11 10 7 2 31 6 8 12

1 4700 39 36 17 34 9 16 32 35 27 28 14 24 25 5 11 15 4 30 22 40 13 38 23 37 3 19 18 26 10 31 21 20 7 8 33 2 29 6 12

1 4800 13 17 25 9 15 35 26 16 27 30 22 23 11 14 5 39 4 33 28 10 32 40 36 7 24 38 20 34 21 3 29 2 37 19 18 8 31 6 12

1 4900 13 35 25 9 15 36 14 27 34 11 17 16 38 33 40 24 30 32 37 22 23 21 39 28 29 26 5 10 7 8 4 20 3 19 18 31 2 6 12

1 5000 39 27 17 28 32 24 13 5 38 25 35 9 15 11 33 21 26 30 29 23 14 10 16 36 7 4 22 34 40 37 20 19 18 31 3 2 8 6 12



14

Vol:.(1234567890)

Scientific Reports |          (2023) 13:701  | https://doi.org/10.1038/s41598-023-27631-2

www.nature.com/scientificreports/

Conclusion
Returning to the questions posed at the beginning of this research, the key variables that need to be incorporated 
into the DMM relate to product quality, location, and remanufacturing costs. If the remanufacturing business is to 
be managed to CE principles, the outputs of the DT should feed into a triple-bottom-line assessment. The decision 
whether to recover an EoL product would then be achieved through evaluating the financial, environmental, and 

Table 3.   BA-generated routing and costs related to the sequences in Table 2.

Quality 
(q)

Distance 
(km) Remanufacturing method (1 = Reuse, 2 = Reincarnate, 3 = Recycle, 4 = Disposal)

Cost 
(£)

1 0 3 1 3 4 1 3 1 3 3 3 1 3 2 1 2 1 4 2 1 3 3 1 4 2 3 4 4 3 2 3 2 3 3 3 3 1 3 2 1 2 23,921

1 100 1 3 2 3 1 4 1 3 3 4 3 4 1 3 1 1 1 2 3 3 2 3 2 3 1 4 2 3 4 3 3 3 3 2 1 3 3 2 1 2 23,937

1 200 1 3 4 3 1 3 4 3 1 1 3 2 4 3 3 3 2 1 4 3 3 3 1 3 2 3 4 1 3 2 3 1 2 1 2 3 2 1 3 2 23,957

1 300 1 3 4 1 3 3 4 4 2 2 1 1 1 1 3 3 2 3 3 3 1 3 3 1 3 2 4 2 3 3 3 1 3 4 2 3 3 1 2 2 23,969

1 400 1 4 2 4 1 4 3 3 3 3 3 3 4 3 1 1 3 3 1 3 1 1 3 3 2 2 4 1 2 3 2 3 3 1 2 3 3 2 1 2 23,989

1 500 1 4 3 4 3 2 3 3 3 3 1 4 1 4 3 1 1 2 2 3 4 3 1 3 3 3 1 2 2 3 2 1 3 1 3 3 1 3 2 2 24,005

1 600 1 4 4 3 3 3 1 4 1 3 3 1 1 3 1 3 1 3 2 4 2 3 2 3 3 1 3 3 2 2 3 4 3 2 3 1 3 1 2 2 24,021

1 700 1 2 3 3 1 4 3 3 1 1 4 1 1 3 1 2 3 3 1 2 4 2 4 3 2 3 3 3 4 3 3 3 3 2 1 3 3 1 2 2 24,032

1 800 3 1 1 4 3 3 1 3 1 4 3 2 3 3 1 2 4 4 1 3 3 2 1 3 3 3 4 3 1 3 1 3 2 1 2 3 2 2 3 2 24,053

1 900 3 4 3 1 3 1 1 3 1 2 3 1 1 2 2 3 4 2 3 4 4 4 3 3 3 2 1 3 1 3 1 3 3 3 2 3 1 3 2 2 24,064

1 1000 3 1 4 1 3 3 1 4 3 1 4 3 2 3 1 3 1 1 3 3 1 2 3 3 2 3 2 4 2 3 3 4 3 2 3 1 3 1 2 2 24,080

1 1100 1 3 1 4 3 3 1 3 1 2 1 3 3 3 1 3 3 4 4 3 3 2 1 2 1 2 4 1 4 2 3 1 3 3 3 3 2 3 2 2 24,100

1 1200 1 3 4 1 4 1 2 3 4 1 3 2 1 4 1 3 1 3 3 2 3 3 3 1 3 3 3 3 3 2 2 1 4 2 3 3 3 2 1 2 24,116

1 1300 3 4 1 1 2 3 4 3 4 1 4 2 3 3 1 3 3 3 1 3 1 3 2 3 4 3 1 3 2 1 3 3 3 1 2 1 2 2 3 2 24,132

1 1400 3 3 1 4 3 4 2 1 4 3 1 4 3 1 3 2 2 3 3 1 3 3 1 3 1 1 4 1 2 3 3 2 3 3 2 1 3 3 2 2 24,148

1 1500 1 2 4 3 3 4 3 1 3 1 3 2 3 3 4 3 1 4 1 3 3 2 1 3 3 1 1 4 2 3 3 2 3 1 3 2 3 2 1 2 24,164

1 1600 1 4 2 1 1 3 3 3 3 3 4 3 4 1 2 1 3 4 3 3 1 3 3 2 3 3 1 1 1 3 3 1 2 4 2 3 2 3 2 2 24,180

1 1700 3 4 1 3 3 3 2 3 3 4 1 3 1 2 4 3 1 2 4 2 1 3 3 3 4 3 3 1 3 2 1 2 3 1 3 1 3 1 2 2 24,191

1 1800 3 3 3 1 4 4 4 3 2 1 3 3 1 2 3 2 1 1 1 3 3 3 3 1 2 4 2 3 3 1 3 4 1 3 1 3 2 3 2 2 24,207

1 1900 1 4 3 3 3 4 4 1 3 1 1 3 3 3 2 3 1 3 2 1 3 3 2 3 3 1 3 4 3 2 1 2 1 4 3 2 3 1 2 2 24,227

1 2000 1 4 2 4 3 3 1 3 1 4 1 3 3 1 2 3 3 2 3 3 1 3 3 4 3 3 1 4 2 1 3 3 3 2 1 1 2 2 3 2 24,243

1 2100 3 3 1 3 2 3 4 1 4 3 2 4 1 1 3 2 3 3 1 3 1 3 3 1 4 3 3 1 3 1 1 3 4 2 3 2 2 2 3 2 24,259

1 2200 1 4 4 4 3 1 4 1 3 2 3 1 3 3 1 2 3 3 3 4 3 1 1 2 3 3 3 3 3 2 1 2 1 3 3 1 2 2 3 2 24,275

1 2300 1 1 3 4 2 3 2 3 1 1 3 2 1 1 3 3 4 4 1 3 3 3 4 3 3 3 1 3 2 4 3 1 3 1 2 2 3 2 3 2 24,291

1 2400 1 1 3 1 1 4 3 1 4 2 3 3 3 4 3 3 3 3 4 3 2 1 1 3 3 2 3 3 1 2 3 1 2 3 1 4 2 3 2 2 24,307

1 2500 3 4 1 3 1 1 2 2 3 1 3 3 1 4 1 1 3 2 4 2 3 1 4 3 3 3 3 3 4 2 3 3 2 3 1 3 3 2 1 2 24,318

1 2600 1 4 1 3 2 3 3 3 4 3 4 2 4 1 3 1 1 3 3 3 2 3 1 1 4 1 3 3 2 3 3 3 1 2 3 1 2 2 3 2 24,339

1 2700 1 4 3 4 3 1 3 1 3 1 2 3 2 2 3 1 1 3 3 1 3 3 4 3 1 3 2 4 2 3 3 4 3 2 3 1 3 1 2 2 24,350

1 2800 3 4 1 1 3 3 3 3 3 2 3 4 1 3 4 1 4 1 3 2 1 3 4 2 3 1 1 1 2 3 2 3 3 1 3 3 2 3 2 2 24,371

1 2900 1 3 3 3 2 1 4 3 4 1 3 3 4 3 1 2 2 1 1 2 3 4 2 3 1 3 3 3 1 3 3 4 2 3 3 1 3 2 1 2 24,382

1 3000 1 4 1 3 4 3 1 4 4 2 3 3 3 1 3 3 3 1 3 3 2 1 1 4 3 3 1 2 3 3 3 1 3 2 2 2 1 2 3 2 24,402

1 3100 3 3 1 4 1 3 1 3 1 2 1 3 4 3 1 2 3 4 2 1 3 2 4 2 3 3 1 3 3 3 3 4 3 2 3 1 3 1 2 2 24,414

1 3200 3 4 1 3 1 1 2 2 3 1 3 2 3 3 3 3 3 1 4 3 1 1 4 2 4 2 3 3 1 3 3 3 4 2 3 1 3 2 1 2 24,430

1 3300 3 1 3 1 4 4 3 4 1 3 3 1 3 1 4 2 2 3 3 3 1 3 1 3 3 2 3 1 3 3 2 2 1 1 3 4 2 3 2 2 24,450

1 3400 1 4 1 3 1 3 3 3 4 1 3 1 1 3 4 3 2 1 3 2 1 2 3 2 3 4 2 3 3 3 3 4 3 1 3 1 2 3 2 2 24,462

1 3500 3 3 3 1 4 1 3 2 4 2 1 4 3 1 2 2 3 3 1 1 3 3 3 1 4 2 1 3 3 3 4 3 3 1 2 3 3 1 2 2 24,477

1 3600 1 4 2 1 1 4 3 1 3 1 3 3 4 1 3 1 3 4 2 4 1 3 3 3 3 3 1 3 3 3 2 2 2 3 3 1 2 3 2 2 24,498

1 3700 3 1 1 3 1 1 4 2 3 2 3 3 3 4 1 3 1 2 1 2 4 3 3 3 1 3 4 2 3 3 3 3 1 4 3 1 2 3 2 2 24,509

1 3800 1 3 3 1 3 4 4 3 3 1 2 1 1 2 2 3 1 1 2 3 1 4 2 3 3 3 3 4 3 3 3 3 4 2 3 1 3 1 2 2 24,525

1 3900 1 4 3 1 1 1 1 4 2 3 1 3 2 3 3 4 2 4 1 3 3 3 3 3 3 3 3 4 3 2 2 3 1 2 3 1 3 1 2 2 24,545

1 4000 1 1 4 2 1 3 4 1 3 1 3 2 3 3 3 1 2 3 4 2 3 3 2 3 3 3 1 3 1 3 1 4 1 4 3 3 2 3 2 2 24,557

1 4100 3 3 1 3 3 4 4 1 1 4 1 4 1 2 3 3 1 3 2 1 2 3 3 1 2 2 3 3 3 3 3 4 3 2 3 1 3 1 2 2 24,577

1 4200 1 1 4 1 3 4 1 3 1 3 3 3 1 4 2 4 3 2 3 2 3 1 3 4 3 3 3 1 2 2 3 3 1 3 1 3 2 3 2 2 24,593

1 4300 3 1 1 4 2 3 1 4 3 3 1 4 1 2 3 3 1 3 4 1 3 3 1 2 3 3 2 4 3 3 3 1 2 3 1 2 3 3 2 2 24,609

1 4400 3 4 1 4 3 1 4 3 2 3 2 1 3 1 1 3 3 1 2 3 2 1 3 1 3 3 3 4 2 3 4 2 3 3 3 1 3 2 1 2 24,621

1 4500 3 3 1 4 1 3 2 4 3 1 4 3 1 1 3 3 2 1 1 3 1 2 4 3 3 3 3 4 2 3 2 2 3 3 3 1 3 2 1 2 24,641

1 4600 1 3 4 4 1 3 3 3 2 3 1 1 3 3 3 2 1 3 4 3 4 1 1 3 3 1 1 4 3 3 3 2 2 2 2 1 3 3 2 2 24,657

1 4700 1 4 3 3 1 1 1 4 4 2 2 3 3 4 2 3 1 1 3 1 3 3 3 3 4 1 3 1 2 1 3 3 2 3 3 2 3 3 2 2 24,673

1 4800 3 3 3 1 3 4 1 1 4 1 3 3 2 2 4 1 1 3 2 2 1 1 4 2 3 3 3 3 3 4 3 2 3 1 3 3 1 3 2 2 24,684

1 4900 3 4 3 1 3 4 2 4 3 2 3 1 3 3 1 3 1 1 3 3 3 3 1 2 3 1 4 2 2 3 1 3 4 1 3 1 2 3 2 2 24,704

1 5000 1 4 3 2 1 3 3 4 3 3 4 1 3 2 3 3 1 1 3 3 2 2 1 4 2 1 3 3 1 3 3 1 3 1 4 2 3 3 2 2 24,716
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social costs of the recovery and disassembly, component storage, component/product reincarnation activities, 
recycling, and disposal, along with product assembly, testing, and finishing.

This article has documented the realisation of a digital twin (DT) sub-element, the decision-making module 
(DMM) of a smart remanufacturing system. The inputs and outputs to the DMM along with the assumptions and 
relationships have been defined. From this, a model structure is proposed that utilises three of the nine CE-I4.0 
methodologies: reuse, remanufacture and recycle. The fourth route used is disposal.

Based on the three pillars of the CE, the article offers a numerical assessment of the product and EoL options. 
To test the model, the economic pillar was used, and a case study was conducted. Targeting the lowest incurred 
costs, the optimal disassembly sequence and component routing were found using the Bess Algorithm. This 
enables near real-time data-driven decisions to be made for a product almost at the end of its service life that 
is still in use and emitting sensor readings. Combined with the RUL calculations, this information can give 
remanufacturing businesses foresight into the current quality of the product, degradation characteristics and 
remanufacturing potential.

There are a number of further research opportunities including expansion of the directional change penalty 
matrix to include the impact due to the change in tooling, the testing of the social and environmental elements 
of the model using real data, trialling other high-value entities, and evaluating the impact to the DT inputs avail-
able when employing the model on a different remanufacturing process. Finally, the subject of virtual-physical 
synchronisation, depth of data and frequency of sampling and feedback required by a DT to be sufficiently timely 
for remanufacturers needs more research.

Data availability
All data generated or analysed during this study are included in the UBIRA eData repository, at https://​doi.​org/​
10.​25500/​eData.​bham.​00000​855.
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