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The importance of contrast 
features in rat vision
Anna Elisabeth Schnell 1*, Kasper Vinken 2 & Hans Op de Beeck 1

Models of object recognition have mostly focused upon the hierarchical processing of objects from 
local edges up to more complex shape features. An alternative strategy that might be involved in 
pattern recognition centres around coarse-level contrast features. In humans and monkeys, the 
use of such features is most documented in the domain of face perception. Given prior suggestions 
that, generally, rodents might rely upon contrast features for object recognition, we hypothesized 
that they would pick up the typical contrast features relevant for face detection. We trained rats in 
a face-nonface categorization task with stimuli previously used in computer vision and tested for 
generalization with new, unseen stimuli by including manipulations of the presence and strength of 
a range of contrast features previously identified to be relevant for face detection. Although overall 
generalization performance was low, it was significantly modulated by contrast features. A model 
taking into account the summed strength of contrast features predicted the variation in accuracy 
across stimuli. Finally, with deep neural networks, we further investigated and quantified the 
performance and representations of the animals. The findings suggest that rat behaviour in visual 
pattern recognition tasks is partially explained by contrast feature processing.

Pattern vision.  All complex visual tasks such as object recognition and visual navigation start with an 
analysis of the spatial variation of light across the visual field, referred to as pattern vision. Pattern vision may 
seem like a trivial task for many people, but which information is necessary to perform this visual task? Previous 
research on pattern vision has focused mostly upon shape, starting with the analysis of edges, local curvature and 
orientation, and moving further into the processing of more complex shape features1,2. Some important frame-
works in this field include the pure vision framework of Marr3 and the recognition-by-components theory of 
Biederman4. Models of object recognition mostly focus upon this type of processing. However, there is another 
set of processes that might be involved in pattern recognition. Contrasts have been shown to be an important 
element in shape perception, particularly in the context of face detection5,6. Sinha has create a simple compu-
tational model for face detection based on illumination-invariant contrast features. This model encompasses a 
face template that is largely invariant to illumination changes. In this model, a face is detected in an image if 
twelve conditions are met. These conditions (table in Fig. 1) are pairwise ordinal contrast relationships across 
facial regions that investigate the luminance difference across two regions of a face. Each one of these conditions 
tests whether contrast polarity is along the direction predicted from illumination invariance considerations. 
In some cases this model can break, for example if the face is strongly illuminated from below. Figure 1 shows 
the template on which these twelve contrast conditions are based. This contrast feature framework was further 
supported by neurophysiological research in monkeys. Ohayon and colleagues7 investigated whether contrast 
features, i.e., features based on these contrast cues, are a fundamental building block for face selectivity in the 
macaque inferotemporal cortex (IT). They found a contrast polarity preference in the macaque IT, which they 
see as a prediction from the computational face detection model of Sinha5.

Rat vision.  Given the differentiation between two types of pattern vision in humans, in terms of shape versus 
contrast features, we can question which of the two processes is involved when other species like rats perform 
object recognition tasks. This discussion has been lingering in the background in previous studies on rodent 
vision8–12. Some studies have argued in favour of invariant object recognition and shape perception8,9, while 
other studies were interpreted more in terms of mid-level features and templates that might be compatible with 
processing in terms of contrast features10. Compared to primate vision, where contrast features already play a 
significant role, this strategy might be even more prominent in rodents. Due to their low visual acuity, it might be 
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more likely that rats use contrast features rather than shape properties that require high precision vision which 
rats do not have. With low visual acuity, the details contained in high spatial frequency information are lost, 
highlighting the contrast cues contained in the lower frequencies. Also in humans, the use of contrast features 
might become more prominent for the detection of objects in images with very few fine details and thus mainly 
low frequency information13.

Given that contrast feature models have mostly been used to model human and monkey visual responses in 
the domain of faces, and the most directly relevant computational models were also developed in the context of 
face detection, we decided to focus upon that domain and study to which extent contrast features would help 
explain rat vision in a face categorization task. While we have the general hypotheses that rats use contrast fea-
tures in many domains, the exact contrast features will be task dependent. Given that the normal living situation 
of rats does not require the detection of human faces, we assume that the contrast features used in this task will be 
induced by our training procedure. For that reason, our stimulus design will make sure that the contrast features 
that have been shown to be relevant for human and monkey face categorization (see e.g.7) are also informative 
in our training stimulus set.

Previous research has shown that rats are capable of performing a face categorization task14. In this study, rats 
were successfully trained to classify faces from non-face objects and were able to generalize to new exemplars, 
even with modifications to the stimuli. However, we are unsure about the strategies that the animals used in this 
kind of task. In the current study, we investigate whether rats use contrast features to discriminate between faces 
and non-faces. Based on the list of the twelve contrast conditions (Fig. 1), faces and non-faces can have a differ-
ent number of correct contrast features, depending on how many of these twelve conditions are met. Therefore, 
stimuli can be categorized depending on their number of correct features. In this study, rats were trained in a 
face categorization task where the faces (targets) and non-faces (distractors) have different number of correct 
contrast features. We have a total of six conditions hypothesizing the performance of the animals (Table 1). If 
the animals use contrast features in a face categorization task, as supposed by our contrast model, then we would 
expect the animals to perform well in the cases where the number of correct contrast features differ most between 
the target and distractor (see contrast model in Fig. 2).

Figure 1.   Template and twelve conditions of Sinha’s face detection model5. This template (red image on the left) 
is copied from Ohayon et al.7, their Fig. 6A. Based on this template, the twelve contrast conditions in the table 
on the right are created. This table is copied from Ohayon et al.7, their supplementary Fig. 4E.

Table 1.   Our six hypotheses. In the left and middle column of the table, T corresponds to Target and D 
corresponds to Distractor. The middle column represents the difference in contrast features between the target 
and the distractor. Each condition indicates a different number of correct contrast feature for the targets and 
the distractors.

Condition T–D Expected performance

1 12 CF (T) vs. 1 CF (D) 11 Very high

2 12 CF (T) vs. 6 CF (D) 6 High

3 12 CF (T) vs. 12 CF (D) 0 Chance level

4 6 CF (T) vs. 1 CF (D) 5 High

5 6 CF (T) vs. 6 CF (D) 0 Chance level

6 6 CF (T) vs. 12 CF (D) -6 Lower than chance level
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Computational modelling.  If an effect of contrast features is found, then a further question is how we 
incorporate that strategy into the current mainstream computational thinking in vision sciences. Previous 
research has introduced deep convolutional neural networks (DNNs) as hierarchical model for ventral stream 
processing in primates15,16. In a recent study, these models were compared to rodent behavioural and neural 
data17. Vinken and Op de Beeck17 investigated the output of each layer of a neural network to see which layers 
contain stimulus representations that can support the same or better performance as rats in behavioural experi-
ments. This allowed them to make an estimate of the level of vision processing required in rats performing object 
categorization tasks. They used the data of three landmark behavioural object vision studies in rats. Interestingly, 
for all three studies, they found that the earlier layers could reproduce or exceed the performance of rats, sug-
gesting that the level of visual processing required to solve the tasks was a far cry from the level of processing 
thought to support primate object recognition. In a next step, Vinken and Op de Beeck compared neural data 
with the DNN data17. Here, they found that the neural representations in the most lateral brain area, i.e. the 
highest in the visual hierarchy, shows similar representations as for the mid-layers in the DNNs. Vinken and Op 
de Beeck17 thus argue that there is evidence for up to mid-level complexity of object vision in the rodent visual 
system, which is different and less complex than the primate visual system.

In the current study, we performed a similar comparison between our rat behavioural data and deep neural 
networks to further investigate the role of contrast features in rat vision. We expect that the earlier layers of a 
neural network could underlie the importance of contrast features in rat vision.

Results
Face categorization training.  From the learning curves in Fig. 3 it is clear that the animals were able 
to learn this face categorization task. This figure shows the learning curves per training phase of only the first 
round, for the pooled responses per group. At each phase, a new training pair was introduced, ranging from one 
pair in Phase 1 to five pairs in Phase 5. We chose to not include the data of the second round in this Figure, as the 
animals were not naïve at the start of the second round, and thus their performances were higher to begin with. 
We display the data of the two groups separately, because they received the stimuli in reversed order. All perfor-
mances in the first session of the different phases are significantly above chance level for the first group, except 
for the first phase (binomial test on the pooled response of all included animals, p = 0.34, 95% CI [0.47; 0.60]). 
Interestingly, the first group had more difficulties with the fourth phase, as can be seen by the larger number 
of sessions needed for this phase. The second group showed the learning curves as we expected them, and that 
were similar as in14: more sessions for the first two phases, and fewer sessions for the later phases. The second 
group of animals received the training stimuli in reversed order, as to exclude any order effects of the stimuli. We 
compared the training performance of both groups, and found no significant difference between these groups 
(two sample t-test on session performances, t(8) = − 0.47, p = 0.65).

Generalization.  To test the six generalization conditions (see table in Fig. 2), we presented the animals with 
10 new targets and 15 new distractors in two rounds of testing protocols. In all our generalization analyses, we 
combined the data of both rounds as we found no significant difference between the two testing rounds (two 
sample t-t-test on condition performances, t(14) = 1.97, p = 0.07, with slightly lower performances in the second 
round). For each condition, we compared the average performance of all rats on the old versus the new stimuli 
for both rounds together (see Fig. 4). Overall, the average performance on the new stimuli was very low, with an 
overall performance across all six conditions at 50.45%. This generalization performance was not significantly 
higher than chance; p = 0.49, 95% CI [0.49, 0.51]) indicating that, overall, the animals do not generalize to new 
faces when performance is averaged across all 6 conditions. However, the contrast feature hypothesis predicts 

Figure 2.   The simple contrast model. This matrix visualizes the simple contrast model that encompasses our 
six hypotheses. The x-axis represents distractors with 1, 6 and 12 correct contrast features, respectively. The 
y-axis represents the targets with 6 and 12 correct contrast features respectively. The colour scale indicates the 
difference in target and distractor contrast features. For positive values (red cells), we hypothesize that the higher 
the difference, the higher the performance of the animals, i.e. conditions 1, 2 and 4 in the table. For negative 
values, we expect the opposite (conditions 3, 5 and 6 in the table).
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differences in generalization performance across the six conditions (see table in Fig. 2), to such a degree that we 
do not expect good generalization performance in several conditions where the number of useful features is not 
higher or even lower in the target compared to the distractor condition.

The contrast feature hypothesis predicts differences in generalization performance across the six conditions 
(see table in Fig. 2). The accuracy on the new stimuli for the “12 vs 1 CF” and “12 vs 6 CF” condition was signifi-
cantly higher than chance level (binomial test on the pooled response of all rats for 12 vs 1 CF: p < 0.05; 95% CI 
[0.50,0.56]; fir 12 vs 6 CF: p < 0.001; 95% CI [0.52,0.57]), whereas for the 6 vs 12 CF condition the accuracy was 
significantly lower than chance level (p < 0.0001; 95% CI [0.42, 0.47]). For the remaining three conditions (12 
vs 12 CF, 6 vs 1 CF and 6 vs 6 CF), the animals performed at chance level. These results are to a certain extent in 
line with our hypotheses, suggesting evidence for contrast features in the generalization ability of the animals 
in this task. However, overall, the accuracy was much lower than expected, especially for conditions 1 and 2. If 
the animals would have solved the task during training only by means of the aforementioned contrast features, 
then generalization performance in these 2 conditions should be closer to the accuracy for the training stimuli. 
Still, the pattern of generalization shows an effect of contrast features, with above chance performance in the 
condition with the largest difference in contrast features in the typical direction (“12 vs 1 CF”) and performance 
below chance in the condition with a difference in contrast features in the opposite direction (“6 vs 12 CF”).

To further investigate the generalization step, we constructed a pairwise performance matrix, where each 
cell indicates the average performance across all rats on that specific stimulus pair (Fig. 5a). The more red a cell 
is, the more above chance the performance on that stimulus pair, and thus the easier this stimulus pair was for 

Figure 3.   Learning curves of both groups of animals, averaged across animals. The left graph shows the 
learning curves of the animals that received the training stimuli in the order as presented in Fig. 8a, which were 
6 rats in total, whereas in the right graph, the animals, 4 in total, received the stimuli in reversed order. The red 
dashed line represents the 80% performance threshold, whereas the black dashed line represents chance level. 
The shaded error bar corresponds to the standard error.

Figure 4.   Comparison of the performance of all rats on the new versus the old stimuli, per condition. The error 
bars indicate the standard error across rats. The red dashed line represents the 80% performance threshold and 
the black dashed line indicates chance level. The Condition titles refer to the conditions as described in Table 1.
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the animals on average. Below chance performance is indicated in blue. To test the reliability of this matrix, 
we calculated the correlation of the pairwise matrix between round 1 and round 2, resulting in a correlation of 
0.37. By applying the Spearman-Brown correction18 to get the reliability of the full dataset, we obtain a full-set 
reliability correlation of 0.54.

Ideally, if there would be evidence strongly supporting the role of the number of correct contrast features, 
we would see a clustering in this matrix where each cluster (or bigger square) would correspond to one of our 
six conditions (see table in Fig. 2). This clustering is not very clear in the empirical data (Fig. 5a). Still, there are 
some differences. For example, the cluster or square in the left bottom, corresponding to condition 1, shows more 
red cells compared to the cluster on the upper right, corresponding to condition 6.

Other interesting findings that can be seen in this pairwise percentage matrix are the within-condition differ-
ences between the targets (rows). For example, target 4 seems to be a difficult target, as the average performance 
on all pairs that includes this target was rather low. Target 1, on the other hand, is even slightly better than targets 
6–10. This big difference in performances between target 1 and target 4 is interesting, as they belong to the same 
category of correct number of features (6 CF).

Figure 5.   (a) Pairwise percentage correct matrix of the pooled response of all rats. The more red a cell is, the 
higher the performance above chance. Below chance values are indicated in blue. (b) The feature strength 
model. This model indicates how strong each feature is in each stimulus pair. The more red a cell is, the higher 
the average feature strength of the target, and thus the stronger the features are in the target. In both matrices, 
the black outlined clusters indicate the conditions as discussed in Figs. 2 and 4.
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To further investigate these within-condition differences, we computed a more refined contrast feature model 
(see Methods) that takes into account the amount of contrast for each feature (“feature strength”) and not only 
the sign of the feature (is it in the correct or wrong direction). We compared our pairwise matrix with this 
“feature strength” model (Fig. 5b). The more red a cell is in this matrix, the higher the average feature strength 
of the target is, and thus the stronger the features in the target (and vice versa for blue cells). This can be either 
in the positive way or in the negative way. Again, the within-condition difference between target 1 and target 4 
becomes apparent. Even though both targets belong to the same condition, i.e. 6 correct features, the strength of 
their features differ a lot. If we correlate the values in the behavioural pairwise matrix (Fig. 5a) with the predic-
tion of the feature strength model (Fig. 5b), we get a (Pearson) correlation of 0.37 (p < 0.0001) suggesting that 
this model partially explains the behavioural results, and thus providing evidence in favour of contrast features. 
To investigate whether this correlation is significant, we performed a permutation, similar as in14. We permuted 
the original pairwise percentage matrix (Fig. 5a) 1000 times, and correlated the values in each permuted matrix 
with the prediction from the feature strength model (Fig. 5b). This results in a null distribution centred around 
zero (μ = 0.0038, σ = 0.08). To determine significance, we investigated how many of those 1000 correlations are 
larger than, or equal to the empirically observed correlation of 0.37, and divided this number by the number 
of permutations (1000). We obtain a p-value of < 0.001, indicating that the correlation between the pairwise 
percentage matrix and the feature strength model is indeed significant. Keeping the higher Spearman-Brown 
corrected reliability of 0.54 in mind, there might still be meaningful variability in the behavioural data that is 
not explained by the contrast feature model. Yet it is clear that large part of the meaningful variability is captured 
with a model that takes into account contrast features and their strength.

Deep neural networks.  A final step was to use AlexNet, train a linear classifier on the unit responses of 
single layers on to classify the 10 training stimuli and compare the generalization of this DNN classifier to the 
test stimuli with the generalization behaviour of the rats. Figure 6a (upper panel) shows the performance of 
the network after training on our training stimuli. The network had no problems to achieve high performances 
in the testing phase, even not with relatively low layers in the network. This performance can be considered as 
unrealistic because the network makes zero errors in the training, which contrasts with the relative high lapse 
rate in the rats. For this reason, we added noise to the network so that the network performance averaged across 
all training stimuli equated rat performance during training. When adding noise to the model, our findings 
change substantially (Fig. 6a, lower panel). Overall, the generalization performance of the model is quite low, 
with a maximum of about 65%. For some layers, the performance even drops to almost 50%, such as for layer 
blocks 1, 4 and 11 (see Supplemental Table S1 for how we divided the layers into blocks). Still, it is higher than 
the generalization performance of the rats.

Next, we investigated how the variation in generalization performance across image pairs correlates between 
the DNN classifier and rat performance. Figure 6b (upper panel) displays per DNN layer the correlation of the 
target-distractor difference in classification scores (i.e., difference in signed distance to hyperplane) for single 
target-distractor pairs, with the corresponding rat performance values (blue line). Higher layers show more 
similarity to rat performance in terms of the across-pair variation, at least up to layer 11 (first fully connected 
layer). The correlations reach the highest values that we can expect given the reliability of the behavioural data, 
which is visualized in Fig. 6b (lower panel) by dividing the correlations from Fig. 6b (upper panel) by the reli-
ability of the data after correcting through the Spearman-Brown formula.

Finally, we investigated to what extent the DNN classifier makes the same prediction as the contrast feature 
strength model. Or, said otherwise, to what extent contrast features are captured by DNNs. For this analysis, we 
calculated for each image pair how confident the classifier was of its decision in a similar manner as we did for 
the rat data, i.e., captured by the (signed) distance to its decision hyperplane (see Methods). The red curve in 
Fig. 6b (upper panel) reveals a high correlation, most prominently for the lower DNN layers. This figure sug-
gests the existence of a small interaction between the hierarchical level in DNNs and whether we correlate DNN 
predictions with the contrast feature strength model or with actual rat behaviour (Fig. 6b): earlier layers show 
more correspondence to the feature strength model (Fig. 5b), whereas higher layers show more similarities to 
the rat behavioural performances (Fig. 5a). Taking the interaction as a whole, this means that as the network 
relies less on contrast features, correlation with rat performance goes up. Given that the correlations with the 
feature strength model are high, these data do not contradict that rats and DNNs use contrast features in gen-
eral. Nevertheless, the aforementioned interaction indicates that in addition to contrast features, there are other 
image features that influence rat performance. These additional features seem to be captured by later layers of 
the tested DNN, whose performance was correlated perfectly (cfr. the normalized correlations in Fig. 6b, lower 
panel) with behavioural performance.

Discussion
In the current study, we wanted to investigate the role of contrast features in rodent vision. We trained the animals 
in a face categorization task and tested how well they could generalize to new exemplar stimuli, using protocols 
similar to Schnell and colleagues14 but now using stimuli that were previously used in computer vision and in 
primate research. The stimuli were chosen based on their contrast features, i.e. features that capture pairwise 
contrast relationships across two facial regions. We combined our hypotheses in a contrast model (Fig. 2), and 
compared this model to the performances of our animals. To have a more detailed look at the data, we created 
a more refined contrast feature strength model (Fig. 5) which takes the weights of the contrast features into 
account. Finally, we compared the contrast model and our feature strength model to the layer performances of 
a deep neural network (DNN). Together our findings provide evidence in favour of contrast features, yet there 
are also other features that play an important role in the performance of our animals.
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During training, the first group of animals received the stimuli in the order as presented in Fig. 8a, and they 
showed some difficulties after introducing the fourth and fifth stimulus pair. We ensured high pixel dissimilar-
ity within the training stimulus set, and so this would not explain why the first group of animals needed more 
sessions with the fourth and fifth stimulus pair (Supplemental Fig. S2).

After successfully training the animals in the categorization task, the animals continued with the generaliza-
tion phase. Here, they were presented with 10 new targets and 15 new distractors to test our hypotheses (table 
in Fig. 2). When looking at the rat performances on these testing stimuli (Fig. 4), they showed an overall low 
generalization performance. Regardless of the low generalization performance, the performance pattern across 
testing conditions was moderately in line with our hypotheses, with above-chance performance in several of the 
conditions where contrast features could support correct face categorization and below-chance performance in 
the condition where contrast features were going against correct face categorization. This supports the claim 

Figure 6.   (a) The performance of the network after training on our training stimuli, without (top panel) and 
with noise (bottom panel) added to the data. The purple line indicates the training performance, the green line 
with dots indicates the test performance of the neural network. The green horizontal line indicates the average 
generalization performance of the animals, whereas the dashed horizontal black line indicates chance level. The 
x axis on both graphs indicates the block of layer: layers 1–13 on the x-axis correspond to convolutional layer 
1, normalization layer 1, pool layer 1, convolutional layer 2, normalization layer 2, pool layer 2, convolutional 
layer 3, convolutional layer 4, convolutional layer 5, pool layer 5, fully connected layer 6, fully connected layer 
7 and fully connected layer 8, respectively (see our Supplemental Table S1 for an overview of the layer blocks 
that we use). The shaded error bars correspond to 95% confidence intervals calculated using Jackknife standard 
error estimates, as done previously in17. (b) Correlation of the classification score for single target/distractor 
pairs between single DNN layers and either the rat performance (blue) or the contrast feature strength model 
(red). The dotted horizontal line indicates the correlation between the rats performance and the contrast feature 
strength (0.37). The lower panel in (b) shows the same data for the correlation with the rat data, but normalized 
on the reliability of the rat data after the Spearman-Brown correction. The same layer naming convention on the 
x axis as in (a) is used.
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that contrast features influence task performance. Still, the observation that generalization performance was low 
overall indicates that the animals used more information during training than just the contrast features. One pos-
sible explanation is that the animals only learned these specific five training pairs, similar as if a neural network 
would overfit the training data. The animals would then be unable to perform well for unseen stimuli, as is the 
case in our behavioural results. Another explanation is that the animals might focus on pixel similarity to perform 
this task. Because we ensured high pixel dissimilarity between the training and testing stimuli, a focus on pixel 
similarity would result in a low generalization performance. A final possible explanation is the low number of 
training pairs. Perhaps the low number of training stimuli (5 targets and 5 distractors) is not enough to capture 
the essence of contrast features. Still, we do find evidence for the use of contrast features in our behavioural data, 
so their importance was picked up by the animals to at least some degree.

Using only the generalization performance of the animals in the six conditions did not provide a very detailed 
picture of how the animals solve this task. We therefore took a more detailed look at the stimuli and performances 
by calculating the pairwise percentage matrix for each target-distractor pair. We found some interesting within-
condition differences suggesting that the number of correct features might be too simple as a metric, given that 
features can differ in how big the differences are. This led us to create the feature strength model. Here, we gave 
weights to each correct feature based on how big the contrast is for that feature. This model correlates well with 
the variation in behavioural performance across stimulus pairs, suggesting again that the animals, to some 
extent, use contrast features. To further investigate what might predict the performance of our animals, we also 
compared their performances, i.e. their pairwise performance during generalization, with the pairwise pixel dis-
similarity of these stimuli. We found a very low correlation (correlation = 0.06), excluding pixel dissimilarity as 
an important factor. This finding is probably related to how we used pixel dissimilarity to decide which stimuli 
to use as training and test stimuli, because if pixel dissimilarity would have allowed a clustering of faces versus 
non-faces, then it would very likely have played a role. This leaves us with the question what the driving factor 
is behind the performance of the animals.

The question whether rats use contrast strategies has been discussed in other studies as well. Vinken, Ver-
maercke & Beeck19 for example discussed the possibility of rats comparing the luminance of parts of the stimuli. 
Another possibility, as suggested by19, is that the animals use contrast strategies, but the way they do it is more 
complex because they might combine multiple contrast cues, which is exactly what we are reporting in the current 
study. The use of contrast features is also consistent with the earlier findings of Vermaercke and Op de Beeck10, 
who suggested that rats adopt flexible contrast strategies. Vermaercke and Op de Beeck10 used a local occlusion 
paradigm, the Bubble paradigm, to get insight into the visual templates of rats performing a visual discrimina-
tion task. They suggested that rats used a strategy that can be verbalized as “If the bottom of the screen is filled 
with grey, then look at the top middle of the screen and avoid whichever is brighter.” Such a strategy also refers 
to contrast features.

To get a more fine-grained computational understanding of the strategies the animals use, we compared the 
predictions of a deep neural network with rat behaviour and with the contrast feature models. We used AlexNet 
and tested how well a classifier trained on specific layers of the network could generalize to the test stimuli, after 
we trained it on the training stimuli. We found that overall the classifier could generalize to our testing stimuli, 
even with the lower layers. When comparing the variation in generalization prediction across image pairs, we 
found that the lower DNN layers showed a similarity with the feature strength model. Although contrast features 
can influence neural responses even in higher areas of the primate visual system7, their computation is relatively 
simple and was originally proposed in the context of simple computer vision models. From that perspective it is 
not very surprising that such features can be captured by lower hierarchical levels in the visual system.

It is more surprising to find that overall the higher DNN layers were even better at explaining the variation in 
rat performance. It is quite exceptional to find such evidence for higher-level processing strategies when using 
DNNs as a benchmark. Earlier suggestions of higher-level processing did not always survive this test. Djurdjevic 
et al.20 investigated how well rats could discriminate a target object from 11 distractor objects. They found that 
the animals are capable of more complex, advanced shape processing. Another study that provides evidence for 
high-level visual processing in rats is the study of Zoccolan et al.9. They trained rats in an invariant object rec-
ognition task where the objects differed in size, view and lighting. This forced the animals to adapt their visual 
strategy in this task, and9 suggested that these animals were able to perform well in this complex task. However, 
the later computational tests by17 suggested that the behavioural data obtained by9,20 could be explained to a 
large extent mostly by representations in lower convolutional layers, most so in the case of Djurdjevic et al.20.

The DNN modelling does not pinpoint the nature of these higher-level strategies. Coming back to the dis-
tinction in the Introduction between strategies in terms of shape features or contrast features, there can also be 
hierarchy of complexity in terms of contrast features. Other work has shown that standard DNNs like the pre-
trained AlexNet that we used tend to process images in terms of texture rather than shape21. The observation 
that later layers in such a texture-biased network can fully (Fig. 6b, lower panel) capture the performance of rats 
in the current paradigm, strongly suggests that we do not need to invoke shape-based processing to explain the 
behaviour of rats in our face categorization experiment. Overall, our findings are in line with the importance of 
a hierarchy of contrast features for explaining rat behaviour in visual object recognition tasks.

The interpretation of our findings and their relevance for cross-species comparisons between rats and pri-
mates should be considered against the background of other known differences between these species. Up until 
20 years ago, monkeys were the main animal model of choice in vision research. With the rise of new neurotech-
nology and genetic rodent models, rodents became more popular. Nevertheless, the question remains to what 
extent the rodent vision system is comparable to the primate and human vision system. Despite the differences 
in neuroanatomy, rodents, and more specifically rats, have shown to be able to perform well in rather complex 
visual object recognition tasks (for a review, see8). This suggests that for at least some questions, rodents could 
be used as an alternative model to study higher-level vision (8). To further test this, past studies have compared 
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the performance of rats and humans in complex visual tasks. In some studies, rats perform worse than humans12. 
In this study, rats and humans were presented with a linear and non-linear object discrimination task. Rats were 
unable to learn the nonlinear task, whereas humans had no difficulty of either task. Likewise,22 even found that 
rats were not able to learn a relatively easy shape discrimination task (square versus rectangle) if it required 
the extraction of a shape feature like aspect ratio. Other studies, however, found the opposite results, i.e. they 
describe tasks where rats perform surprisingly well. Vermaercke et al.11 for example found that rats reached 
higher performances in an information-integration categorization task than humans, at least when taking the 
performance on one-dimensional tasks as a reference. While these previous studies compared rats to humans, a 
further question is where other primate species fall, in particular primate species that stand relatively far away 
from humans. Kell et al.23 performed a simple visual recognition task on marmosets and compared their perfor-
mance to that of rats. Interestingly, marmosets remarkably outperformed rats. Because all of these studies are a 
bit scattered, comparing few species and specific tasks that are often optimized for a specific species, it will be a 
promising line of research to design a complex visual recognition task that allows to compare the full scope of 
visual abilities of a larger number of species.

An important point when designing further tasks, is the ecological validity given the natural behavior and 
habitat of a species. Obviously, the task that we used, visual face categorization, is not an ecologically valid 
task for rats. This lack of ecological validity could explain the low generalization performance of the animals. 
Face detection is an artificial task for rats, and they had to learn this task from scratch. We should not take the 
limited performance of rats in this task as a valid indication of their visual capabilities, which might be more 
sophisticated in lab tasks modeled after natural behavior such as navigation and prey/predator situations24–27. 
However, our goal in the current manuscript is to provide a direct demonstration that rats use a strategy in terms 
of contrast features. Given that for humans this hypothesis has been most clearly formulated in the case of human 
face detection, it made sense to also test this domain in rats. The current study, in which contrast features were 
explicitly manipulated, provides direct evidence for the use of contrast features. This confirms the suggestions 
from previous studies in which the inferred strategies of rats seemed to align well with an interpretation in 
terms of contrast features, in domains varying from simple shape categorization10 and video-based rat/nonrat 
categorization19. It remains to be tested whether this contrast feature hypothesis will also hold in the wide variety 
of tasks that rats perform naturally.

In summary, we tested a face categorization task in rats, using stimuli that are parameterised in terms of 
contrast features to investigate whether rats use these low-level visual features, given the knowledge that humans 
and monkeys use them in face detection. We found evidence that the animals use contrast features as at least 
part of their strategy. We discussed our results in the light of ecological validity as well as differences between 
species, such as rats versus humans and rats versus monkeys.

Methods
Animals.  A total of ten male outbred Long Evans rats (Janvier Labs, Le Genest-Saint-Isle, France) started this 
behavioural study. Two of the ten animals were pilot animals from a previous electrophysiological experiment 
and were 35 and 48 weeks old at the start of the current experiment. These two animals were housed individu-
ally because of their headposts. The remaining eight animals were about 12 weeks old at the start of training and 
were housed in groups of four per cage. Each cage was enriched with a plastic toy (Bio-Serv, Flemington, NJ) 
and paper cage enrichment. Halfway through the experiment, one pilot animal was excluded because it did not 
perform high enough on the training stimuli during the test protocols, suggesting it forgot the learned behav-
iour. During the second part of the experiment, one animal was excluded because of health issues. Thus, a total of 
eight animals completed the experiment. During training, rats were food restricted to maintain a body weight of 
about 85% of their original body weight. They received water ad libitum. All experiments and procedures involv-
ing living animals were approved by the Ethical Committee of the University of Leuven and were in accordance 
with the European Commission Directive of September 22, 2010 (2010/63/EU). We have reported the study in 
accordance with the ARRIVE guidelines.

Setup.  The setup was identical to the one used by Schnell and colleagues14. A short description will follow 
here. All rats were tested in four automated touch-screen rat-testing chambers (Campden Instruments, Ltd., 
Leicester, UK) with ABET II controller software (Lafayette Instrument’s versatile ABET II v2.18 and Whisker’s 
Control system (WhiskerServer) v4.5.0). On one side of the chamber, a reward tray was installed in which sugar 
pellets (45-mg sucrose pellets, TestDiet, St. Louis, MO) could be delivered. On the other side of the chamber, an 
infrared touchscreen monitor was installed which was covered with a black Perspex mask containing two square 
response windows (10.0 × 10.0 cm). A shelf (5.4 cm wide) was installed onto the mask (16.5 cm above the floor) 
to force the animals to view the stimuli within their central visual fields.

Stimuli.  All stimuli were retrieved from Ohayon et al.7 and included a set of 207 faces and 204 non-faces, 
measuring 100 × 100 pixels. The face stimuli were front-view human faces in grey-scale. The non-face stimuli 
were random samples from natural images that do not include human faces7. Based on two stimulus variables, 
we chose 10 training stimuli consisting of 5 faces (targets) and 5 non-faces (distractors) and 25 testing stimuli, 
consisting of 10 faces and 15 non-faces.

The first stimulus variable that was used to indicate the targets and distractors is template similarity. This 
variable indicates how similar a stimulus is to the face template created by Sinha5. We started by calculating the 
template similarity used by Ohayon and colleagues7, following the steps that can be found in their Fig. 6. First, 
we copied their template (their Fig. 6A, see our Fig. 1) and overlaid each stimulus with this template. We then 
calculated the number of correct features in an identical manner as they have. The twelve conditions in Fig. 1 
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were tested, which resulted in a certain number of “correct contrast features” per stimulus, i.e., how many of these 
twelve conditions are met, and thus quantifying how face-like a stimulus is. A next step was to sort all stimuli 
into 12 categories depending on their number of correct contrast features (see their Fig. 6B). Figure 7 shows the 
average image of all stimuli belonging to each category, based on the template similarity.

The second stimulus variable was pixel dissimilarity, which we used to avoid that the selected images in each 
category would be very similar in all respects. Pixel dissimilarity was calculated within each category of the 
template similarity. To calculate the pixel dissimilarity of a stimulus pair, we followed the method of28. For each 
pair of stimuli, we first computed the difference in each pixel, squared this difference and summed it across all 
pixels. We then took the square root of this sum and normalized the resulting number by the square root of the 
number of pixels. This results in a difference or dissimilarity measure28. We computed the pixel dissimilarity 
for each pair of stimuli within a category of the template similarity, that is, stimuli that have the same number 
of correct contrast features. This resulted in one dissimilarity matrix for each number of correct features. Ide-
ally, only stimuli with a high dissimilarity to each other were chosen, to avoid a confounding between template 
similarity and pixel dissimilarity.

Taking these two stimulus variables into account, a training stimulus set of 5 targets and 5 distractors was 
constructed, as well as a testing stimulus set of 10 targets and 15 distractors (Fig. 8). The training targets each 
had 11 or 12 correct contrast features, whereas the distractors each had 6 correct contrast features. The testing 
stimuli corresponded to the 6 conditions that were mentioned in our hypotheses, and thus we chose testing 

Figure 7.   Results of the template similarity measurement. The top row indicates the average image of all faces 
belonging to a certain number of correct features. The number of correct features is indicated by the numbers 
on top of each image, i.e., each column corresponds to one correct feature category. The bottom row shows the 
average image of all distractors belonging to such a category. Interestingly, the average image of all distractors 
with 12 correct features resembles a face, whereas the average image of all distractors with only 1 correct feature 
resembles an inverted face.

Figure 8.   (a) The training stimulus set consists of five targets and five distractors. One group of animals 
received the stimulus pairs in the shown order, whereas the second group received them in reversed order to 
ensure that there is no effect of stimulus order. (b) All testing stimuli. The upper two rows visualize the testing 
targets (i.e., faces) with a different number of correct contrast features. The top five targets have 6 correct 
contrast features, whereas the bottom row of faces includes targets with 12 correct contrast features. The lower 
three rows visualize the testing distractors (i.e., non-faces), again with a different number of correct features (1, 6 
and 12) corresponding to our hypotheses.
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targets with 6 or 12 correct contrast features, and testing distractors with 1, 5 or 6, or 11 or 12 correct contrast 
features. For the training part of this experiment, half of the animals were presented with the order shown in 
Fig. 8a, whereas the other half received the reversed order to examine a possible effect of stimulus order. The 
dissimilarity matrix of this set of stimuli (see Supplemental Fig. S1) shows that this is indeed a good stimulus set 
to use, as there were many dissimilar stimuli as suggested by the many red cells in the matrix. Important to note 
is the high dissimilarity within the training set as evidenced by the many red cells within the training square, but 
also the high dissimilarity of the test set relative to the training set, shown by the red cells of the testing stimuli 
compared to the training stimuli. Pixelwise dissimilarity in the chosen set does not show an obvious clustering 
in terms of face versus nonface or number of correct features.

In a further analysis, we computed a more refined contrast feature model that takes into account the amount 
of contrast for each feature (“feature strength”) and not only the sign of the feature (it is in the correct or wrong 
direction). In other words, rather than counting whether or not a condition (one of the twelve features) was 
met, we calculated the difference in pixel values for each condition in the correct (positive values) or incorrect 
(negative values) direction. If, for example, the brightness of the forehead is higher than the brightness of the left 
eye, which is an expected condition for a face, then we wanted to know how large the difference in brightness is. 
We calculated these differences, which we will call “feature strengths”, for each stimulus and for each condition. 
This resulted in twelve values for each stimulus, corresponding to the strength of each feature. To get the value 
of each cell of the feature strength matrix, we calculated the average of these twelve values for each target and 
each distractor. We then subtracted the distractor average from the target average because we also look at this 
difference in our hypotheses (target–distractor). The higher this value, the higher the average feature strength 
of target is and thus the stronger the features are in the target relative to the distractor.

Protocols.  The design of the experiment is very similar to the design of Schnell et al.14. A short description 
will follow here. Animals started with a standardized shaping part to get accustomed to the touchscreen setup 
(see14 for details). This part consisted of five phases, starting with a simple habituation where the animals are 
placed in the touchscreen setup without any stimuli presented to the screen. In each phase, the animals learned 
one extra thing, for example in the first phase they learned that touching the screen results in a (food) reward and 
in a later phase they learned that a trial can be initiated by placing their nose in the food area.

Identical as in14, rats started with the face-versus-nonface discrimination training once they successfully 
finished the shaping procedure. The animals performed a single session each day and each session lasted either 
100 trials or 60 min. In between two trials, we added an intertrial interval of 20 s. During training, correction 
trials were presented after an incorrect response to reduce the chance that animals would develop a response 
bias to one of the two screens. We used a training performance threshold of 80%, meaning the animals had to 
perform at or above 80% correct or higher for two consecutive sessions before proceeding to the next training 
phase. For three animals however, reaching 80% correct or higher seemed difficult, and thus the criterium was 
relaxed in an identical manner as in14,29. In those animals, the threshold was lowered such that they had to per-
form at 75% correct or higher during four consecutive sessions. Additionally, their performance correct during 
the last sessions had to be at or above 75%.

The training procedure consisted of five phases. In the first phase, the animals were shown the first face-
nonface pair (Fig. 8a). Touching the screen with the face, i.e. the target, was rewarded in all trials. After reaching 
the performance criteria in this first phase, rats continued with the second training phase, where the second 
target (face) and distractor (non-face) were added. All possible combinations of faces versus non-faces were 
randomly presented. In the third, fourth and fifth training phase, the third, fourth and fifth target and distractor 
were added to the stimulus set. Rats were trained until they could discriminate the five faces in Fig. 8a from the 
five non-faces in Fig. 8a at the performance threshold described earlier.

Once the animals were fully trained, i.e., they achieved the performance threshold in the fifth training phase, 
they continued with the testing protocols. We created a total of three test protocols, each testing a subset of our 
six hypotheses in Fig. 2. The first, second and third test protocol compared all targets with distractors having 1 or 
6, 1 or 12 and 6 or 12 correct contrast features, respectively. In every test protocol, we presented 1/3 old stimuli, 
i.e. the stimuli used during training, to have a quality check on the performance of the animals. We gave random 
reward in 80% of the trials with a new stimulus pair, i.e. the stimuli in Fig. 8b, and real reward for old stimulus 
pairs. We chose a random reward in 80% of the new, i.e. testing, trials, to keep the animals motivated through-
out testing. We performed two rounds of testing these three test protocols. For the first round, the testing part 
consisted of three consecutive blocks, each containing all three test protocols. For the second round, we added a 
training phase in between each block to ensure high performance on the training stimuli and thus the original 
face discrimination task. In both rounds, the order of the test protocols was counterbalanced between animals.

Computational modelling.  We investigated the performance of deep convolutional neural networks 
(DCNNs) when trained and tested with the same stimuli that we used in rats. We used a similar approach as in 
Vinken and Op de Beeck17 to calculate these performances. A short description will follow here. We used the 
standard AlexNet DCNN architecture. This network is pre-trained on ImageNet to classify images into 1000 
object categories and has been taken from the MATLAB 2017b Deep Learning Toolbox. This network is often 
used as a computational model for visual processing in the primate visual ventral stream16,30,31. It consists of con-
volutional and max pooling layers, followed by three fully connected layers. Additionally, it also includes local 
response normalization layers. A rectifying linear activation function (ReLU) is added after each convolutional 
and the first two fully connected layers. We trained a linear support vector machine classifier (the MATLAB 
function fitclinear, with limited-memory BFGS solver and default regularization) on the unit responses (before 
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ReLU) of single layers in this network to our 10 training stimuli (Fig. 8a). For our analyses, we divided the layers 
of AlexNet into 13 sublayers (Supplemental Table S1).

To examine the accuracy of the model, we calculated the signed distance to hyperplane (classification score) 
for each target and distractor, with positive values for the target side, and negative values for the distractor side, 
as done previously in17. A trial was considered correct if the difference between the classification score for the 
target and that for the distractor (target–distractor) was positive; that is, if the model classified the target stimulus 
as more target-like than the distractor.

Data availability
The data has been made publicly available via the Open Science Framework and can be accessed at https://​osf.​
io/​52pa3/.
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