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EEG is better left alone
Arnaud Delorme 

Automated preprocessing methods are critically needed to process the large publicly-available 
EEG databases, but the optimal approach remains unknown because we lack data quality metrics 
to compare them. Here, we designed a simple yet robust EEG data quality metric assessing the 
percentage of significant channels between two experimental conditions within a 100 ms post-
stimulus time range. Because of volume conduction in EEG, given no noise, most brain-evoked related 
potentials (ERP) should be visible on every single channel. Using three publicly available collections of 
EEG data, we showed that, with the exceptions of high-pass filtering and bad channel interpolation, 
automated data corrections had no effect on or significantly decreased the percentage of significant 
channels. Referencing and advanced baseline removal methods were significantly detrimental to 
performance. Rejecting bad data segments or trials could not compensate for the loss in statistical 
power. Automated Independent Component Analysis rejection of eyes and muscles failed to increase 
performance reliably. We compared optimized pipelines for preprocessing EEG data maximizing ERP 
significance using the leading open-source EEG software: EEGLAB, FieldTrip, MNE, and Brainstorm. 
Only one pipeline performed significantly better than high-pass filtering the data.

Electroencephalography (EEG) is a relatively low-cost brain imaging modality that allows the collection of large 
quantities of data, and automated preprocessing methods are critically needed to process the large publicly 
available EEG  databases1. Yet, EEG is noisy and often contaminated by artifacts from the environment or the 
participants. Participants’ eye movements and face, jaw, and neck muscle contractions create scalp electrical 
potentials about 10 times the amplitude of brain signals and need to be  removed2. One strategy to remove noise 
is the repeated presentation of stimuli in event-related potential  paradigms3. A complementary strategy is to use 
digital signal processing to remove  artifacts2,4,5.

The currently accepted method recommended by most software for removing EEG artifacts is the visual 
inspection of the raw EEG data by expert EEG researchers. This procedure is both a time-consuming and 
imprecise process. There is no consensus on what an EEG artifact is, so one researcher’s data cleaning might 
differ from another. One reason is that there is large inter-subject variability in EEG data, so the amplitude of 
the EEG signal can vary widely from one participant to the next. Ideally, multiple researchers would clean the 
same data, and their aggregated choice would be considered for cleaning the data. This inter-rater agreement is 
the gold standard for EEG data  rejection6.

However, inter-rater agreement is difficult to implement. Cleaning EEG data manually on multiple subjects 
takes several days. To our knowledge, only one dataset with marked rejections from multiple raters has been 
 released7. We used this dataset to determine which automated artifact detection method yielded the best result 
and found that the chosen algorithm agreed more with each human than humans agreed between  themselves7.

While waiting for more of these manually labeled collections of datasets to test automated preprocessing and 
cleaning pipelines, we can use other methods to assess preprocessing data quality, namely, the amplitude of brain 
response to experimental  conditions3. Multiverse analyses scanning the space of preprocessing parameters are 
a step in that direction, although they still rely on pre-defined  ERPs8,9. In this article, we developed a general 
method to assess the statistical power of detecting a difference in brain response between stimuli. We used this 
method to determine how filtering, referencing, artifact rejection in different software, and baseline removal 
influence statistical significance in EEG data. We finally designed and compared a collection of automated pipe-
lines in different open-source software packages.

Results
We assessed the percentage of significant EEG channels between two conditions of interest using randomly 
resampled trials with replacement with collections of 50 trials per condition (see “Methods” section; see dia-
gram in Supplementary Figure 1) and analyzed data from three publicly available experiments (Supplementary 
Table 1). The first experiment (Go/No-go) is a go-no visual categorization task where participants are instructed 
to respond when they see an animal in a briefly flashed photograph. In this task, we compared the brain-evoked 
potentials between correct animal targets (50%) and correct distractors (50%)10. In the second experiment 
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(Face), we compared the brain-evoked potentials of familiar and scrambled faces presented to participants 
who performed a face symmetry judgment task designed to maintain their  attention11. In the third experiment 
(Oddball), participants had to respond to oddball sounds (70 ms of 1000 Hz) interspaced by frequent standard 
sounds (70 ms at 500 Hz)12 (see “Methods” section).

We high-pass filtered the data at 0.5 Hz, extracted data epochs (from − 1 to 2 s) with no baseline removal, 
and calculated at each latency the average number of significant channels using random resamples of 50 epochs 
(see “Methods” section). We then searched for the 100-ms window with the most significance. We found the 
latency of maximum effect size in each dataset differed (Fig. 1): Go/No-go (350–450 ms), Oddball (400–500 ms), 
and Face (250–350 ms). This range, custom for each dataset, was used to assess the efficacy of different signal 
preprocessing methods.

Preprocessing methods. High‑pass filtering. Is there an ideal frequency cutoff to high-pass filter EEG 
data? Linear filter length increases as the cutoff frequency decreases, making it impractical to filter EEG at fre-
quencies below 0.5 Hz. As a result, we used a 4th-order Butterworth filter to assess the optimal high-pass filter 
cutoff frequency (ERPLAB package; see “Methods” section). We tested filters at 0.01 Hz, 0.1 Hz, 0.25 Hz, 0.5 Hz, 
0.75 Hz, and 1 Hz. Filtering had the most important effect on the percentage of significant channels compared 
to all other preprocessing steps. It improved performance by 13% (Face), 47% (Oddball), and 57% (Go/No-go). 
The best filtering was at 0.1 Hz (Face), 0.5 Hz (Oddball), and 0.75 Hz (Go/No-go). Filters above 0.1 Hz led 
to significant improvement compared to no filtering for the Visual Go/No-go and Auditory Oddball datasets 
(p < 0.0001), and also led to significant improvement compared to the 0.01-Hz filter (p < 0.0001). Although there 
was a significant difference between a filter at 0.01 Hz and one at 0.5 Hz for two datasets (Go/No-go and Oddball; 
p < 0.0001 in both cases), this was not the case for the Face dataset, likely because of a filter applied during EEG 
acquisition (see Discussion) (Fig. 2).

Not all filters are created equal. Most software packages have various options and parameters to design filters, 
and it was impractical to test them all. We tested the default filter in the publicly available software packages 

Figure 1.  Percentage of significant electrodes across time for three publicly available experiments. Event-related 
potentials for two conditions (Visual Go/No-go: animal targets vs. non-animal distractors; Face: familiar vs. 
scrambled faces; Auditory Oddball: oddball vs. standard sounds) are extracted from the raw high-pass filtered 
data at 0.5 Hz, and the average percentage of significant electrodes in 20,000 random resamples of 50 trials 
per condition is calculated at each latency in 50-ms increments. Black curves indicate the median, red regions 
indicate median absolute deviations, and gray curves show the percentage of significant channels for individual 
subjects in each dataset. The blue region indicates the 100-ms region of maximum effect size, which may 
correspond to response-related activity for the Go/No-go and Oddball datasets. The scalp topography for each 
experiment is shown using a µV scale.

Figure 2.  Influence of high-pass filtering cutoff frequency on the percentage of significant channels compared 
to no filtering for three datasets. The red regions indicate the 95% CI, and the dots indicate individual subjects. 
The ordinate scale on the right of each panel indicates the percentage of significant tests. It is obtained by 
shifting the left ordinate scale by the average percentage of significant channels in the no-filtering condition.
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EEGLAB, MNE, Brainstorm, and FieldTrip (see “Methods” section and Supplementary Figure 2) and compared 
them to the reference filter in Supplementary Figure 2. There ERPLAB reference filter performed better than all 
other filters for the Oddball dataset (p < 0.0001) but not for the Face and Go/No-go dataset. For the Go/No-go 
dataset, the MNE filter performed significantly worse than the ERPLAB reference filter (p < 0.0001), the Brain-
storm filter (p < 0.005), and the EEGLAB filter (trend at p = 0.02). The MNE filter performed worse for the Face 
dataset than the EEGLAB filter (p < 0.002). For Fieldtrip, we tried two methods: one-step preprocessing, which 
we realized filters raw data epochs, and multi-step preprocessing, which allows filtering raw data before extract-
ing data epochs. For the Oddball dataset, the FieldTrip filter applied to data epochs decreased the percentage of 
significant electrodes up to 25% compared to the reference filter (p < 0.0001) and should be avoided. We use the 
default EEGLAB filter (see “Methods” sections) to high-pass the data from all datasets at 0.5 Hz in all analyses 
in “Line noise removal”, “Referencing”, “Artifact rejection methods”, “Baseline” sections—including those using 
the MNE, Brainstorm, and FieldTrip software packages.

Line noise removal. There are several ways to remove or minimize line noise in EEG data (see “Methods” sec-
tion; Supplementary Figure 3). The most common method is filtering out the line noise frequency using a band-
stop filter, also known as a notch filter. We used an FIR notch filter and IIR notch filter (see “Methods” section), 
and observed no change in the percentage of significant channels for any of the datasets—note that the Visual 
Go/No-go dataset already had the line noise notched (Supplementary Table  1). We also tested the cleanline 
EEGLAB  plugin13, which estimates and removes sinusoidal line noise, and the Zapline‑plus EEGLAB  plugin14, 
which combines spectral and spatial filtering to remove line noise. These methods did not yield significant dif-
ferences compared to no line-noise removal, except for the Face dataset, where they led to a small yet signifi-
cant performance decrease (cleanline p < 0.001) or a trend performance decrease (Zapline‑plus p < 0.02). We also 
rejected noisy channels based on their activity distribution at the line noise frequency (see “Methods” section). 
We interpolated channels that had 1, 1.25, 1.5, 2, 3, and 4 standard deviations more line noise than other chan-
nels (see “Methods” section). For the Go/No-go dataset, rejecting noisy channels led to significant performance 
improvements (p < 0.002 for all standard deviations values tested), with a 1 standard deviation threshold lead-
ing to the best results for the Face dataset (average of 17% of channels rejected) and a 1.25 standard deviation 
threshold for the Auditory Oddball dataset (average of 17% of channels rejected). For our final pipeline (see 
“Optimized pipelines” section), we chose the default threshold of 4 standard deviations, which led to significant 
improvement for the Face and Oddball datasets (p < 0.005 in both cases) and a modest percentage of channels 
rejected (average of 1% to 6%, depending on the dataset).

Referencing. Figure 3 shows the comparison of using different references for the Oddball dataset, for which it 
was possible to test more reference montages than for other datasets (see Supplementary Figure 4 for the Go/
No-go and Face data). For this dataset, all re-referencing significantly decreased the percentage of significant 
channels (p < 0.005 in all cases), including the PREP reference, which uses channel interpolation to remove 
artifacts (see “Methods” section). For the Go/No-go dataset, a trend decrease in performance was observed for 
all reference types (p < 0.09 or lower), and a non-significant decrease was also noted for the Face dataset. For the 
Oddball dataset, the median, average, REST, and PREP references decreased performance the least, although 
they were not significantly better than other reference methods except the circumferential reference. The Nose 
reference introduced the highest variability (Fig.  3). The circumferential reference daisy chain montage also 
performed significantly below the median, average, REST, and PREP references for the Go/No-go, Face, and 
Oddball datasets (significance or trend of p < 0.02 in all cases).

Artifact rejection methods. We used the same method as in “High-pass filtering”, “Line noise removal”, “Ref-
erencing”, “Artifact rejection methods” sections to assess the performance of automatic EEG artifact rejection 
which did not remove data trials, such as EEGLAB clean_rawdata channel rejection and the EEGLAB ICLabel 
eye movement and muscle rejection. However, for methods removing trials, we had to compute significance 

Figure 3.  Influence of the reference on the number of significant channels compared to internal BIOSEMI 
reference (CMS/DRL). For all references, the raw data is first high-pass filtered at 0.5 Hz (see “Methods” 
section). The red regions indicate the 95% CI, and the dots indicate the subjects. See Fig. 2 for details regarding 
the ordinate scales.
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using all trials instead of resampling 50 trials, since our goal was to assess whether these methods can increase 
the percentage of significant channels after bad trials are removed (see “Methods” section).

EEGLAB clean_rawdata channel rejection. The core plugin clean_rawdata was used for detecting bad channels 
with correlation thresholds ranging from 0.15 to 0.975 (see “Methods” section and Supplementary Figure 5A). 
A higher correlation threshold is more aggressive at rejecting channels. We found that a correlation of threshold 
of 0.95 led to a significant 2% improvement compared to no channel rejection for the Face dataset, with 7% of 
channels rejected. The best correlation was 0.97 for the Oddball dataset, with 29% of channels rejected and a 
15% increase in performance. To avoid rejecting too many channels, for the final EEGLAB pipeline (“Optimized 
pipelines” section), we chose to use 90%, which led to a significant performance increase for the Face and Odd-
ball datasets (p = 0.003 and p < 0.0001, respectively) and rejected between 3 and 12% of the channels, depending 
on the dataset.

EEGLAB clean_rawdata ASR rejection. The core plugin clean_rawdata was used for detecting bad data seg-
ments using the first step of the Artifact Subspace Reconstruction (ASR)  method5 (see “Methods” section and 
Supplementary Figure 5B). The threshold used for ASR ranged from 5 to 200 (Table 1). No ASR value led to a 
significant increase in performance. A low threshold of 5 tended to reject 100% of the trials for all subjects of 
the Oddball dataset. Since ASR rejection did not significantly decrease the percentage of significant channels, 
for the final EEGLAB pipeline (“Optimized pipelines” section), we chose the default value, which is equal to 20.

EEGLAB ICLabel eye movement and muscle rejection. Independent Component Analysis (ICA) was first 
applied to EEG (Picard plugin; see “Methods” section and Supplementary Figure 6). ICLabel15 was then applied 
to detect artifacts with thresholds ranging from a probability of 0.5 to 0.9 for belonging to the eye or mus-
cle component category. For eye artifacts, we found a trend advantage of using ICA for the Go/No-go dataset 
(p < 0.05 for all thresholds from 50 to 90%, with a minimum of p = 0.01 at 50%). For muscle artifacts, we found a 
significant advantage to using ICA for the Oddball dataset (0.6 threshold and p = 0.008). For the final EEGLAB 
pipeline (“Optimized pipelines” section), we used the default value, which is 0.9. We also tested ICLabel on other 
ICA algorithms commonly used on EEG  data16 (runica, AMICA, FastICA, and SOBI), but none increased per-
formance significantly (Supplementary Figure 7).

FieldTrip ft_artifact_zvalue. The function ft_artifact_zvalue of FieldTrip was used to detect artifacts automati-
cally (see “Methods” section). We varied the z-score threshold from 1 to 6 (Table 1 and Supplementary Figure 8). 
For low frequency, we observed no significant performance improvement. A threshold below 4 for the Oddball 
dataset decreased performance significantly (p < 0.0005). For high frequency, a threshold of 5 or 6 increased per-
formance for the Go/No-go dataset (p < 0.0001) but decreased performance for the Oddball dataset (p < 0.001). 
In the final FieldTrip pipeline (“Optimized pipelines” section), we set the threshold to 4 for both low and high 
frequency, as recommended in the FieldTrip tutorial (see “Methods” section).

Brainstorm bad segment detection. In Brainstorm, we used the function to detect bad data portions (see 
“Methods” section and Supplementary Figure 9). This function allows finding low-frequency or high-frequency 

Table 1.  Evaluation of different methods for automated artifact rejection in the most popular open-source 
software packages for EEG data analysis (EEGLAB, FieldTrip, Brainstorm, and MNE). For all data rejection 
methods, the data is first high-pass filtered at 0.5 Hz (see “Methods” section). The percentage of significant 
channels is compared to raw data high-pass filtered at 0.5 Hz. For each method, we indicate the range of 
parameters tested. Then for each dataset, the first value indicates the optimal parameter, the second value 
(in parentheses) is the percentage of rejected trials (or interpolated channels for the EEGLAB clean_rawdata 
channel correlation method) followed by the p-value (see “Methods” section).

Parameter values Visual Go/No-go dataset Face dataset Auditory Oddball dataset

EEGLAB clean_rawdata channel correlation threshold 0.15, 0.3, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 0.97 – 0.95 (7%;  p < 0.0001) 0.97 (29%;  p = 0.002)

EEGLAB clean_rawdata ASR threshold 5, 10, 20, 50, 100, 150, 200 – – –

EEGLAB ICLabel probability of eye category thresh-
old 0.5, 0.6, 0.7, 0.8 , 0.9 0.5 ( p = 0.01) – –

EEGLAB ICLabel probability of muscle category 
threshold 0.5, 0.6, 0.7, 0.8 , 0.9 – 0.6 ( p = 0.008)

FieldTrip ft_artifact_zvalue LF z-score threshold 1, 1.5, 2, 2.5, 3, 4, 5, 6 – – –

FieldTrip ft_artifact_zvalue HF z-score threshold 1, 1.5, 2, 2.5, 3, 4, 5, 6 5 (3%;  p < 0.0001) – –

Brainstorm bad segments LF sensitivity threshold 
(1 to 5) 1, 2, 3, 4, 5 5 (28%;  p < 0.002) – –

Brainstorm bad segments HF sensitivity threshold 
(1 to 5) 1, 2, 3, 4, 5 – – –

Brainstorm trial thresholding method parameter 200, 400, 600, 1000, 2000, 5000 – – –

MNE Autoreject number of trials used for calibration 20 trials (default) & all trials all (12%;  p < 0.005) – 20 (19%;  p < 0.0001)
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artifacts with a sensitivity level varying from 1 to 5. For low frequency, a sensitivity of 5 led to a significant 
increase in performance for the Go/No-go dataset (p < 0.002). Sensitivity values of 1 and 2 also led to a signifi-
cant performance increase (p < 0.003) but rejected one or more subjects. There were no significant differences 
for other datasets, except for the sensitivity value of 1 in the Oddball dataset, which rejected 11/14 subjects. 
Given the aggressiveness of this method, we used the lowest sensitivity of 5 in the final Brainstorm pipeline. For 
high-frequency artifacts, at levels 1 and 2, no trials were left for any subjects in any datasets. Level 5, the least 
aggressive sensitivity value, provided trend improvements for the Oddball dataset (p < 0.005), with 19% of trials 
rejected. We used this threshold in the final Brainstorm pipeline (“Optimized pipelines” section).

Brainstorm bad trial detection. In Brainstorm, we also used the function to detect bad data trials (process_
detectbad), varying the threshold from 200 to 5000 (see “Methods” section and Supplementary Figure 9). No 
value led to a significant increase or decrease in performance. We used a threshold of 200 in the final Brainstorm 
pipeline (“Optimized pipelines” section).

MNE Autoreject. We used MNE and the Autoreject plugin library (see “Methods” section and Supplementary 
Figure 10). Autoreject scans the parameter space for optimal values and the main free parameter is the number 
of epochs to fit the data. We used 20 epochs and all epochs (from about 300 to 600 epochs, depending on the 
dataset) (Supplementary Figure 10) and observed no significant difference between the two. In the optimal MNE 
pipeline (“Optimized pipelines” section), we fitted the data using the first 20 epochs to speed up computation, as 
advised in the Autoreject tutorial (see “Methods” section).

Baseline. We tested if pre-stimulus baseline periods ranging from 100 to 1000 ms affected the percentage of 
significant channels (Fig. 4). Applying a pre-stimulus baseline did not significantly improve performance for any 
of the three datasets. In fact, for all baselines performance significantly decreased or trended—p < 0.025 in all 
cases except for baseline ranging from 500 to 1000 ms in the Oddball dataset. Performance decreased the most 
for shorter baselines, with a significant performance drop of 3% to 6% for the 400-ms baseline in all datasets 
(Fig. 4) and a significant performance decrease between the 400-ms and the 1000-ms baseline for the Go/No-go 
and Oddball datasets (p = 0.001 in both cases).

These results contradict standard practice in event-related potential (ERP) research, although the results might 
have been different if the data had not been high-pass filtered at 0.5 Hz. To address this issue, we compared two 
approaches. We compared an approach proposed by Luck and collaborators using a filter at 0.01 Hz with a 200-
ms pre-baseline interval (baseline method)17, with a filter at 0.5 Hz and no baseline (Supplementary Figure 11). 
For all three datasets, using the baseline method led to a significant and large decrease in performance of 30% 
for the Go/No-go dataset (p < 0.0001), 8% for the Face dataset (trend at p = 0.02), 42% for the Oddball dataset 
(p < 0.0001) (Supplementary Figure 11). As indicated in Supplementary Table 1, the Face dataset was high-pass 
filtered at 0.1 Hz at recording time, and the decrease of 8% in performance we observed would likely be higher 
if this had not been the case.

Optimized pipelines. For each open-source software package, we built an optimal pipeline based on 
results presented in the “Artifact rejection methods” section. The “Artifact rejection methods” section indicates 
how we chose parameters for each artifact rejection method. At the end of the preprocessing pipelines, epochs 
are extracted, and performance is computed (see “Methods” section). Unlike “High-pass filtering”, “Line noise 
removal”, “Referencing”, “Artifact rejection methods” sections for which EEGLAB was always used to filter the 
raw data and extract data epochs, all pipelines were implemented stand-alone in each software package, mean-
ing that code from other toolboxes was not used. The goal is to provide an optimal integrated and self-contained 
pipeline to the users of each software package—pipelines are available publicly on GitHub (https:// github. com/ 
sccn/ eeg_ pipel ines). These pipelines are optimized to maximize the percentage of significant channels, so no 
referencing (“Referencing” section) and no baseline (“Baseline” section) are applied (see “Methods” section).

Figure 4.  Influence of the baseline period on the number of significant channels compared to no baseline. The 
red regions indicate the 95% CI, and the dots indicate individual subjects. See Fig. 2 for details regarding the 
ordinate scales.

https://github.com/sccn/eeg_pipelines
https://github.com/sccn/eeg_pipelines
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Despite using the most conservative available settings to reject artifacts, the Brainstorm pipeline rejected all 
trials for some subjects (Fig. 5; Go/No-go: n = 4; Face: n = 14; Oddball n = 1). This is likely because Brainstorm 
is tailored for MEG processing, where artifacts’ amplitude might differ. The FieldTrip pipeline failed to process 
some datasets (Go/No-go: n = 3; Face: n = 4) for which time-locking event latencies were not falling on data 
samples. Both the FieldTrip and Brainstorm tool developers have been notified of these issues, and we expect 
they will fix them.

For the Go/No-go and Oddball datasets, all pipelines led to a higher percentage of significant electrodes 
than no preprocessing (p < 0.0001). The EEGLAB pipeline performed best overall. It performed better than the 
high-pass 0.5 Hz pipeline for the Face (p < 0.004) and the Oddball dataset (p = 0.0008). The HAPPE, Brainstorm, 
Fieldtrip, and MNE pipelines did not perform significantly better than the high-pass 0.5 Hz pipeline for any of the 
datasets. The EEGLAB pipeline performed significantly better in pairwise comparisons with all other pipelines 
for the Face dataset (p < 0.006 except FieldTrip), and it performed better than all other pipelines for the Oddball 
dataset (p < 0.005 except Brainstorm). Fieldtrip performed significantly better than HAPPE (p = 0.01) for the Go/
No-go dataset. We noted no other pairwise significant comparison.

We did not implement fine-tuning for any pipeline. It is important to note that we used the recommended 
values for most pipelines (see “Methods” section). Exceptions were as follows. (1) For EEGLAB, channel cor-
relation was set to 0.9 instead of the 0.85 default (“Artifact rejection methods” section). (2) For HAPPE, we 
used a 150-microvolt threshold. (3) For Brainstorm, the sensitivity was decreased to 5 instead of 3 (default) for 
both low and high-frequency artifact rejection, and trial rejection was set to more conservative − 200 to 200 
instead of − 100 to 100 microvolt range (default); For FieldTrip and MNE, we use all default parameter values 
(see “Methods” section).

Discussion
In a previous report, we used the percentage of data rejected by clean_rawdata5 and the number of brain com-
ponents isolated by ICLabel4 as indicators of data  quality1. However, since they are part of existing processing 
pipelines, these methods cannot be used as ground truth to assess the true quality of EEG data and benchmark 
pipelines.

In this report, we used a data metric inspired by previous  work3, where researchers counted the number of 
significant trials necessary to reach significance in an oddball paradigm. However, this was performed on a single 
electrode, and we observed that results would vary widely based on the reference chosen. Because of volume 
conduction, a strong differential effect between conditions may be visible and significant on most electrodes, 
so we chose to compute significance on all electrodes. Figure 1 confirms this hypothesis: for several subjects, 
more than 80% of their electrodes showed significance in the window of interest. Our procedure is also agnostic 
to the choice of reference and does not depend on the number of trials or channels (see “Methods” section). 
Instead of looking at differences between conditions, it would also have been possible to test for absolute ERP 
amplitude differences compared to baseline. However, maximizing the ERP amplitude and the significance on 
multiple channels might not be cognitively relevant. By comparing conditions, our quality metric is guaranteed 
to be relevant to researchers.

Filtering increased the percentage of significant channels by about 50% for the Go/No-go and Oddball data-
sets. For the Face dataset, filtering led to non-significant improvement, likely because of the high-pass filter at 
0.1 Hz at the time of data collection (Supplementary Table 1). When comparing software implementations, the 
performance was originally low for the FieldTrip filter in the Oddball dataset (Supplementary Figure 2). We 

Figure 5.  Different automated pipeline percentage of significant channels compared to unprocessed raw data 
for three datasets. The upper panels show the percentage of trials rejected and the standard deviation. The lower 
panels show the percentage of significant channels compared to unprocessed raw data. The red regions indicate 
the 95% CI, and the dots indicate individual subjects. See Fig. 2 for details regarding the ordinate scales.
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realized that the FieldTrip preprocessing function extracts data epochs before filtering the data when provided 
with both filter settings and epoch information. After consulting with FieldTrip developers, for all analyses using 
FieldTrip, we used an alternate multi-step implementation allowing us to extract epochs after the raw data had 
been filtered.

We found that the only line noise removal that affected the percentage of significant channels was the inter-
polation of noisy channels. Notch filtering had no significant effect. Spectral and spatial interpolation in cleanline 
and Zapline‑plus even impacted performance negatively for the Face dataset. The Go/No-go data likely had a 
hardware notch filter that proved efficient at removing line noise since removing noisy channels no longer affected 
performance (Supplementary Table 1; Supplementary Figure 3). When significant, the performance improve-
ment of line noise correction was minor (on the order of a few percent), in contrast to the effect of high-pass 
filtering, which led to performance increases of about 50% on two datasets. Except for data visualization and 
cluster corrections for multiple comparisons in the frequency domain, offline removal of line noise might not 
be a critical step when preprocessing EEG data.

We have found that re-referencing in all three datasets did not increase the percentage of significant channels. 
At best, the median, average, REST, and PREP references led to a non-significant decrease in performance for 
some datasets. Again, this is contrary to belief in the EEG community, where there is a relentless search for the 
optimal EEG  reference18–20. Our result is surprising, given that the three datasets used different references (Cz 
for the Go/No-go data, nose for the Face data, and BIOSEMI internal reference for the Oddball data). The nose 
reference for the Face dataset has been known to introduce artifacts, especially at high  frequency21, and is now 
seldom used in EEG research. The BIOSEMI raw signal for the Oddball dataset is considered unsuited for offline 
data analysis, and the BIOSEMI company recommends choosing an offline reference to add 40 dB extra CMRR 
(common mode rejection ratio) (https:// www. biose mi. com/ faq/ cms& drl. htm). The Neuroscan Cz reference for 
the Go/No-go dataset is also a common reference by EGI, Inc. Nevertheless, re-referencing the data to Cz for the 
Oddball dataset did not increase performance (Fig. 3). These results might indicate a fundamental difference in 
terms of noise suppression between analog referencing and digital re-referencing and warrant more research to 
understand the difference between the two. The interaction between data re-referencing and prior data filtering 
(0.5 Hz high-pass in our case) should also be investigated.

We have observed that, if the data is high-pass filtered at or above 0.5 Hz, subtracting mean baseline activity 
should be omitted for event-related analyses. Subtracting baseline activity has either no effect or a negative effect 
on data quality, especially when the baseline is shorter than 500 ms. Lutz and collaborators argue that filtering 
distorts ERPs and that baseline removal should be used  instead17. While it is true that the ERPs are distorted, we 
have found that, when using the short baseline proposed by Lutz, data quality decreases dramatically, render-
ing almost all electrodes non-significant for some subjects in the case of the Oddball dataset (Supplementary 
Figure 11).

Regarding artifact rejection, our results are not what one would expect of basic (simple thresholding) and 
more advanced data cleaning methods. Almost none of them led to significant performance improvement, and 
when improvement was observed, the effect was weak and not consistent across datasets. When resampling 50 
data trials instead of using all the trials to compute significance, we observed that rejecting trials led to significant 
improvement for most methods, meaning that these methods are indeed capable of removing bad trials. For 
example, using a 50 data trials bootstrap with ASR, a threshold of 10 increased performance for the Face and 
Oddball datasets (p < 0.0001 in both cases), although about 60% to 80% of trials were rejected. Using a 50 data tri-
als bootstrap, Brainstorm sensitivity 5 for high-frequency artifacts provided significant improvements (p < 0.004 
in all datasets with 19% to 45% of trials rejected), and MNE Autoreject also provided significant improvements 
(Go/No-go: p = 0.005 and 12% of trials rejected; Oddball: p < 0.001 and 19% of trials rejected). However, as seen 
in Table 1, this was not the case when bootstrapping all remating trials: the removal of bad trials most often failed 
to compensate for the decrease in the number of trials and associated decrease in statistical power compared to 
the control condition where no trials were removed.

Although ICA increased the percentage of significant channels, it did not do so systematically (Table 1). 
However, there is more to consider when using an artifact rejection method than the number of significant 
channels. For example, ICA and ICLabel removed artifacts related to eye and muscle movements, which affect 
scalp topographies and might provide advantages for visualization (Supplementary Figure 12) and subsequent 
source localization.

The EEGLAB pipeline performed best and was a significant improvement compared to filtering the data for 
all datasets, with 5% (Go/No-go) to 17% (Oddball) and 18% increase in the number of significant channels. This 
was likely due to the methods used to reject and interpolate bad channels, as both the ICA and the ASR methods 
showed limited efficacy (“Artifact rejection methods” section). All other pipelines showed no improvements 
compared to filtering the data. One could argue that we have a double-dipping problem because we optimized 
the pipelines, then recalculated the significance. To address this issue, we reverted the EEGLAB  pipeline1 to all 
default parameters (v2022.0), which only changed the threshold for channel correlation to 0.85 instead of 0.9. 
The difference with the basic pipeline was no longer significant for the Go/No-go dataset. It was still significant 
for the Face (p = 0.004) and the Oddball dataset (p = 0.0008).

We could not include all existing pipelines in our comparison. The PREP  pipeline22 is an EEGLAB plugin for 
building EEG pipelines. The PREP pipeline contains threshold-based automated EEGLAB artifact  rejection2, 
which we chose not to test since we tested similar methods in other software (Brainstorm, FieldTrip). The PREP 
pipeline also contains a method to perform robust referencing, which we included when comparing re-referenc-
ing methods (Fig. 3). The APICE pipeline is another EEGLAB pipeline we did not test since it is tailored to infant 
 EEG23. EEGLAB also contains 29 plugins with methods to reject artifacts, including  FASTER24 and MARA 25, 
two popular automated EEG processing methods. Although we did not evaluate these algorithms directly, they 
were included in the HAPPE pipeline.

https://www.biosemi.com/faq/cms&drl.htm
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We show the efficacy of using a non-subjective task-relevant metric to assess data quality that may be used to 
guide EEG preprocessing. Using this metric, we also showed that for relatively clean EEG acquired in laboratory 
conditions, preprocessing techniques had little effect on data quality. This might not be the case for more noisy 
data acquired in other  conditions7. We hope future work continues to develop the proposed method to unveil a 
new era of automated signal processing for EEG, MEG, and iEEG.

Methods
Data quality metric. For Fig. 1, we high-pass filtered the data at 0.5 Hz (we used the default EEGLAB 
hamming windowed sinc FIR filter of the Firfilt plugin (v2.6) with 0.5-Hz high-frequency cutoff and default 
parameters) and extracted 3-s epochs (from − 1 to 2 s) with no baseline removal. We calculated the number of 
significant channels in random resamples of 50 epochs with replacement and with 20,000 repetitions at each 
latency (in 50-ms increments) for each subject (Supplementary Figure 1). We then calculated the median and 
median absolute deviation (MAD) at each latency. To find the window of most significance, we smoothed the 
median values (moving average filter of size 3) and took the maximum. The 100-ms window of maximum effect 
size was defined as this latency plus and minus 50 ms.

For Figs. 2, 3, 4 and 5, we averaged the potential in the 100-ms time window selected above. For speed of 
processing and to align with standard ERP analyses practices, epochs of 1 s (from − 0.3 to 0.7 s) instead of 3 s 
were extracted (except for “Baseline” section). Since no baseline period is removed, the length of the data epochs 
does not influence the data quality measures (except when continuous data portions are rejected, in which case 
more 1-s epochs than 3-s epochs may be extracted). For each channel and each subject, we drew 50 randomly 
selected epochs (with replacement) from each condition and calculated the percentage of significant channels 
between conditions (p < 0.05) using an unpaired t-test (ttest_cell function of EEGLAB). We repeated this proce-
dure 20,000 times to obtain the average percentage of significant channels for each subject (one value per subject).

When comparing preprocessing methods, our null hypothesis was that there was no difference between the 
methods. We calculated the pairwise difference between methods (using subjects as cases) and computed con-
fidence intervals and significance using 20,000 bootstraps (this is equivalent to using a paired t-test, although, 
unlike a t-test, it does not require the data to be normally distributed). When a rejection method removed too 
many trials for some subjects (see below), we ignored them when calculating significance.

Some of the methods involved data cleaning, which flagged bad data trials. For these methods, since sig-
nificance is affected by the number of trials, instead of bootstrapping 50 trials, we bootstrapped the number of 
remaining data trials to compute the percentage of significant channels—except in the Discussion where we 
bootstrapped 50 trials to assess whether rejection methods were able to extract a set of good trials (and most 
were). When using all remaining data trials to compute significance, we checked for saturation of our perfor-
mance metric, and that not all electrodes were significant. For both the Go/No-go and the Oddball datasets, about 
half of the subjects reached 80% significant channels with high-passed filtered data. Still, none reached 100%, 
and even when this value was above 90% (only four such subjects in all datasets), the EEGLAB pipeline could 
sometimes improve performance. If the percentage of bad data trials for a given condition and a given subject 
was more than 75% of the total number of trials, we ignored the subject. When comparing methods, significance 
was not calculated when the number of remaining subjects was less than 4.

We rounded all significant effects to the nearest percent. P-values are reported uncorrected, but we do not 
report any significant p-value above 0.01 – p-values between 0.01 and 0.05 are reported as trends—accounting 
for Bonferroni type correction for multiple comparisons when the number of comparisons in a plot is less than 5.

Computing platform. We performed all computations on Expanse, a high-performance computing resource 
at the San Diego Supercomputer Center part of the Neuroscience  Gateway26. On Expanse, we used MATLAB 
2020b and Python 3.8. Except when troubleshooting, all computations were run in non-interactive mode using 
the SLURM workload manager. We used a total of approximately 10,000 core hours to run our comparisons.

Data. Data availability. All data is publicly available on the OpenNeuro.org and NEMAR.org web plat-
form under the following public digital object identifiers https:// doi. org/ 10. 18112/ openn euro. ds002 680. v1.2.0, 
https:// doi. org/ 10. 18112/ openn euro. ds002 718. v1.0.5, https:// doi. org/ 10. 18112/ openn euro. ds003 061. v1.1.1.

Go/No‑go dataset. This experiment is a go-no visual categorization task where 14 participants responded when 
they saw an animal in a briefly flashed photograph. Fifty percent of the photographs contained images of animals 
photographed from different angles, and the other 50% did not contain images of animals or humans. Images 
were presented animal pictures for 20 ms at random intervals of 1.8–2.2 s. We compared correct targets—go 
responses on animals—to correct distractors—no-go responses on non-animal  images27. To reduce the amount 
of data to process, we only used data from one of the two recording sessions (session 1), which amounted to an 
average of 228 targets (standard deviation: 17 targets) and 235 distractors (standard deviation: 10 distractors). 
The data was acquired at 1000 Hz and resampled to 250 Hz for subsequent analysis using the MATLAB resample 
function.

Face dataset. This multi-modal  dataset11 contained EEG data acquired by an Elekta MEG machine and has 
been used in many publications, including the comparison of open-source software  packages28. Eighteen par-
ticipants judged the symmetry of facial photographs presented sequentially. A fixation cross was presented for a 
random duration between 400 and 600 ms, after which the stimulus (face or scrambled face) was superimposed 
for a random duration between 800 and 1,000 ms. During the 1,700 ms interstimulus interval a central white 
circle was shown. This task was accessory and was used to maintain participant engagement, as the goal of the 

https://doi.org/10.18112/openneuro.ds002680.v1.2.0
https://doi.org/10.18112/openneuro.ds002718.v1.0.5
https://doi.org/10.18112/openneuro.ds003061.v1.1.1
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experiment was to compare different types of faces: familiar, unfamiliar, and scrambled. Here we compared 
familiar and scrambled faces. We used a release of this dataset tailored for EEG research, where the six runs for 
each subject were concatenated, and the data was resampled at 250  Hz29. Each subject saw 150 familiar and 150 
scrambled faces. This dataset contained four non-EEG channels, which we ignored in all analyses.

Oddball dataset. In this experiment, 13 participants responded by pressing a button to infrequent oddball 
sounds (70 ms of 1000 Hz; 15% of the trials) interspaced by frequent standard sounds (70 ms at 500 Hz; 70% 
of the trials) and infrequent white-noise sounds (70 ms duration; 15% of the trials). Inter-stimulus interval was 
selected randomly from 0.9 to 1.1 s. Of the three data blocks (or runs) for each subject, only one run is analyzed 
here to speed up computation. Run 1 is truncated for one of the subjects, so we processed run 2 instead. We 
only considered correct responses to oddball targets and standard non-targets (behavioral response on oddball 
stimuli and absence of response on standard stimuli). There was an average of 92 correct targets (standard devia-
tion: 25) and 518 correct non-targets (standard deviation: 8). The data were digitally resampled to 256 Hz before 
being processed using the BIOSEMI resampling program. This dataset contained 15 auxiliary channels, which 
were ignored in all analyses, except for the referencing (five of these auxiliary channels are used to re-reference 
the data in Fig. 3: left and right mastoids, left and right earlobes, and nose).

Filtering. As a reference filter in Fig. 2, we used the pop_basicfilter method of ERPLAB v9.030, which allows 
designing a stable filter down to 0.01 Hz (Butterworth of order 4 with default ERPLAB roll-off parameter values). 
For Supplementary Figure 2, for EEGLAB, we used the default Hamming windowed sinc FIR filter of the Firfilt 
plugin (v2.6) with 0.5 Hz high-frequency cutoff and default parameters (the order of the filter was automati-
cally calculated based on the signal sampling frequency). This filter was also used for all analyses of “Line noise 
removal”, “Referencing”, “Artifact rejection methods”,  and “Baseline” sections. For MNE, we used the default fil-
ter (linear FIR filter of the filter method of the raw object with a high-pass filter at 0.5 and no low-pass filter—all 
other parameters set to defaults). For Brainstorm, we used the process_bandpass function with a FIR high-pass 
filter at 0.5, no low pass, and all default parameters (2019 FIR filter version, which is the default). For FieldTrip, 
we used the default settings for high-pass filtering (4th order Butterworth filter). For FieldTrip, we use the one-
step procedure in the ft_preprocessing function, which filters data epochs instead of filtering the raw data and 
then extracting data epochs (“FieldTrip But epochs” in Supplementary Figure 2). Because of poor performance 
for the Auditory Oddball dataset, and upon contacting the FieldTrip tool developers, we also used a multi-step 
approach to first filter the data and then extract epochs using the ft_redefinetrial function (“FieldTrip But” in 
Supplementary Figure 2). All filters were non-causal two-pass filters (forward and backward); when present, the 
filter order indicated above refers to one of the two passes.

Line noise rejection. For the notch linear filter, we used the pop_eegfiltnew function of EEGLAB 2022.1 
with passband edges 48 and 52 and default parameters (FIR filter of order 415 for 250 Hz data, 2 Hz transition 
bandwidth, zero phase, non-causal, cutoff frequencies at—6bD of 49 to 51 Hz). For the Notch filter, we used 
the IIRFilt EEGLAB plugin (v1.03) with 48 and 52 and default parameters (IIR filter of order 12 and transition 
bandwidth of 1 Hz). For rejecting channels containing line noise, we used the lineNoiseCriterion parameter (with 
all other parameters disabled) of the clean_rawdata plugin of EEGLAB (v2.7) with a range of standard deviation 
thresholds (see main text). We also tested the cleanline EEGLAB plugin (v2.0), which adaptively estimates and 
removes sinusoidal (e.g., line) noise from scalp channels using multi-tapering and a Thompson F-statistic, lever-
aging methods developed in the Chronux  toolbox13. We finally used the Zapline‑plus (v1.2.1) EEGLAB plugin, 
a method that combines spectral and spatial filtering to remove line  noise14. We used default settings for both 
cleanline and Zapline‑plus for the 50-Hz frequency band.

Re-referencing. The auditory Oddball dataset was recorded with additional channels to test re-referencing 
methods: mastoids, earlobes, and nose. These additional channels are recorded in the auxiliary channels of the 
BIOSEMI amplifier (EXG 1–5) and are not included in any other analyses. EEGLAB (v2022.1) pop_reref method 
was used to reference the data to these channels. We also used the PREP pipeline performReference function 
(with default parameters), which calculates a robust reference using the RANSAC  algorithm22. We used the 
EEGLAB pop_reref function and the FieldTrip ft_preproc_rereference function to calculate the average reference 
with default parameters. We also used the FieldTrip ft_preproc_rereference function to compute the median ref-
erence. For the REST  reference5 and following the FieldTrip tutorial (https:// www. field tript oolbox. org/ examp le/ 
reref erence/; August 8, 2022), we used the same 10- to 20-template montage (Easycap-M1) for all datasets, and 
calculated a leadfield matrix for the 4-sphere spherical head model (conductances of 0.33, 1, 0.0042, and 0.3300; 
radii of 71, 72, 79, and 85 mm). Finally, still using FieldTrip, we calculated the longitudinal and circumferential 
daisy chain references, which extract a small subset of channels and calculate their pairwise difference.

Automated artifact rejection. EEGLAB clean_rawdata channel rejection. The clean_rawdata EEGLAB 
plugin (v2.7) was used for detecting bad channels with correlation thresholds ranging from 0.15 to 0.975 (see Ta-
ble 1). All other data rejection methods of clean_rawdata were disabled. Channels below the correlation thresh-
old are interpolated using spherical splines (pop_interp function of EEGLAB 2022.1).

EEGLAB clean_rawdata ASR rejection. The clean_rawdata EEGLAB plugin (v2.7) was used for detecting bad 
segments of data with thresholds ranging from 5 to 200 (see Table 1). This plugin uses the Artifact Subspace 
Reconstruction  method5 to detect and correct bad portions of data. We only used the artifact detection method 

https://www.fieldtriptoolbox.org/example/rereference/
https://www.fieldtriptoolbox.org/example/rereference/
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of ASR to remove bad segments of data (which is the default in EEGLAB for offline processing) and did not cor-
rect them. All other data rejection methods of clean_rawdata were disabled.

EEGLAB ICLabel eye movement and muscle rejection. ICA was performed using Infomax (Picard plugin v1.0) 
and default parameters in EEGLAB 2022.1 (EEGLAB automatically sets the maximum iteration of Picard to 500 
instead of 100). ICLabel (v1.4)15 is a machine learning algorithm able to detect artifactual ICA components based 
on their topography and activity. Each component is assigned a probability of belonging to 1 of 7 classes, which 
include the muscle and eye movement artifact classes. We applied the ICLabel default method to detect eye and 
muscle artifacts with probability thresholds ranging from 0.5 to 0.9. When testing other ICA algorithms (runica, 
AMICA, FastICA, sobi; Supplementary Figure 7), we use their implementation in EEGLAB or EEGLAB plugins 
with default parameter values.

FieldTrip ft_artifact_zvalue artifact parameters. We used the function ft_artifact_zvalue (FieldTrip version of 
August 7, 2022) to remove artifacts. We followed the online tutorial (https:// www. field tript oolbox. org/ tutor ial/ 
autom atic_ artif act_ rejec tion/; version of August 8, 2022) and used the code snippets to remove EOG and muscle 
artifacts. For detecting eye movements, we used frontal channels AF7, AF3, Fp1, Fp2, and Fpz (Oddball data-
set), AF3, AF4, AF7, AF8, and Fpz (Face datasets), channels Fp1 and Fp2 (Go/No-go dataset). We left all other 
parameters as in the tutorial (trlpadding = 0; artpadding = 0.1; fltpadding = 0; 4th order Butterworth filter and use 
of the Hilbert method). We used a frequency range of 2 to 15 Hz, as recommended in the FieldTrip tutorial, and 
varied the z-score threshold from 1 to 6. For detecting muscle artifacts, we changed the channels to T7, T8, TP7, 
TP8, P9, and P10 for the Oddball and Face datasets and T5, T6, CB1, and CB2 for the Go/No-go dataset. We 
used the default 9-order Butterworth filter and boxcar parameter to 0.2, but changed the frequency range from 
100 to 110 Hz (the upper edge of this filter is lower than in the FieldTrip tutorial to accommodate our lower data 
sampling rate) and varied the z-score threshold from 1 to 6. Note that z-score calculated on a subset of channels 
are likely more relevant for MEG than for EEG: For EEG, the number of channels with noise might depend on 
the reference. High frequency noise is also likely stronger in MEG than EEG where it might be smeared out.

Brainstorm bad segment detection. We used the Brainstorm (version of August 5, 2022) functionality to detect 
bad portions of data (menu item “Detect other artifacts” corresponding to the command line function process_
evt_detect_badsegment). We varied sensitivity from 1 to 5 (the only values allowed) for the low-frequency and 
high-frequency artifact detection. We also used the Brainstorm function to detect bad data trials (process_detect‑
bad) and varied the threshold from 200 to 5000 (Table 1).

MNE Autoreject parameters. We used MNE 1.1.0 on Python 3.8 with default scientific and plotting libraries 
and MNE libraries eeglabio 0.0.2 and Autoreject 0.3.1. We could not find any function to automatically reject bad 
portions of data or bad channels within MNE itself. The Autoreject31 plugin allows the correction and rejection 
of bad data. Although it is not officially part of MNE, it was made by MNE core developers. Upon contacting 
other MNE core developers, no alternative method was proposed. Unlike other artifact rejection methods with 
tunable parameters, Autoreject automatically scans the parameter space to reject the best number of channels 
and bad data regions. The algorithm was validated on four EEG  datasets31 and has been used with default param-
eters by at least one other  group32. We followed the online documentation (https:// autor eject. github. io/ stable/ 
auto_ examp les/ plot_ autor eject_ workfl ow. html; August  8th 2022) and used, as in the tutorial, 1 to 4 channels to 
interpolate. Another parameter in the Autoreject tutorial is the number of epochs to fit. The proposed method 
uses the first 20 epochs to speed up computation. We tried using the first 20 epochs and all epochs (Table 1).

Pipelines. Common processing for all pipelines. High-pass filtering at 0.5 Hz was applied using the default 
method in each software package (Finite Impulse Response for EEGLAB, MNE, and Brainstorm and Butter-
worth filter for FieldTrip; see also the Filtering Method section).

HP 0.5 Hz pipeline. We use the default EEGLAB FIR 0.5-Hz high-pass filter and no other preprocessing. See 
the Filtering Method section.

EEGLAB pipeline. We use the default FIR 0.5-Hz high-pass filter, followed by electrode line noise detection 
and interpolation (4 standard deviation threshold; “Artifact rejection methods” section), clean_rawdata channel 
correlation removal (0.9 correlation threshold), clean_rawdata ASR rejection (threshold of 20), ICA followed by 
ICLabel with 0.9 probability thresholds for muscle and eye.

FieldTrip pipeline. We used the default Butterworth 0.5 Hz high-pass filter. FieldTrip one step ft_preprocessing 
function filters data epochs instead of filtering the raw data then extracting data epochs, leading to poor perfor-
mance (Supplementary Figure 2), so we used a multi-step approach to first filter the data then extract epochs 
using the ft_redefinetrial function. We rejected data epochs with high and low-frequency artifacts with a 4-dB 
threshold, which is the default in the FieldTrip tutorial (see the section “FieldTrip ft_artifact_zvalue artifact 
parameters” and the  “Artifact rejection methods” section).

Brainstorm pipeline. We used the default Brainstorm 0.5-Hz high-pass filter and rejected low- and high-fre-
quency artifacts with sensitivity level 5 (“Artifact rejection methods” section). We rejected bad trials with a 
threshold of 200 (“Artifact rejection methods” section).

https://www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection/
https://www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection/
https://autoreject.github.io/stable/auto_examples/plot_autoreject_workflow.html
https://autoreject.github.io/stable/auto_examples/plot_autoreject_workflow.html
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MNE pipeline. We used the default MNE 0.5-Hz high-pass filter and rejected and repaired artifacts using 
Autoreject (20 trials used for the fitting process; “Artifact rejection methods” section).

HAPPE pipeline. HAPPE33 is an EEGLAB-based processing pipeline that uses the MARA EEGLAB plugin 
for rejecting artifacts using  ICA25 and the FASTER EEGLAB plugin to interpolate bad data  segments24. It is an 
integrated pipeline, although it allows users to set a peak-to-peak raw data threshold in microvolts. We tried 
a range of 50  to  150 microvolts for this threshold in 10 increments but did not find a significant difference 
between thresholds or with no threshold, so we set the threshold to 100. We used the default setting for re-
referencing, which computes an average reference (not re-referencing is not an option). We modified the core 
code to decrease the high-pass filter cutoff frequency to 0.5 Hz (instead of the 1-Hz default) to match the first 
preprocessing step with other pipelines. We disabled the cleanline plugin to remove line noise because it pro-
duced errors on some datasets. We made other minor modifications to be able to process the Go/No-go, Face, 
and Oddball datasets and issued version 2.0 of the HAPPE pipeline for others to use (https:// github. com/ arnod 
elorme/ happe). Unlike other pipelines, this pipeline automatically re-reference the data, which may explain its 
poor performance in Fig. 5.
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