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Space‑resolved chemical 
information from infrared 
extinction spectra
Yushmantha Ishan Kalpa de Silva Thuiya Hennadige , Proity Nayeeb Akbar  & 
Reinhold Blümel *

A new method is presented for the extraction of the complex index of refraction from the extinction 
efficiency, Q

ext
(ν̃) , of homogeneous and layered dielectric spheres that simultaneously removes 

scattering effects and corrects measured extinction spectra for systematic experimental errors such as 
baseline shifts, tilts, curvature, and scaling. No reference spectrum is required and fit functions may 
be used that automatically satisfy the Kramers–Kronig relations. Thus, the method yields the complex 
refractive index of a sample for unambiguous interpretation of the chemical information of the 
sample. In the case of homogeneous spheres, the method also determines the radius of the sphere. In 
the case of layered spheres, the method determines the substances within each layer. Only a single‑
element detector is required. Using numerically computed Q

ext
(ν̃) data of polymethyl‑methacrylate 

and polystyrene homogeneous and layered spheres, we show that the new reconstruction algorithm 
is accurate and reliable. Reconstructing the complex refractive index from a published, experimentally 
measured raw absorbance spectrum shows that the new method simultaneously corrects spectra for 
scattering effects and, given shape information, corrects raw spectra for systematic errors that result 
in spectral distortions such as baseline shifts, tilts, curvature, and scaling.

With roots going back more than a century in  time1, infrared (IR) spectroscopy has evolved into one of the 
most powerful and successful tools for the analysis of biological cells and tissues for applications in biophysics, 
chemistry, and medical  pathology2–6. Far from being a successful, but stagnant field of study, with the recent 
advent of tunable IR laser  sources7, IR spectroscopy is currently experiencing growing interest and expansion 
into new fields of application. No matter whether the spectra are taken with thermal, laser, or synchrotron IR 
sources, two tasks always have to be performed: (1) Cleaning up of the raw spectra and (2) reconstructing the 
refractive index (revealing the chemistry) of the (biological) sample under investigation. Powerful tools exist 
for cleaning up the spectra, i.e., removing artefacts introduced by the spectrographs and IR sources that result, 
e.g., in baseline shifts, tilts, curvature, and multiplicative distortions of the  spectra8.

This paper focuses on single-cell IR spectroscopy where the cell sizes are approximately of the same order of 
magnitude as the wavelength of the incident IR radiation. Thus, the corresponding IR spectra exhibit pronounced 
scattering effects, such as Mie scattering, that modify absorbance spectra considerably and need to be removed 
before interpreting the  spectra8–12.

In this paper we present a new technique that is capable of accomplishing the tasks (1) and (2) above without 
the need of a reference  spectrum8 or the Kramers–Kronig  relations8,11 as required by leading spectral correction 
methods. For our examples, we use two substances, polymethyl-methacrylate (PMMA) and polystyrene (PS).

Methods
In “General” section we start by describing the general method used in IR spectroscopy. Then, in “Reconstruction 
of the complex refractive index” section, we describe a new method of reconstructing the space- and wavenum-
ber-dependent (hyperspectral) complex index of refraction η(�r, ν̃) based on anti-symmetrized Lorentzians. Here, 
�r denotes the space part of the complex refractive index and ν̃ = 1/� is the wavenumber, where � is the vacuum 
wavelength. In “Numerical simulations” section we describe our numerical procedures for reconstructing η(�r, ν̃) . 
In “The task at hand: an inverse scattering problem” section we explain how simple curve-fitting methods differ 
from reconstruction methods, which belong to the class of inverse-scattering problems. In “Quality of recon-
structions” section we define our method for assessing the quality of reconstruction.
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General. Typically in single-detector IR spectroscopy, a beam of IR radiation with wavenumber ν̃ and inten-
sity I0(ν̃) is directed toward a target that may be a biological cell, a sample of biological tissue, or a grain of 
biological or inanimate matter, and the transmitted intensity I(ν̃) is measured in forward direction. Because of 
absorption of IR radiation by the target, and because of scattering of IR radiation out of the forward direction, 
we have I(ν̃) < I0(ν̃) . Once I(ν̃) is measured, the result of the measurements is typically reported as the appar-
ent absorbance

While the apparent absorbance A is convenient for recording and reporting experimental results, cross sec-
tions are more convenient for the analysis of experiments, numerical simulations, and the extraction of refrac-
tive indexes. Denoting by σscat and σabs the scattering and absorption cross sections, respectively, the extinction 
cross section is defined  as13 σext = σscat + σabs . With σext , we define the extinction efficiency according to Ref.13 
Qext = σext/g , where g is the geometric cross section of the sample under investigation. Denoting by G ≫ g 
the reception area of the detector, the radiative power received by the detector without the sample present is 
P0 = GI0 , and the radiative power received by the detector with the sample present is PI = GI = GI0 − I0σext . 
Rearranging this equation and dividing by g, we obtain

Via (1), this can immediately be related to the apparent absorbance A according to

Since, via (3), Qext(ν̃) and A (ν̃) contain the same information, we will, in the following, present our theoreti-
cal analysis and reconstructions of refractive indexes on the basis of Qext(ν̃) or A (ν̃) depending on convenience.

As an example, we show in Fig. 1 the numerically computed Qext(ν̃) spectrum for the experimentally deter-
mined PMMA refractive-index data published in Ref.14 (left panel) and the Qext(ν̃) spectrum for the experimen-
tally determined PS refractive-index data published in Ref.15 (right panel). The computations of Qext(ν̃) in Fig. 1 
were performed with a standard Mie  code16.

We see that the Qext curves in Fig. 1 have very little in common with their respective refractive indexes (see 
blue lines in Fig. 2). In particular, the prominent peaks at small wavenumbers in both Qext(ν̃) curves in Fig. 1 are 
completely absent in the refractive-index data shown as the blue lines in Fig. 2. These peaks in Qext(ν̃) are caused 
by scattering and obscure, to a large extent, the underlying refractive index. The same holds, e.g., for the large 
undulatory structure in the PS Qext(ν̃) curve in Fig. 1 (right panel) in the vicinity of 1600 cm−1 , which does not 
have a counterpart in the refractive-index data (blue curves in Fig. 2). Thus, the challenge for any reconstruction 
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Figure 1.  Extinction efficiency Qext(ν̃) , numerically  computed16 on the basis of published refractive-index 
 data14,15 for a sphere of radius 10µ m, homogeneously filled with PMMA (left panel) and PS (right panel).
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algorithm is to recover both the real and imaginary parts of the refractive index (two curves) from the single, 
real input curve Qext(ν̃).

In any reconstruction problem, what is given, and it is the only input given, is the measured or computed 
extinction efficiency Qext(ν̃) , as shown, for example, in Fig. 1. Thus, we denote such a given extinction efficiency 
by Q(given)

ext (ν̃) . Q(given)
ext (ν̃) is the starting point of any reconstruction algorithm.

Reconstruction of the complex refractive index. The main point of the new reconstruction method 
is to extract the space-dependent complex index of refraction η(�r, ν̃) from Qext(ν̃) . This may sound ambitious, 
since Qext(ν̃) has no space dependence. Nevertheless, it is possible, at least for a sphere with two layers, as dem-
onstrated in “Layered sphere: space-resolved refractive index” section. To implement the method, we discretize 
space into voxels, which can be any shape or size. The smaller the voxel, the more resolution. The more regular 
the voxel (such as cubes or shells), the more straightforward the computations. Labeling the voxels with the 
discrete index j = 1, . . . , J , and denoting by �rj a representative point of voxel number j (for instance its center in 
the case of cubes or a point on the center shell in the case of shells), we represent the refractive index inside of a 
voxel by its (spatially) constant value η(�rj , ν̃) ≡ ηj(ν̃) , and assume that its imaginary part varies in frequency as 
a sum of anti-symmetrized Lorentzians of the  form17

 where the symbol ℑ denotes the imaginary part. Inside voxel number j, ν̃(j)m  is the wavenumber location of an IR 
absorption band, h(j)m  is the corresponding peak height, Ŵ(j)

m  is the width of the absorption band, m = 1, . . . ,M 
numbers the absorption bands, and M, a parameter, decides how many bands we include in our reconstructions. 
ν̃
(j)
m  , h(j)m  , and Ŵ(j)

m  , m = 1, . . . ,M , j = 1, . . . , J , are adjustable parameters to be determined via a 3D scattering 
code such that Q(model)

ext (ν̃) , i.e. the Qext(ν̃) predicted on the basis of (4), optimally reproduces Q(given)
ext (ν̃) , where 

Q
(given)
ext (ν̃) is the given Qext(ν̃) , either obtained experimentally, or from a numerical simulation (see “Results” 

section). As pointed out by  Keefe17, the anti-symmetrization in (4) is necessary so that the refractive index 
η(�r, ν̃) satisfies the Kramers–Kronig conditions. Satisfying the Kramers–Kronig conditions is necessary because 
of causality  requirements17. Consequently, the imaginary part of η(�r, ν̃) needs to be anti-symmetric with respect 
to ν̃ → −ν̃ , i.e., ℑη(�r,−ν̃) = −ℑη(�r, ν̃) . This is guaranteed by the form of (4).
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Figure 2.  Reconstructions of real parts (left panels) and imaginary parts (right panels) of the complex 
refractive index η(ν̃) of 10µ m radius spheres, homogeneously filled with PMMA (upper panels) and PS (lower 
panels), using experimental data (blue lines) for obtaining Q(given)

ext (ν̃) . 18 Lorentzians were used for the PMMA 
reconstructions and 22 Lorentzians were used for the PS reconstructions. Although the initial guess of the 
complex refractive indexes is random, the reconstructions (red lines) are near perfect, indicated by the near 
perfect overlap of the blue and red lines.
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The real part of η(�r, ν̃) is obtained by the Kramers-Kronig transformation of (4), i.e.17,

where the symbol ℜ denotes the real part and n∞ is a free (real) parameter. It denotes the average real refractive 
index that originates from spectral domains, such as the optical frequency domain, which are outside the IR 
domain. The important point here is that the Kramers–Kronig transform of the anti-symmetrized Lorentzians 
is known analytically [see (5)] and does not have to be computed numerically. This is significant, since in most 
mid-IR experiments data are only taken in the spectral range from about ν̃ ≈ 500 cm−1 to ν̃ ≈ 4000 cm−1 . This 
is insufficient for computing a high-accuracy Kramers–Kronig transform, which, according to (5), requires 
integration over an infinite range of wavenumbers.

In the simplest case, the entire scatterer may be represented as a single voxel, in which case J = 1 . This is 
appropriate for homogeneous scatterers, i.e., scatterers with a spatially constant index of refraction, such as a 
homogeneous sphere. An example with J = 2 is a sphere with two layers, i.e., a core and a shell, each homogene-
ously filled with a medium of spatially constant index of refraction as discussed in “Results” section. In this case 
two voxels, i.e., the core and the shell, suffice, each endowed with its own series (4) and (5) of Lorentzians. The 
method now determines the unknown parameters ν̃(j)m  , h(j)m  , and Ŵ(j)

m  , m = 1, . . . ,M , j = 1, . . . , J , as the optimum 
values that best reproduce Q(given)

ext (ν̃) . This can be done with any standard nonlinear fit algorithm that minimizes 
a target function S, for instance (the {. . .} notation indicates the entire set of fit parameters)

where Q(model)
ext [{ν̃

(j)
m , h

(j)
m ,Ŵ

(j)
m }, {p}; ν̃l] is the extinction efficiency evaluated at ν̃l with fit parameters ν̃(j)m  , h(j)m  , 

and Ŵ(j)
m  , m = 1, . . . ,M , j = 1, . . . , J , computed via a suitable 3D scattering code, and ν̃l are the wavenumbers at 

which Q(given)
ext (ν̃) has been measured or pre-determined numerically. The set {p} is an additional set of parameters 

that always includes n∞ and may include additional fit parameters describing experimental spectral distortions 
such as baseline shifts, tilts, curvature, and scaling. These parameters can then be used to unfold the experimen-
tal extinction efficiency, i.e., automatically correct the experimental extinction spectrum simultaneously with 
extracting the complex refractive index, as done, e.g., in “Reconstruction from experimental extinction data” 
section for experimental spectral distortions.

The main characteristic of the Lorentzian method is that, in contrast to other spectral-correction methods, 
no reference spectrum is needed to scatter-correct Qext(ν̃) spectra, whether simulated via a forward model 
or obtained experimentally, and that no numerical Kramers–Kronig transformation is needed. This is so, 
since, according to (5), the Kramers–Kronig transform of the Lorentzian functions in (4) is known exactly and 
analytically.

Numerical simulations. To generate the reconstructions whose results are reported in “Results” section, 
we implemented the algorithm described in “Reconstruction of the complex refractive index” section, using the 
MATLAB nonlinear least-squares fit routine lsqcurvefit. One characteristic feature of our implementation of the 
Lorentzian method is that, initially, as starting conditions, we place M Lorentzians, equi-spaced (unbiased) into 
the wavenumber interval under consideration. This way, in addition to using random initial values for Lorentz-
ian peak heights and peak widths, we obtain an initial condition that is not only unbiased, but an initial Lorentz-
ian peak is always close to an actual peak in the imaginary part of the refractive index, which then needs only a 
relatively small adjustment in position, height, and width, to morph into an actual peak. This feature is crucial. It 
avoids, to a large extent, getting trapped in secondary optimization minima, i.e., a local but not global minimum 
of the target function S [see (6)]. We can still get trapped in secondary minima, but because of our choice of 
equi-spaced initial Lorentzian positions, the chance of getting trapped in a secondary minimum that results in 
a bad fit is vastly reduced. As a consequence, we found that the algorithm is insensitive to the choice of initial 
conditions and yields excellent results even if initial heights and widths are chosen randomly.

The task at hand: an inverse scattering problem. It may seem that the problem of recovering the 
refractive index from the extinction efficiency Qext(ν̃) is a simple problem of fitting Lorentzians to a given refrac-
tive index η(�r, ν̃) . This is not so. For a given (biological) sample, it is not the refractive index that is given or 
measured, it is the extinction efficiency Qext(ν̃) that is measured, while the refractive index η(�r, ν̃) is unknown 
and needs to be found. The task, therefore, is to uncover the unknown refractive index η(�r, ν̃) from the known 
Qext(ν̃) . Thus, the task at hand is to solve an inverse scattering problem.

Quality of reconstructions. The quality of the reconstructions is best assessed with the help of the 
coefficient of determination, R2 . Given the refractive-index data points, ηPMMA

k  , k = 1, . . .NPMMA
14 and ηPSk  , 

k = 1, . . .NPS
15, and defining η̃PMMA

k  , k = 1, . . .NPMMA and η̃PSk  , k = 1, . . .NPS as their reconstructions accord-
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ing to the Lorentzian method, we define the residuals, ePMMA,PS
k = η

PMMA,PS
k − η̃

PMMA,PS
k  and the averages 

η̄PMMA,PS = (1/NPMMA,PS)
∑NPMMA,PS

k=1 η
PMMA,PS
k  . We then define the residual sum of squares of the real and 

imaginary parts of the residuals according to S(PMMA,PS,r)
res =

∑NPMMA,PS

k=1 (ℜePMMA,PS
k )2 , S(PMMA,PS,i)

res =
∑NPMMA,PS

k=1  
(ℑePMMA,PS

k )2 , respectively. We also define the total sum of squares of the real and imaginary parts of the given 
and reconstructed refractive indexes according to SPMMA,PS,r

tot =
∑NPMMA,PS

k=1 [ℜ(ηPMMA,PS
k − η̄

PMMA,PS
k )]2 and 

SPMMA,PS,i
tot =

∑NPMMA,PS

k=1 [ℑ(ηPMMA,PS
k − η̄

PMMA,PS
k )]2 . Then, the coefficient of determination is given by

The R2 value is a useful measure of the quality of reconstruction. For instance, an R2 value of 0.5 indicates 
that 50% of the Q(given)

ext (ν̃) data is explained by the reconstruction. As shown in “Results” section the R2 values 
of our reconstructions are all above 0.7 and are above 0.9 if reconstructions are performed with high-quality 
Q
(given)
ext (ν̃) data as input (see “Reconstruction from numerical extinction data” section). Even for the case of a 

layered sphere, discussed in “Layered sphere: space-resolved refractive index” section, the R2 value still exceeds 
0.8 for both the core and shell reconstructions.

Results
To demonstrate the power of the new algorithm, we extract the refractive index in three cases, where Qext(ν̃) is (i) 
numerically simulated (“Reconstruction from numerical extinction data” section), (ii) experimentally measured 
(real-life case, “Reconstruction from experimental extinction data” section), and (iii) numerically simulated for a 
layered sphere (“Layered sphere: space-resolved refractive index” section). While the algorithm straightforwardly 
scales to more complex space-dependent refractive indexes, case (iii) demonstrates explicitly, for a layered sphere, 
that the algorithm is capable of space-resolving the complex refractive index in a simple model case.

While these examples are important for testing validity and robustness of the Lorentzian method, IR spec-
troscopy on homogeneous and layered spheres may also have practical importance, for instance in mineralogy, 
or for characterizing micro- and nano-spheres, such as PMMA or PS spheres. PMMA spheres, in particular, are 
frequently used as model systems for biological  cells11,12,18–21.

Reconstruction from numerical extinction data. The purpose of this section is to show that the Lor-
entzian reconstruction method works near perfectly if provided with high-accuracy Q(given)

ext (ν̃) data. To dem-
onstrate the power of the Lorentzian method in this case, we computed, numerically, the extinction efficiency 
Q
(given)
ext (ν̃) for high-accuracy experimental refractive indexes for  PMMA14 and  PS15. For the numerical com-

putation of Q(given)
ext (ν̃) we used a standard Mie scattering  code16. Given that Q(given)

ext (ν̃) in this case exactly cor-
responds to the input refractive indexes, and would also correspond to very high-accuracy measurements of 
Q
(given)
ext (ν̃) , we expect that the original refractive indexes that served as input for this numerical determination of 

Q
(given)
ext (ν̃) are reproduced with high accuracy. As shown in Fig. 2, this is indeed the case. Although starting with 

random initial conditions, as described in “Numerical simulations” section, far from the values that correspond 
to the functional behavior of the PMMA and PS refractive indexes, we obtain near perfect reconstructions of the 
refractive indexes of PMMA and PS, as demonstrated by the closeness of the red lines (reconstructions) to the 
blue lines (original PMMA and PS refractive indexes) in Fig. 2. As can be seen visually, the residuals of the recon-
structions are very small. Quantitatively, the coefficients of determination R2 (see “Quality of reconstructions” 
section) are 0.983, 0.979, 0.936, and 0.928 for Fig. 2a–d, respectively. Thus, the results of this section demonstrate 
that given high-quality Q(given)

ext (ν̃) input data, the Lorentz reconstruction method performs almost perfectly. 
Neither a reference spectrum nor numerical Kramers-Kronig transformations were necessary for performing 
the reconstruction algorithm.

Reconstruction from experimental extinction data. In the way of testing the Lorentz method on a 
real-life example, we reconstructed the complex PMMA refractive index from an experimental apparent absorb-
ance  spectrum19, simultaneously performing shift-, tilt-, curvature-, and scaling corrections of the the raw spec-
trum. This was accomplished by adding shift-, tilt-, curvature, and scaling parameters as additional fit param-
eters to the nonlinear optimization algorithm discussed in “Reconstruction of the complex refractive index” 
section. The result is shown in Fig. 3. Starting the Lorentzian reconstruction algorithm once more with random 
initial conditions, we obtained reconstructions (red lines) of the real and imaginary parts of the complex PMMA 
index of refraction in satisfactory agreement with the experimental data (blue lines). This time, the coefficients of 
determination R2 (see “Quality of reconstructions” section) are 0.803 and 0.753 for Fig. 3a,b, respectively. While 
the reconstructions from experimental data are not as good as the reconstructions from numerical Q(given)

ext (ν̃) 
data (which is to be expected, given the presence of experimental systematic and statistical errors that are not 
included in simple spectral shift-, tilt-, curvature-, and scaling deformations).

Figure 3 still confirms that the Lorentz reconstruction algorithm also works for experimental raw spectra 
that are neither scatter corrected, nor corrected for experimental systematic and random errors. Apparently, 
as shown in Fig. 3, the algorithm can handle both scatter corrections and experimental errors simultaneously 
without the need of a reference spectrum or a numerical Kramers–Kronig transformation. Additional wiggles in 

(7)
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RPMMA,PS,r,i
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the reconstructions (red curves), not present in the experimental refractive-index data (blue lines) may be due 
to spurious oscillations induced by experimental errors in the experimental Q(given)

ext (ν̃) data that served as input 
for the reconstructions. Similar arguments may apply to peaks in the experimental refractive-index data (blue 
lines) that are not captured by the reconstructions (red lines). In this case, it is possible that 18 Lorentzians may 
not be enough for more faithful reconstructions.

Layered sphere: space‑resolved refractive index. In “Reconstruction from numerical extinction 
data” and “Reconstruction from experimental extinction data” sections we focused on exploring the power of 
the Lorentzian method in the well-defined case of homogeneous spheres. We now ask the question whether 
the Lorentzian algorithm is powerful enough to obtain the space-resolved complex refractive index, i.e., space-
resolved chemistry, via the imaginary part of the complex refractive index (absorption). To answer this question, 
we focus on a stratified sphere with two layers. The outer radius of the sphere is 10µ m; the inner radius, i.e., 
the core radius, is 8µ m. We fill the core of the layered sphere with PMMA, the shell with PS, and computed 
Q
(given)
ext (ν̃) using a standard MATLAB code for stratified  spheres22.

For the refractive indexes in the core and the shell we used experimental  data14,15. Constructing Q(given)
ext (ν̃) 

on the basis of this input, we obtained the reconstructions of the complex indexes of refraction in the core and 
in the shell as shown in Fig. 4. We see that, not only does the Lorentzian algorithm, based only on the extinction 
efficiency Q(given)

ext (ν̃) , correctly identify the two substances and their spatial locations (PMMA in the core and 
PS in the shell), the reconstructions themselves (red lines) are close to their actual values (blue lines), although, 
in certain wavenumber regions, we also see relatively large deviations. These deviations, however, are not large 
enough to prevent us from obtaining the correct ordering, i.e., space resolving the substances, i.e., PMMA in the 
core and PS in the shell. Quantitatively, the coefficients of determination R2 (see “Quality of reconstructions” 
section) in the layered case are 0.924, 0.943, 0.867, and 0.862 for Fig. 4a–d, respectively. Thus, the R2 values are 
not too far from their values for the high-accuracy case discussed in “Reconstruction from numerical extinction 
data” section. This is encouraging. The more so that, again, we started from completely unbiased, random initial 
conditions. This demonstrates that the Lorentzian algorithm is capable of revealing space-resolved chemistry 
based only on a single-element detector, i.e., only Q(given)

ext (ν̃) as input.
We mention that we also used the Lorentzian method to discover the core radius, assumed unknown. In this 

case we added the core radius as an additional parameter to the Lorentzian method. We found that in this case 
the Lorentzian method is not only able to reconstruct the complex indexes of refraction, but simultaneously 
also determines the core radius. As a result, we find that we can reconstruct the complex refractive indexes, 

Refractive Index Reconstruction From Experimental Qext Data
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Figure 3.  Real-life example of the reconstruction of real and imaginary parts of the complex refractive index 
η(ν̃) of PMMA (red lines) for an experimental PMMA extinction spectrum of a PMMA  sphere19 compared with 
the experimental refractive  index14 of PMMA (blue lines). 18 Lorentzians were used for the reconstructions. 
Although the initial guess of the complex refractive index is random, the reconstructions (red lines) of real and 
imaginary parts of η(ν̃) are close to their experimental values.
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space-dependent, along with determining the core radius, which may represent the size of the nucleus of a 
biological cell.

Discussion
In their natural state, biological cells have a 3D structure, which, combined with the fact that cells and tissues have 
sizes that are of the order of the IR wavelength, leads to large scattering contributions that need to be removed to 
obtain the complex refractive index, which only then can be interpreted as to its chemical information content. 
The new Lorentzian method, compact and powerful, accomplishes just that, and, as demonstrated in “Results” 
section, can even be combined with baseline-shift, tilt-, curvature-, and scaling corrections of raw spectra. The 
method is also suitable for extracting space-resolved chemistry as demonstrated in “Layered sphere: space-
resolved refractive index” section in the case of a layered sphere.

Concerning stability and reliability of the Lorentzian method, we performed several checks. (a) We perturbed 
the simulated Qext(ν̃) spectrum with up to 10% of noise and found that reconstruction was still possible. (b) 
We always started our reconstructions with random inputs for peak widths and peak heights. (c) Apart from 
choosing equidistant peak locations, as described in “Numerical simulations” section, we also experimented with 
random initial conditions for the peak locations and in terms of R2 values found comparably good results. Under 
all these perturbations and variations, we always find convergence to the correct complex refractive index. This 
demonstrates that the method is robust and does not require fine-tuning of input parameters.

With the advent of new IR sources, such as tunable quantum cascade lasers, IR spectroscopy has recently 
received a rejuvenating boost that offers a promising opportunity for the application of the Lorentzian method, as 
it works well with coherent illumination of samples. We mention that in the case of coherent IR sources, optical 
effects, such as interference and scattering are more important and more controlled as compared to thermal IR 
sources or (partially coherent) synchrotron sources. Thus, the Lorentzian method is ideally suited for obtaining 
the complex index of refraction in combination with coherent IR laser sources. We also mention that lasers are 
cheaper and more accessible than synchrotron sources, which makes the Lorentzian method ideally suited for 
laboratory applications.

A final, but important point concerns our choice of anti-symmetrized Lorentzian functions. Lorentzians are, 
in fact, not the only possible choice of basis functions for performing the reconstructions. Any complete set of 
functions may be chosen as long as they automatically satisfy the Kramers–Kronig relations. An example of an 
alternative basis set of anti-symmetrized basis functions is, e.g., the set of anti-symmetrized Gaussian  functions17.

Conclusion
In this paper we presented a new reconstruction algorithm that is capable of extracting space- and wavenumber-
resolved complex refractive indexes from the extinction efficiency Q(given)

ext (ν̃) of strongly scattering biological 
and inanimate samples. We illustrated the capabilities of the algorithm with the help of three examples, i.e., two 
model spheres that are homogeneously filled with PMMA and PS, an experimentally measured (real-life) PMMA 

Layered Sphere: Space-Resolved Refractive-Index Reconstruction
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reconstructions and 22 Lorentzians were used for the PS reconstructions.
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sphere, and a layered sphere with PMMA in its core and PS in its shell. In all cases satisfactory reconstructions of 
the complex refractive index were obtained. The most appealing feature of this new algorithm is that it requires 
neither a reference spectrum nor a numerical Kramers–Kronig transformation. Due to its clear formulation, its 
straightforward implementation, and its convenient features, we are convinced that this method may find practi-
cal applications in biophysics, medical diagnostics, medical pathology, and single-cell spectroscopy.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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