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Machine learning models 
development for shear strength 
prediction of reinforced concrete 
beam: a comparative study
Zaher Mundher Yaseen 

Fiber reinforced polymer (FPR) bars have been widely used as a substitutional material of steel 
reinforcement in reinforced concrete elements in corrosion areas. Shear resistance of FRP reinforced 
concrete element can be affected by concrete properties and transverse FRP stirrups. Hence, 
studying the shear strength (Vs) mechanism is one of the highly essential for pre-design procedure 
for reinforced concrete elements. This research examines the ability of three machine learning (ML) 
models called M5-Tree (M5), extreme learning machine (ELM), and random forest (RF) in predicting 
Vs of 112 shear tests of FRP reinforced concrete beam with transverse reinforcement. For generating 
the prediction matrix of the developed ML models, statistical correlation analysis was conducted to 
generate the suitable inputs models for Vs prediction. Statistical evaluation and graphical approaches 
were used to evaluate the efficiency of the proposed models. The results revealed that all the proposed 
models performed in general well for all the input combinations. However, ELM-M1 and M5-Tree-M5 
models exhibited less accuracy performance in comparison with the other developed models. The 
study showed that the best prediction performance was revealed by M5 tree model using nine input 
parameters, with coefficient of determination (R2) and root mean square error (RMSE) equal to 0.9313 
and 35.5083 KN, respectively. The comparison results also indicated that ELM and RF were performed 
significant results with a less slight performance than M5 model. The study outcome contributes to 
basic knowledge of investigating the impact of stirrups on Vs of FRP reinforced concrete beam with the 
potential of applying different computer aid models.

Fiber reinforced polymer (FPR) composites have been increasingly used in reinforcing concrete beams for flex-
ural or shear strengthening1,2. These composites were used as a substitute of steel bars for reinforcing concrete 
structures in corrosive environment. In these circumstances, applying of FRP stirrups has more advantage than 
using longitudinal rebar because they are located as an outside bar with regard to flexural reinforcement3. FRP 
materials have been applied to prevent to the corrosion problem which is considered a serious issue in civil 
engineering structures4,5. FRP bars characterized by its ability to resist corrosion, light weight, high strength 
and good fatigue endurance6. However, they have some drawbacks such as low modulus of elasticity and linear 
elastic performance leads to failure, which indicated lower elastic behavior compared with steel reinforcement.

Shear strength (Vs) of reinforced concrete beam is a result of several mechanisms like shear resistance of 
uncracked concrete, friction forces due to aggregate interlock, residual tensile resistance between inclined cracks 
and the Vs providing by dowel action and transverse bars7,8. Dowel action uses longitudinal bars to transfer 
the shear forces9. Aggregate interlock and cracked surfaces transfer shear friction of concrete. shear friction of 
concrete is influenced by the size of aggregate, crack size and the concrete strength10. High shear friction can be 
attained by increasing the size of crack and aggregate10. The depth of compression area and concrete strength 
also affected the Vs. Vs decreases in concrete members has low concrete strength and shallow uncracked concrete 
area10. Residual tensile strength is a significant factor contributed to the shear forces in concrete members with 
small crack width11.

In FRP reinforced concrete, the mechanism is different. The mechanical characteristics of FRP bars affect 
the shear resistance result of traditional steel reinforcement beam. the contribution of compressed concrete to 
FRP reinforced concrete beam is different from traditional reinforced concrete beam12. The major difference 
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is the neutral axis of FRP bar is lower than steel before reaching the yield point. FRP bar does not reach yield 
point which makes the compression area does not decrease while increasing the load up to rupture. Using of 
FRP bars in reinforced concrete beam leads to low shear stiffness, increase crack width, decrease friction forces 
and reduce the residual tension between inclined cracks. The experimental study by13, concluded that the Vs of 
longitudinal reinforcement of FRP bars is lower than steel reinforcement when using in concrete structure. The 
study by12, indicated that the influence of longitudinal bars on Vs can be neglected because it is lower than the 
influence of other mechanism.

The influence of transverse FRP bars determines by the value of stresses gained by the reinforcement. The 
value of stresses of FRP stirrups should be assessed because they do no reach yield point and they have linear 
elastic behavior up to rupture14. The early failure of FRP stirrups is happened when they are intercepting with 
the shear crack in the bent portion because this area is characterized by concentrated stress and the tensile 
strength of the bent bar is lower than the straight reinforcement15,16. After that, the stresses of the failed stir-
rups are moved to the other stirrups across the critical cracks leading to advanced failure of them. Hence, most 
design codes of FRP reinforcement determines the permitted value of strain in FRP stirrups at maximum point. 
According to this fact, the mechanism of Vs in the longitudinal and transverse FRP bars is the same as that in 
the traditional steel stirrups reinforced concrete beam. However, the Vs of concrete structure with FRP bars is 
less than that of structures using steel reinforcement stirrups due to low modulus of elasticity and developing of 
bigger and wider cracks leading to low shear resistance forces in structure components17. Several design codes and 
guidelines have developed shear design equations of FRP reinforced concrete beam including ACI-440.1R-0618, 
CNR-DT200/200319, CSA S6-09 addendum20, CSA-S806-1221, JSCE22, ISIS-M03-0123. In these guidelines, the 
Vs of reinforced concrete members is calculated based on the influence of concrete and transverse FRP bars.

Vs mechanism is considered a complex process due to contribution of multiple parameters such as concrete 
and beam dimension parameters24. For predesign purposes, engineers are very much interested in determin-
ing the physical properties of FRP reinforced concrete beam. Over the past 2 decades, development of reliable 
model for Vs prediction is always an ambition for structural scholars25–27. Several studies have been conducted 
to propose empirical equations for Vs in concrete structures. Fico et al.12 reviewed the design guidelines and 
assess the current equations of shear prediction in FRP reinforcing member with and without stirrups. The study 
concluded that the minimum value of Vs was gained by19, with a coefficient of variation (COV) equal to 32% 
while JSCE22 was showed conservative results.

It is highly essential to exhibit some related researches to empirical formulations and codes design. Machial 
et al.28 compared the capacity of several models and guidelines such as CSA S6-09 addendum20, ISIS-M03-0123, 
the modified compression field theory29 and other models by using 46 samples with stirrups. The study showed 
that the best results have been gained by ISIS-M03-0123 with COV equal to 20.5%. The authors also concluded 
that ISIS-M03-0123 has produced unreliable outputs in calculating contribution of Vs while the best balance of 
accuracy and efficiency has attained by CSA S6-09 addendum20. Razaqpur and Spadea30 compared the predic-
tive performance of the developed method for FRP shear prediction including CSA standard S806-1221, JSCE22, 
ACI-440.1R-0618, CNR-DT200/200319, Hoult et al.29 by using 119 samples test. The results revealed that CSA 
standard S806-12 has attained the predictive accuracy with shear prediction value equal to 1.15 and COV of 20%. 
Marí et al.31 presented a conceptual predictive model for Vs prediction utilizing 1131 tests results of reinforced 
concrete beam with and without stirrups. The authors indicated that the presented model has obtained a good 
prediction performance through the value of COV. These empirical methods have showed some limitations such 
as they have different formulas, and they are always changing which lead to different results. Also, the developed 
methods have not the ability to apply to every shear test prediction. Therefore, there is always an enthusiasm to 
present a robust and reliable method for Vs prediction among concrete researchers.

In the recent years with the rapid development of soft computing algorithms, ML models have been effectively 
explored by concrete researchers32–37. However, the development of Vs prediction using ML models still need 
further exploration because the majority of studies have been focused on the contribution of concrete Vs with-
out considering the influence of stirrups. Numerous studies have been conducted ML models on the concrete 
and structural engineering issues38–40. Jumaa and Yousif41 used three AI models called artificial neural network 
(ANN), gene expression programming (GEP) and nonlinear regression to predict shear capacity of FRP rein-
forced concrete elements. The study showed that the developed models exhibited an excellent performance as 
compared with other models Development of generalized regression neural network (GRNN) was conducted 
to predict shear capacity of FRP reinforced concrete members without stirrups42. The developed model was 
compared with the design codes like ACI 440.1R, CSA S806 and JSCE. The results proved that GRNN had 
more accurate results that existing design codes. Chou et al.43 integrated a smart firefly algorithm (SFA) with 
least squares support vector regression (LSSVR) to predict Vs using different types of reinforced concrete beam 
including dataset with and without stirrups and with FRP reinforcement. Based on the comparison assessment 
with different ML models and empirical formulations, the developed model showed an outperformance accu-
racy than the others in Vs prediction. Abuodeh et al.44 employed a resilient back propagation neural network 
(RBPNN) and recursive feature selection elimination (RFE) to predict shear capacity of reinforced concrete 
beam strengthened with FRP laminates. The study revealed that the presented model attained accurate results 
than that using RBPNN with feature selector algorithm.

Alam et al.45 investigated the capacity of shear capacity prediction of FRP reinforced concrete members 
without stirrups by hybridize support vector regression (SVR) and Bayesian optimization algorithm (BOA). 
The results revealed that the developed model has more robustness than the classical SVR model and empiri-
cal equations. Nikoo et al.46 integrated bat algorithm with ANN to estimate shear behavior of FRB reinforced 
concrete elements. Based on the statistical assessment and comparison with other optimization algorithms, the 
study confirmed that the integrated model attained more accurate results than particle swarm optimization 
(PSO) and genetic algorithm (GA). Ebid and Deifalla47 used genetic programming (GP) to predict the capacity 
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of FRP reinforced concrete beam with and no stirrups. The results revealed that utilized method gained more 
accurate results as comparing with that used in literatures. Alam et al.48 presented a hybrid ML called ANN-BOA 
for Vs prediction of reinforced concrete elements with FRP reinforcement without stirrups. The study indicated 
that the presented model showed better results than traditional ANN and empirical equations. Nguyen and 
Nguyen49 estimated Vs of FRP reinforced concrete beams without stirrups by training ANN model with four 
algorithm named Levenberg–Marquardt (ANN-LM), Quasi-Newton (ANN-QN), Conjugate gradient (ANN-
CG) and Gradient Descent (ANN-GD). The outcomes of statistical measurement showed revealed the reliability 
and efficiency of ANN model in Vs prediction. Other studies presented tree base models of Vs prediction like 
random forest50,51, XGBoost52,53 and M5 model54.

Based on the motivation of integration of using the influence of transverse reinforcement in shear reinforce-
ment models and soft computing methods, this work aims to develop advance ML models to simulate Vs capacity 
of FRP reinforced concrete beam using longitudinal and transverse stirrups. Three ML models were proposed 
in this paper including M5tree, random forest (RF) and extreme learning machine (ELM) to estimate the shear 
behavior based on collected dataset form previews literature studies. Different inputs were build based on sta-
tistical correlation and Their impact was explored by using the developed models. The first contribution of this 
study is quantifying the Vs of FRP reinforced concrete beam with transverse reinforcement, which has explored in 
limited studies. Secondly, advance ML models with different input combinations were developed to imitate shear 
behavior of reinforced concrete beam. Finally, this study provides the structural engineers with a reliable model 
have the ability to solve complex problems and predict shear behavior with an accurate predictive performance.

Dataset description
To propose ML model, 112 samples of FRP reinforce concrete beams with FRP transverse reinforcement that 
failed in shear behavior have been collected from different previous studies13,55–68. The dataset include beam 
width (b), effective depth (d), concrete compressive strength ( f ′ c ), reinforcement ratio ( ρ ), modulus of elastic-
ity for longitudinal reinforcement ( Er ), reinforcement ratio of transverse stirrups ( ρt ), modulus of elasticity for 
transverse stirrups ( Et ), tensile strength of transverse stirrups ( fu.t ), ratio between shear span and effective depth 
(a/d) and shear strength of FRP reinforced beam (Vs). The statistical properties showed that the maximum and 
minimum value of Vtest are 20.5 and 590, respectively. They also indicated that f ′ c and b indicated high kurtosis 
with values more than 3. The statistical properties of the dataset are presented in Table 1.

Methods overview
Extreme learning machine (ELM).  Extreme learning machine (ELM) is a new advance machine learning 
algorithm has been developed recently by Huang et al.69. The aim of proposing ELM is to enhance the perfor-
mance of traditional single layer feed forward neural network. The significant step of ELM processing in the 
initialization of random hidden neuron and using Moore–Penrose generalized inverse method to determine 
the output weights of algorithm70,71. The learning algorithm during training phase of traditional neural net-
work tunes the network parameters in iterative manner. In ELM method the process is different, the algorithm 
assumes the weight of hidden neurons randomly and the output weight is calculating using the least square 
method72. According to this, the weights of hidden neuron are remaining the same and the iterative loop is not 
needed. The hidden neurons of ELM algorithm create a random feature map to perform a nonlinear network 
between input parameters73. In random feature map, input parameters are separating linearly using the nonlin-
ear network and this mechanism simplifies the training process of ELM. ELM characterized by its quickly learn-
ing phase and excellent generalized results74. ELM network combines from three layers including input, hidden 
and output layer. The paradigm of ELM algorithm is illustrated in Fig. 1.

A conventional feed forward neural network with L hidden neuron and g(x) activation function can be stated 
as below:

Table 1.   Statistical characteristics of collected samples.

b (mm) d (mm) f
′

c (MPa) ρ (%) Er (GPa) ρt (%) Et (GPa) fu.t (MPa) a/d  Vs (KN)

Mean 218.616 297.1696 36.5732 1.5421 73.6785 0.5214 73.2767 1056.0714 2.5937 162.6821

Standard error 6.5306 11.7986 1.06094451 0.0695 3.03908 0.0427 3.2106 34.8590 0.0709 9.4593

median 200 253 34.95 1.61 58 0.35 59 1100 2.5 130

Mode 250 253 39.4 1.89 56 0.12 94 1284 1.8 83

Standard deviation 69.1139 124.8648 11.2279 0.7357 32.1626 0.4527 33.9788 368.9137 0.7513 100.1082

Sample variance 4776.7431 15,591.2412 126.0675 0.5413 1034.4362 0.2049 1154.5623 136,097.3462 0.5645 10,021.6571

Range 307 767 64.2 3.14 111 1.46 114 1718 3.1 569.5

Minimum 150 170 20 0.51 29 0.04 30 322 1.2 20.5

Maximum 457 937 84.2 3.65 140 1.5 144 2040 4.3 590

Sum 24,485 33,283 4096.2 172.72 8252 58.4 8207 118,280 290.5 18,220.4

Count 112 112 112 112 112 112 112 112 112 112
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βi represents the weight vector and N is the number of training data. The output weight of hidden layer can 
be defined by a symbol H and the above formula can be reconstructed as follow:

The first step of ELM construction is assuming input bias bi and hidden weights wi . Secondly calculating H 
and finally determining the output matrix as below:

H† represents the inverse of H and refers to Moore–Penrose generalized inverse method in ELM model. T 
presents the outcome of the learning process of the regression formula. The ELM model training functions were; 
nhid was 1000, actfun was purelin, init_weights was uniform_negative, bias and verbose was set as true. Dataset 
was treated as matrix.

Random forest (RF).  Random forest (RF) is a tree based model has been introduced by75,76 as an improve-
ment of bagging tree method. RF is an ensemble tree method that builds a number of decision tree based on 
bootstrap sampling method performed through training phase. Single decision tree contains three components 
including the internal node, branch and the leaf node. Internal node denotes to an assessment of prediction 
problem. The output of this assessment is presented by the branch node, where the leaf node represents the class 
label of regression. In branch node, the mean of data points and mean squared error between these data were 
computed. This process is continuing until the mean squared error of regression tree reached the optimal value, 
then decision tree stops the growing process.

The construction process of RF model including the following steps: at first the training data set divided 
into two parts of data. The first part equal to two third of training sample and the second named the bootstrap 
sample which is equal to one third of original data set. The second step including modelling of RF algorithm by 
constructing a regression tree for each bootstrap sample created during training process. According to this step, 
a number of regression trees were generated, and the optimal attributes were selected based on random selection 
of max depth attributes for each branch node. after numbers of training cycles, the sequence of the developed 
regression tree is reached, which is considered in developing process of RF model. The final step of RF modelling 
is collecting the prediction results of decision tree and using the average formula to calculate the outcome of the 
new predictor. The mathematical expression of RF model is shown below:

where f̂ Nrf (x) represents the incorporated regression tree, N the number of regression algorithm and ti(x) is the 
individual regression tree algorithm. The graphical presentation of RF method is depicted in Fig. 2. For the RF 
model development, trainControl function for cv method was determined as 5; expand.grid function for mtry 
was set between 1 to 20.

M5 tree model.  M5 tree algorithm was developed by Quinlan77 to enhance the predictive performance of 
classical regression tree. The algorithm divides the training data set into subsets and develops a multiple linear 
regression model for each set of data. The main merit of M5 algorithm is handling complex and high dimension 
data with small size as compared with classical regression tree78,79. It has the same structure of regression tree 
and its construction based on dividing the samples at training process. The major difference from traditional 
algorithm is using of linear function at leave node as an alternative of discrete class label. Using of linear function 
in M5 algorithm instead of discrete label enables the model to handle continues numerical values and general-

(1)fL
(
xj
)
=

L∑

i=1

βi .g(wi .xi + bi) j = 1, 2, . . . .,N

(2)Hβ = T

(3)β̃ = H†T

(4)f̂ Nrf (x) =
1

N

N∑

N=1

ti(x)

Figure 1.   Structure view of ELM algorithm.
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izes its application in regression problem. Another difference is the selection process of attributes values; the 
algorithm selects the attribute value that reduce the variability between classes instead of using information met-
ric. The variation between values at each node is computing by measuring the standard deviation of attributes 
and calculating the reduced error that results from examining attribute values at the same node. The attribute 
is selected by algorithm if he attained the less error and this process is continued until the variation between 
values at each node reaches the minimum point80,81. Standard error reduction (SDR) between attributes can be 
calculated using the mathematical formula as below:

where sd mean the standard deviation, T is the set of attribute at each node and Ti represents the output of that 
attribute. The output model for the subset division can be expressed by O = a0 + a1x1 + a2x2 + · · · , where a 
represents the coefficient of linear function, x is the input parameter and O is the output value. The schematic 
structure of M5 tree model is presented in Fig. 3, which illustrated the process of division into subsets and devel-
opment of linear regression model for input parameters. The M5 model was trained using trControl method for 
none; expand.grid function for pruned was set No, smoothed was set Yes, rules were set No, preProc was set for 
both center and scale. The dataset was treated as vector values.

Modelling process and statistical assessment.  The ability of ML models in predicting Vs behavior of 
FRP reinforced concrete beam with stirrups is examined by developing three algorithms named ELM, RF and 
M5. The algorithms constructed based on several parameter combinations by computed the correlation relation-
ship between input and target parameter. Correlation values and input construction are reported in Tables 2 and 
3.

Based on the reported correlation values and parameter combinations, it can be noted that the first model 
includes the beam width (b) which has a good correlation with Vs. The second input combinations include beam 
width (b) and reinforcement ratio of transverse stirrups ( ρt ) as they have the highest correlation value with Vs. 
Effective depth (d) was the third correlated parameters which added to the third model in addition to b and ρt 
parameters. Parameters a/d, fu.t and Er have a negative correlation with Vs. The least correlation was attained 
by the parameters Et and f ′ c where they included in model eight and nine. Several performance evaluators 
including coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean 
absolute percentage error (MAPE), Nash–Sutcliffe efficiency (Nash) and agreement index (MD) were conducted 
to validate the performance of ML models82,83.

(5)SDR = sd(T)−
|Ti|

|T|
sd(Ti)

(6)R2 =


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i=1
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��N
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Figure 2.   Graphical structure of RF model.
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(8)MAE =

∑N
i=1
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∣∣
N

(9)MAPE =
1

n
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i=1
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∣∣
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Figure 3.   Schematic structure of M5 tree model.
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where Vso and Vsp represents the observed and predicted parameters of shear strength; Vso , Vsp are the average 
amount of the observed and predicted parameters of shear strength; N is the number of simulated samples.

Application results and discussion
Statistical evaluation.  In the current work three ML models were applied to simulate Vs of FRP reinforced 
concrete with transverse reinforcement. Combinations of different input parameters were adopted to explore 
the ability of the developed models in Vs prediction. Tables 4 and 5 stated the statistical validation for training 
and testing data, respectively. The tabulated results indicated that M5 and RF models demonstrated a superior 
prediction performance with few predictors over the training phase with coefficient of determination equal to 
0.70635 and 0.72679 for M5 and RF models, respectively. ELM model has achieved less prediction accuracy 
with few input parameters in comparison with the other models over training phase with coefficient of deter-
mination equal to 0.45874 using one input parameter. The best statistical performance for training data was 
attained using RF model with R2 = 0.96093, RMSE = 16.1986, MAE = 11.5136, MAPE = 0.07407, Nash = 0.95751 
and MD = 0.91196. RF and M5 models exhibited an excellent prediction accuracy with one and two parameters 
over testing phase while ELM achieved less statistical performance using one predictor and its accuracy was 
enhanced by using more predictors. Among all models, M5 model gained the best predication accuracy with 
R2 = 0.9313, RMSE = 35.5083, MAE = 30.9291, MAPE = 0.51409, Nash = 0.89363 and MD = 0.83623.

Graphical evaluation.  Performance accuracy of the three ML models was also examined graphically by 
developing scatter plot, Taylor diagram and box plot. Figures 4, 5 and 6 demonstrated the scatter plot drawing for 
the applied models over testing phase which verified the linear relationship between the observed and predicted 
value of the Vs. It can be recognized that M5 model presented an excellent fit with coefficient of determination 
more than 0.87 for all parameter combinations except M5 combination where statistical correlation reduces to 
0.6484. ELM model showed a good predictability of Vs behavior over testing phase for all input combinations 
with R2 maxed out 0.85 except M1 combination where R2 has poor value and equal to 0.5388. RF model exhib-

(10)NSE = 1−

∑N
i=1

(
Vsp − Vso

)2
∑N

i=1

(
Vso − Vso

)2

(11)MD = 1−

∑N
i=1

(
Vso − Vsp

)j
∑N

i=1

(∣∣Vsp − Vso

∣∣+
∣∣Vso − Vso

∣∣)j

Table 2.   correlation values between predictors and FRP reinforced concrete Vs.

Parameters Vtest

b (mm) 0.76062

d (mm) 0.48338

f
′

c (MPa) 0.02290

ρ % 0.37630

Er (GPa) − 0.18682

ρt (%) 0.59767

Et (GPa) 0.06225

fu.t (MPa) − 0.25977

a/d − 0.47397

Table 3.   Parameter combinations for the developed ML models.

Models Parameter combinations

M1 Vtest = b

M2 Vtest = b, ρt

M3 Vtest = b, ρt , d

M4 Vtest = b, ρt , d, a/d

M5 Vtest = b, ρt , d, a/d, ρ

M6 Vtest = b, ρt , d, a/d, ρ, fu.t

M7 Vtest = b, ρt , d, a/d, ρ, fu.t ,Er

M8 Vtest = b, ρt , a/d, ρ, fu.t ,Er ,Et

M9 Vtest = b, ρt , a/d, ρ, fu.t ,Er ,Et , f
′

c
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ited an excellent performance in Vs prediction when applied for both few and all predictor combinations. All 
statistical correlation values for RF model were ranged from 0.8667 to 0.9173 which revealed a good fit for Vs 
prediction.

Taylor diagram is constructed as a graphical representation to show the position of the developed algorithms 
with respect to the actual value based on three metrics including standard deviation, statistical correlation and 
RMSE84. Figure 7 depicts the Taylor representation of the three ML algorithms with all input combinations for 
testing phase. It can be noticed that the nearest distance to the actual value is obtained by using M5 model with 
nine parameters input parameters. The distance of the rest input combinations also attained high performance 
with regard to their distance to the actual point except M5 combination which has gained the less values of sta-
tistical correlation and standard deviation than the other combinations. Taylor graph for ELM model showed 
that applying eight input parameters proved the nearest performance to the actual value while the furthest point 
has gained by applying one input parameter. For RF model, all input combinations revealed good position to 
the actual Vs and the maximum values of correlation and standard deviation were achieved by applying four 
input parameters.

Box plot presentation also generated in Fig. 8 to depict the relative error between observed and presented 
ML models for testing phase. M9 combination showed the less residual error than the other combinations of 
M5 models the negative outliers appeared in four input combinations including M4, M5, M6 and M8. For ELM 
model, the minimum error is gained by M7, M8 and M9 without negative outliers. The maximum error is dem-
onstrated by ELM-M1 while ELM-M2 gained less error than M1, even though it has negative error outlier point. 
RF model combinations show that the least maximum error was achieved by M4, M5, M8 and M9 models while 
the fewest minimum error appeared in M4, M5 and M6 with error value less than 20%. Amon all RF constructed 
models, M4 and M8 combinations showed a reliable predictive performance with the least range value between 
first and third quartile and fewest maximum residual errors.

Validation against the previous studies.  To confirm the ability of constructed ML models in Vs predic-
tion of FRP reinforced concrete, it is important to validate the presented models with the previously developed 
models over past studies. Nehdi et al.85 used genetic algorithm (GA) to propose Vs equations of FRP reinforced 

Table 4.   Statistical performance validation for training phase.

R2 RMSE MAE MAPE Nash MD

M5 model

M1 0.70635 46.5984 34.9096 0.26724 0.64838 0.6911

M2 0.7256 42.4761 32.9962 0.24113 0.70784 0.72222

M3 0.7544 39.6637 30.2293 0.21074 0.74525 0.75286

M4 0.80566 36.8915 27.5701 0.1916 0.77962 0.77026

M5 0.60868 55.2009 40.4591 0.25133 0.50658 0.61218

M6 0.8579 35.1328 26.3841 0.18697 0.80013 0.76983

M7 0.83087 37.3329 28.9575 0.21361 0.77431 0.74057

M8 0.82071 36.4512 27.6423 0.20512 0.78484 0.75931

M9 0.85785 33.3423 23.7891 0.17283 0.81998 0.79661

ELM model

M1 0.45874 57.8147 43.2083 0.33506 0.45874 0.59854

M2 0.67977 44.4701 32.8803 0.22901 0.67977 0.73491

M3 0.68227 44.2962 33.0725 0.22914 0.68227 0.73231

M4 0.70819 42.4507 31.6697 0.21577 0.70819 0.74884

M5 0.74325 39.819 29.7108 0.21078 0.74325 0.76874

M6 0.74409 39.7538 29.7233 0.21057 0.74409 0.7688

M7 0.81169 34.101 26.3768 0.17699 0.81169 0.79586

M8 0.82235 33.1223 25.9927 0.1772 0.82235 0.79922

M9 0.85318 30.1113 22.6016 0.15456 0.85318 0.82798

RF model

M1 0.72679 41.0759 31.9846 0.23532 0.72679 0.75449

M2 0.8381 31.9949 24.0258 0.1675 0.83424 0.813

M3 0.83394 32.4423 24.1769 0.16896 0.82957 0.81232

M4 0.90586 24.7125 18.8525 0.13166 0.90111 0.85439

M5 0.9298 21.0954 15.6778 0.09606 0.92794 0.88005

M6 0.9371 20.074 15.0502 0.09372 0.93475 0.88469

M7 0.93513 20.2367 14.8808 0.0889 0.93369 0.8867

M8 0.93635 20.3188 15.1434 0.09305 0.93315 0.8839

M9 0.96093 16.1986 11.5136 0.07407 0.95751 0.91196
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concrete beams using dataset with and without shear reinforcement. The results showed that the proposed model 
was an effective method in Vs prediction with R2 equal to 0.799. Oller et al.86 presented a mathematical equation 
for Vs prediction of FRP reinforced concrete beam with transverse reinforcement. The model applied using 112 
samples and the Vs indicated good prediction performance with R2 = 0.862. Chou et al.87 used the hybrid model 
(i.e., SFA-LSSVR) for shear prediction using 209 samples of reinforced concrete beam with FRP reinforcement. 
The study showed that the presented model has reliable predictability with statistical correlation equal to 0.979. 
Recently, Alam et al.45 developed a hybrid model named BOA-SVR to predict the capacity of FRP reinforced 
concrete elements in Vs prediction. The model is tested based on 216 samples of FRP reinforced concrete with no 
transverse reinforcement and the results revealed that the developed models have high reliability in Vs prediction 
with R2 = 0.955. In the current study three advance ML methods including M5, ELM and RF model were tested 
in prediction process of shear capacity of 112 tests results of FRP reinforced concrete beam with transverse stir-
rups. None of the reported studies tested the impact of using different input parameter combinations in shear 
design modelling whereas in the current work a correlation statistic was used to construct nine combinations of 
input parameters and incorporated them with ML models in Vs prediction. All the developed models performed 
well in Vs prediction from one input to nine input parameters and the best prediction accuracy was exhibited by 
M5 model with nine input parameters.

Discussion.  Application of ML models in complex process such as Vs is highly needed to accurately simulate 
the nonlinear relationships between input and output parameters. The comparison analysis of the developed 
models revealed the reliability of the proposed methods because all algorithms achieved an excellent prediction 
performance except ELM-M1 and M5-M5 models which achieved R2 less than 0.70. Application of correlation 
methods in inputs construction showed that the beam width and reinforcing ratio of the transverse reinforce-
ment are the most correlated parameters with Vs which revealed the importance of beam dimensions and stir-
rups in preparing shear design equation. M5 model showed a significant prediction accuracy when using few 
input parameters where RMSE equal to 57.4213 and 66.1925 for M5-M1 and M5-M2 respectively as shown in 
Table 5. Only M5-M5 model revealed poor reliability in shear estimation which has gained R2 = 0.6484 and high 
maximum residual error as depicted in Figs. 4 and 8. For ELM model, the least RMSE is attained by ELM-M8 

Table 5.   Statistical performance validation for testing phase.

R2 RMSE MAE MAPE Nash MD

M5 model

M1 0.87278 66.1925 58.4487 0.96696 0.63037 0.60884

M2 0.91138 57.4213 49.4181 0.96678 0.72184 0.69222

M3 0.90497 49.1965 43.2752 0.75717 0.79582 0.74345

M4 0.89804 46.7961 40.5897 0.51375 0.81526 0.75979

M5 0.64839 74.5231 63.2068 0.64038 0.53148 0.57852

M6 0.90307 45.0921 38.8302 0.58847 0.82847 0.77286

M7 0.91821 43.7888 39.1611 0.60512 0.83824 0.77152

M8 0.92017 39.8316 35.7796 0.58265 0.86615 0.80028

M9 0.9313 35.5083 30.9291 0.51409 0.89363 0.83623

ELM model

M1 0.53875 76.5175 68.3818 0.90183 0.50606 0.53768

M2 0.87964 48.9455 43.9115 0.75206 0.7979 0.74537

M3 0.85948 49.0335 43.8525 0.71248 0.79717 0.74762

M4 0.8875 37.7118 29.4719 0.30186 0.88002 0.84523

M5 0.8926 36.1731 28.3248 0.2276 0.88961 0.85102

M6 0.89374 36.0325 27.7879 0.20975 0.89047 0.85383

M7 0.92212 34.4591 28.998 0.44497 0.89983 0.86144

M8 0.92614 33.832 27.9347 0.44842 0.90344 0.8695

M9 0.91524 42.5785 35.0837 0.69063 0.84706 0.84142

RF model

M1 0.87907 54.2559 46.7718 0.78878 0.75166 0.71589

M2 0.90838 55.615 46.9295 0.90997 0.73906 0.70955

M3 0.90494 52.6812 43.8714 0.82987 0.76587 0.73418

M4 0.91726 42.7 36.3169 0.68527 0.84618 0.79463

M5 0.87551 47.025 40.2248 0.77561 0.81344 0.77431

M6 0.86674 48.2566 41.7767 0.77975 0.80354 0.75862

M7 0.8831 44.9501 39.349 0.70681 0.82954 0.77594

M8 0.90375 47.135 39.3565 0.74043 0.81257 0.76814

M9 0.89683 45.5893 39.4276 0.7795 0.82466 0.7801
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and ELM-M7 with values equal to 33.832 and 34.4591 respectively as indicated in Table 5. Based on Taylor graph 
and box plot (see Figs. 7, 8), ELM-M1 showed the worst prediction accuracy with high negative error and the 
furthest position to the actual Vs which revealed the inability of ELM model to understand Vs behavior with only 
one input parameter. ELM requires more parameters to increase its performance for example ELM-M8 showed 
the nearest value to the observed value with high correlation and standard deviation as revealed in Fig. 7. With 
respect to RF model, the minimum RMSE is attained by using four input parameters with value equal to 42.7 
(see Table 5). Both Taylor and box blot (see Figs. 7, 8) showed that RF model revealed a reliable predictability for 
all input combinations, even though it produced negative error outliers in all models. The performance analysis 
showed that the best coefficient of determination was gained by RF-M4 followed by RF-M2 as depicted by Fig. 6. 
Considering the performance results of the applied ML models, all models exhibited excellent results when 
input parameters were increased in modelling process. In the case of few input parameters, M5 and RF models 
perform better than ELM especially when they applied to one input parameter. The comparison analysis suggests 
that tree based model gained excellent results in capturing nonlinear relationship of Vs based on limited input 
parameters. The study revealed the ability of the proposed models in simulating the complex problem of shear 
behavior with a reliable and valid prediction. for future work, advance feature selection methods such as GA and 
extreme gradient boosting (XGBoost) can be introduced to capture nonlinear relationship between input and 

Figure 4.   Scatter plot presentation of M5 prediction model over the testing modeling phase.
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output parameters. These methods can be integrated with recent ML models such as deep learning algorithm to 
reduce residual error and perform more accurate results54.

Conclusions
Development of a reliable and valid model in estimation shear behavior of concrete beam reinforced by FRP bars 
is an important step in the structural design concept. In the current research three popular ML models named 
M5 tree, ELM and RF model have been applied to estimate the shear capacity of FRP reinforced concrete beam 
with transverse reinforcement. Dataset including 112 shear samples were collected from previous works and a 
statistical correlation was conducted to construct input parameters combinations. Based on correlation value, 
a combination of nine input parameters were generated and used to test Vs of FRP reinforced concrete beam by 
the developed ML models. The presented algorithms were evaluated by using statistical validation and graphical 

Figure 5.   Scatter plot presentation of ELM prediction model over the testing modeling phase.
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methods. The statistical comparison showed that all generated models performed well for all input combinations 
except ELM-M1 and M5-M5 where their results are below the acceptable performance. The graphical evaluation 
revealed that the best results were attained by M5 tree with nine input parameters by scoring the highest coef-
ficient of determination and minimum residual error. Furthermore, ELM and RF models showed their potential 
ability to enhance the predictive performance of shear behavior. All results demonstrated the ability of ML models 
in capturing the complex relationship of Vs in FRP reinforced concrete incorporating the impact of stirrups. For 
future study, GA and XGBoost should be explored to generate significant input selection. Also, deep learning 
model needs to be investigated to enhance the predictability of Vs performance. Finally, uncertainty analysis can 
be done to investigate the variability of the input parameters and the proposed models.

Figure 6.   Scatter plot presentation of RF prediction model over the testing modeling phase.
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Figure 7.   Taylor representation of ML models for testing phase.
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