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A theory of unusual anisotropic 
magnetoresistance in bilayer 
heterostructures
X. R. Wang 1,2,3*, C. Wang 4 & X. S. Wang 5

The observation of magnetoresistance (MR) varying with the rotation of magnetization in the plane 
perpendicular to the electric current is an important discovery in spintronics in recent years. The 
famous conventional anisotropic MR (AMR) says that the resistance of a polycrystalline magnetic 
material must depend on magnetization component along the current direction only, thus cannot 
account for this newly observed unusual AMR (UAMR). This UAMR leads to the notion of the spin-
Hall MR (SMR) in the famous SMR theory. However, the SMR theory may only explain UAMR 
observed in heavy-metal/magnetic-insulator bilayers, not other types of bilayers. Here, we present 
a two-vector theory that can explain not only all existing experiments on the unusual angular 
dependence of longitudinal and transverse resistivity when the magnetization rotates in three 
mutually perpendicular planes, but also how three amplitudes of MR angular oscillation are related 
to each other. The theory is very general and its correctness depends only on the assumption that the 
magnetization and interfacial field are the only vectors affecting electron transport besides of other 
scalar variables such as the temperatures and impurities. Experiments that can test this theory against 
the SMR theory are also proposed.

A dramatic development during the debate of the transverse spin Seebeck  effect1–5 is the discovery of an unu-
sual anisotropic magnetoresistance (UAMR) in bilayers that consist of either one non-magnetic film and one 
magnetic film or two magnetic films at nanometer scales. The ubiquitous UAMR occurs in the non-magnetic 
polycrystalline metallic-film3–13, no matter whether it is a heavy metal with strong spin-orbit coupling or not 
as long as it is highly susceptible to magnetism, and no matter whether the magnetic layer is insulating or not. 
UAMR exists also in a magnetic polycrystalline metallic-film14 in contact with a non-magnetic insulating layer. In 
comparison with the well-known usual anisotropic magnetoresistance (AMR) that says resistance depends only 
on the magnetization component along the current, UAMR depends not only on two magnetization components 
perpendicular to the current, but also on them differently.

In order to appreciate the unusualness of UAMR, let us summarize its main experimental  features3–14 in 
a compact form. Denote the interface of a bilayer heterostructure as the xy-plane and current along the x̂
-axis, the longitudinal resistivity and transverse resistivity take the forms of ρxx = ρy +�ρ1m

2
x +�ρ2m

2
z and 

ρxy = Rmz +�ρ3m
3
z +�ρ1mxmy , where �m is the unit vector of magnetization �M . ρy , �ρ1 , �ρ2 , �ρ3 , and R 

are constants whose physical meaning are clear. ρy is the longitudinal resistivity of the heterostructure when 
the magnetization is along the y-direction. In addition to the term of �ρ1( �m · ĵ)2 for usual AMR and planar 
Hall  resistance15, �ρ2 is the newly discovered UAMR that people cast wrongly as �ρ2[ �m · (ẑ × ĵ)]2 = �ρ2m

2
y

5 
although it is mathematically the same as �ρ2m2

z after replacing m2
y by 1−m2

z , where ĵ denotes the unit vector 
of the current. R and �ρ3 are the amplitudes of one-fold and three-fold angular dependence of unusual planar 
Hall resistance accompanied the  UAMR3–13. R-term is normally known as the anomalous Hall effect. In terms 
of above terminology, the usual AMR corresponds to �ρ2 = �ρ3 = 0.
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Spin-Hall magnetoresistance (SMR)  theory16 provides the popular explanation of UAMR in a bilayer of one 
non-magnetic heavy metal film and one magnetic insulating film. Due to the spin-Hall effect, a charge current 
in the heavy metal generates a y-polarized spin current propagating toward heterostructure interface. This 
spin current, in turn, induces a charge current opposite to the original current in the heavy metal through the 
inverse spin-Hall effect such that the current is reduced and resistivity of the heavy metal increases by a factor 
of (1+ θSH )

2 , where θSH is spin-Hall angle. The spin current impinged on the magnetic insulator is completely 
reflected at the heterostructure interface in the ideal scenario when the spin current polarization is collinear with 
the magnetization of the magnetic insulator such that spin current in the heavy metal vanishes and its resistivity is 
reduced. Spin current is completely absorbed by the magnetic insulator when its magnetization is perpendicular 
to the spin current polarization such that above mentioned spin-current-enhanced resistivity prevails.

Although the picture of spin polarized electron transmission and reflection at a heterostructure interface 
in the SMR theory is opposite to that of tunnelling-magnetoresistance theory, the justification is that polarized 
electrons exert no torque on a collinear magnetized insulator and cannot pass their spin angular momentum 
to the insulator such that spin current cannot but reflect back to the heavy metal. SMR theory may be able to 
explain the UAMR in bilayers of heavy metals with magnetic insulators, but it would be unnatural to explain 
similar results of bilayers of one heavy metal and one magnetic metal because the assumption of above reflection 
and transmission of spin current by a magnet is not consistent with physics picture of giant magnetoresistance 
and tunnelling magnetoresistance. According to giant and tunnelling magnetoresistance, it is easier (harder) 
for a polarized current to pass through a magnet when its magnetization is parallel (anti-parallel) to the current 
polarization than that when the magnetization is perpendicular to the incoming electron spins. By the same 
argument of spin-current enhanced resistivity, SMR theory should predict, for example, ρxx to be different when 
the current reverses its direction. Of course, this is not what was observed in experiments. Indeed, challenges 
of SMR theory for UAMR have already been recognized by many  people5,8,14 for bilayers of one magnetic metal 
layer and one either magnetic or non-magnetic insulating layer. In summary, a successful theory that can fully 
account for observed UAMR in various types of bilayers is yet to be developed. This problem, as well as other 
subtle ones, motivates this study.

In this paper, we show that UAMR of a bilayer is the natural outcome of polycrystalline metal(s) whose 
resistance depends on two vectors. One is the magnetization of the bilayer, and the other is an interfacial field 
perpendicular to the heterostructure interface.

Following the convention in most studies of UAMR, unit axis vectors x̂ and ẑ denote respectively the in-plane 
current direction and the direction perpendicular to the heterostructure interface. The metals of the heterostruc-
ture are polycrystalline and heterostructure resistance depends on the magnetization �M because they are either 
magnets or magnetized through magnetic proximity effect. All experiments with UAMR show, from thickness 
dependences of transport properties, that resistance is affected by the heterostructure interface. Theoretically, 
there exists always charge transfer across the interface because materials on the two sides of the interface have 
different chemical potentials. This charge redistribution will always create an interfacial potential. The width of 
the potential well is sensitive to carrier density, and could be order of micrometer in semiconductor and typically 
nanometer for metals. The potential will inevitably change the electron properties at the interface. In turn, the 
resistance of a bilayer should be affected by the interfacial potential that provides an effective local electric field 
perpendicular to the interface. Thus, it is natural to expect that an effective field along �n = ẑ can affect electron 
transport and the magnetoresistance of the heterostructure should be a function of both �M ( �m ) and �n , as well as 
other material parameters that are not important for universal forms of UAMR.

For the linear response, the electric field �E in response to an applied current density �J  in the heterostructure 
must be

where ←→ρ ( �m, �n) is the resistivity tensor of rank 2 that depends on microscopic properties of the heterostructure 
and parameters that defines its thermodynamic state. No matter how complicate the microscopic interactions 
that a heterostructure might be, the tensor form can only come from the order parameters that characterize the 
macroscopic states of the system. In the absence of an external magnetic field, �m and �n are the only available 
vectors that can be used to construct tensor ←→ρ  . Thus, ←→ρ  should be the linear combination of �m �m , �m�n , and �n�n
17,18. Each of the three Cartesian tensors is not  irreducible19, and can be decomposed into irreducible forms of 
a scalar, a vector, and a traceless symmetric tensor. Thus, from �m and �n , it is possible to construct three vectors 
and three traceless symmetric tensors of ranks 2. They are �m , �n , �m× �n , �m �m− 1/3 , �m�n+ �n �m− 2 �m · �n/3 , and 
�n�n− 1/3 , where M is the magnitude of magnetization �M . Thus, with these angular dependent terms together 
with a scaler term, the electric field �E due to �J  , after grouping similar terms and using �J  perpendicular to �n , must 
take the following generic form

where ρ B1 , B2 , B3 , A1 , A2 , and A3 are parameters that depend on M and �m · �n = mz , which is the only scalar 
associated with the direction of �M , as well as other material parameters that have nothing to do with the direc-
tion of �M . Thus, the longitudinal resistivity and the transverse resistivity are

(1)�E = ←→ρ ( �m, �n)�J ,

(2)
�E = ρ�J + �J × (B1 �m+ B2�n+ B3 �m× �n)

+ A1(�J · �m) �m+ A2( �m · �n)�J + A3( �m · �J)�n,
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Magnetoresistance should be the same when the heterostructure is placed upside-down. This is true if the 
heterostructure is made of achiral materials. In another word, Eq. (2) should be invariant under transforma-
tion of �n → −�n . One should not confuse reciprocity condition with inversion symmetry requirement. For an 
achiral system with reciprocity condition, ρ , A1 , and B1 must be even functions of mz while A2 , A3 , B2 , and 
B3 must be odd. If one defines ρ =

∑n=∞
n=0 ρnm

2n
z  ; A1 = �ρ1 +

∑n=∞
n=1 a1nm

2n
z  ; B1 = −R1 −

∑n=∞
n=1 b1nm

2n
z  ; 

A2 = �ρ2mz +
∑n=∞

n=1 a2nm
2n+1
z  ; B2 = −R2mz −

∑n=∞
n=1 b2nm

2n+1
z  ; B3 =

∑n=∞
n=0 b3nm

2n+1
z  ; and keep only the 

lowest possible terms in these expansions (if the spin dependent scattering is the main source of magnetoresist-
ance and the power in mz is related to the number of magnons involved in the scatterings, then one should expect 
higher-power terms negligible) the longitudinal resistivity and transverse resistivity take following universal 
forms

where ρ0 , �ρ1 , �ρ2 , and R ≡ (R1 + R2) are angular-independent material parameters.
To further see that Eq. (4) has exactly the forms of observed UAMR, we consider ρxx and ρxy for �M ( �m ) varying 

in the xy- and yz-, and zx-planes and define angle α between the magnetization �M and x-axis when �M rotates in 
the xy-plane; or angle β ( γ ) between �M and the z-axis when �M rotates in the yz-plane (zx-plane). We then have the 
usual anisotropic magnetoresistance ρxx = ρ0 +�ρ1 cos

2 α and planar Hall resistance ρxy = (�ρ1/2) sin(2α) for 
�M in the xy-plane; newly discovered UAMR ρxx = ρ0 +�ρ2 cos

2 β and accompanied unusual angular depend-
ence of planar Hall resistivity ρxy = R cosβ for �M in the yz-plane; and ρxx = ρ0 +�ρ2 + (�ρ1 −�ρ2) sin

2 γ and 
ρxy = R cos γ for �M in the zx-plane. Clearly, both phases and amplitudes of ρxx and ρxx are what were observed 
in  experiments3–8,10–14. Thus, UAMR does not need to involve the spin-Hall and the inverse spin-Hall effects. 
In some bilayers such as Pt|Y3Fe5O12

9, an additional three-fold angular dependence of ρxy on β were observed. 
This is also allowed in Eq. (3) if we keep the second term in the expansion of B2 and redefine �ρ3 ≡ b22 such 
that ρxy = R cosβ +�ρ3 cos

3 β.
Real bilayer heterostructures show various possible relative values of �ρ1 and �ρ2 . In Pt|Fe3O4 where a 

polycrystalline Pt is on a single crystal poor metal Fe3O4 , �ρ2 ≃ 0 was  observed12 such that ρxx is not sensitive 
to β , or rotating magnetization in the yz-plane (perpendicular to the current). This observation is difficult to 
understand within the SMR theory, but is a natural outcome of the case of �ρ2 ≃ 0 in the present theory. The 
slightly different angular dependence of usual AMR curve can be naturally understood from the contribution 
of the poor single crystal metal of Fe3O4

15. Whether �ρ2 is an intrinsic parameter of materials is an interesting 
question. It should not be difficult to settle this issue. One needs only to fabricate similar bilayers under different 
conditions so that the interface and microscopic structures of two layer would be different. All samples should 
have the same �ρ2 if it is intrinsic, and different �ρ2 otherwise. In W|CoFeB|MgO structure, ρxx is not sensitive 
to γ , or rotating magnetization in the xz-plane. This is the consequence of �ρ1 ≃ �ρ2 . To our knowledge, the 
case of �ρ1 ≃ 0 is yet to be observed. The current theory explains also why three amplitudes of the oscillations 
of ρxx with α , β , and γ satisfy following rule: sum of the two’s equal to the third one.

As shown above, UAMR can be perfectly understood from the combined actions of magnetism and interfacial 
field of a bilayer on electron transport. According to this mechanism, the UAMR should decrease with thickness 
of polycrystalline metal film when the film thickness is larger than interacting range of the interfacial field such 
that shunting effect dominates and resistance from interface region is less important. One should also expect 
that UAMR decreases when the film thickness is smaller than the interface-roughness in structure and physical 
properties such that interfacial field characterized by �n becomes problematic and resistance cannot feel �n effect. 
This may explain why UAMR is peaked at an optimal film thickness. One likely interface effect on the resistance 
is from the interfacial scatterings. If the scatterings involve the interfacial phonon, then UAMR should be more 
pronounced at high temperature because a phonon scattering is more effective. All these features are shared by 
UAMR  experiments3–11,14. Thus the thickness-dependences of UAMR provides the information of interacting 
range of the interfacial potential or interfacial field. The optimal thickness, at which the UAMR is most pro-
nounced, contains information of interface roughness. So far, UAMR are found in bilayers of non-magnetic 
film on a magnetic layer. From the theory presented in this paper, similar results should exist in bilayers of two 
different magnetic layers that could be both magnetic polycrystalline metals or one polycrystalline metal and 
one magnetic insulator. If one uses strong magnetic field to align the magnetisations of the two magnetic layers 
in the same direction in angular dependence measurement of MR, then the above analysis is applicable. Other-
wise, one should generalize the theory into the case of three vectors. In a short summary, there are experimental 
ways to distinguish the current theory from the popular SMR theory. One important remark is to exclude the 
metallic single crystal that will introduce extra contributions to the angular dependences of  magnetoresistance15.

In SMR theory, there are five material parameters to be extracted from various experimental measurements. 
They are conductivity at bilayer interface, spin Hall angle and spin diffusion length of the heavy metal, and 
complex spin-mixing conductance (real and imaginer parts). These five parameters cannot be directly extracted 
from transport measurements, and are obtainable by fitting thickness dependences of conductivity to certain 
theoretical models plus other independent experiments such as ferromagnetic resonance on the same  bilayers5. 
In comparison, there are only four material parameter in this theory. These four parameters defined in Eq. (4) as 

(3)
ρxx ≡ �E · x̂/J = ρ + A1m

2
x + A2mz

ρxy ≡ �E · ŷ/J = A1mxmy − B1mz − B2.

(4)
ρxx = ρ0 +�ρ1mx

2 +�ρ2mz
2

ρxy = Rmz +�ρ1mxmy ,
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ρ0 , �ρ1 , �ρ2 , and R can directly be extracted from resistivity measurements. The current theory predicts also an 
angular dependence of ρxz ≡ �E · ẑ/J = −Rmy +�ρ4mxmz . This is highly non-trivial: It says that a voltage drop 
exist in the z-direction proportional to my and mxmz . This prediction distinguishes the current theory with all 
other existing theories. Of course, how to find a proper system that allows one to measure a small voltage drop 
perpendicular to an ultra-thin film may not be easy.

It should be emphasised that a complete theory is presented here with precise predictions of how MR should 
vary in three mutually perpendicular planes, and how their amplitudes should be related to each other. Several 
very feasible experiments are proposed to test this theory against the SMR theory. The theory is so general that 
any achiral system, no matter how complicate its microscopic Hamiltonian and interactions might be, must agree 
with the results presented here. The approach is similar to the derivation of Einstein’s gravitation theory that is 
about possible construction of a rank 2 tensor out of metric  tensor20. Of course, UAMR is not as fundamental as 
gravitation theory, and our results are a relationship between MR and magnetization, not a partial differential 
dynamical equation as the Einstein’s gravitation theory is.

It should also be interesting to study chiral heterostructure when reciprocity condition does not hold. 
Follow exactly the analysis above, it is easy to see that UAMR of chiral system should be described as 
ρxx = ρ0 + R1mz�ρ1m

2
x +�ρ2m

2
z and ρxy = Rmz +�ρ1mxmy +�ρ4m

2
z . β and γ dependences of both ρxx 

and ρxy are different from its achiral counterparts while the α dependence are the same. It should be very inter-
esting to test these predictions using heterostructure made of helimagnets.

Onsager reciprocal relation breaks down for our bilayers involving magnetization since the magnetic materials 
do not respect reversibility. Of course, extra symmetries can impose further restriction on the possible structure 
of the resistivity tensor. It should also be pointed out that this manuscript and Ref. 15 consider different systems 
although they share the similar mathematical technique and ask similar question. Reference 15 study the angular 
dependence of resistance of homogeneous samples such as ferrimagnets or antiferromagnets described by at least 
two order parameters. On the other hand, this manuscript consider bilayers heterostructure with at least one 
magnetic layer. The objective is to provide a natural explanation for the universal angular dependences in three 
mutually orthogonal planes. Both layers could be metallic, or one metallic and one insulating. Both of them can 
be magnetic, or one magnetic and one non-magnetic.

In conclusion, unusual angular dependence of magnetoresistance in bilayers consisting of one non-magnetic 
film and one magnetic film can be explained by a two-vector resistance theory if the metallic layer(s) is poly-
crystalline. It is predicted that similar behaviours should also hold for bilayers of two different magnetic films. 
The general UAMR can come from physics beyond the spin-Hall and inverse spin-Hall effects. Experiments that 
can test this theory are also proposed.
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