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Suppression of seizure in childhood 
absence epilepsy using robust 
control of deep brain stimulation: 
a simulation study
Ehsan Rouhani 1*, Ehsan Jafari 2 & Amir Akhavan 1

Deep brain stimulation (DBS) is a promising technique to relieve the symptoms in patients with 
intractable seizures. Although the DBS therapy for seizure suppression dates back more than 40 years, 
determining stimulation parameters is a significant challenge to the success of this technique. One 
solution to this challenge with application in a real DBS system is to design a closed-loop control 
system to regulate the stimulation intensity using computational models of epilepsy automatically. 
The main goal of the current study is to develop a robust control technique based on adaptive fuzzy 
terminal sliding mode control (AFTSMC) for eliminating the oscillatory spiking behavior in childhood 
absence epilepsy (CAE) dynamical model consisting of cortical, thalamic relay, and reticular nuclei 
neurons. To this end, the membrane voltage dynamics of the three coupled neurons are considered as 
a three-input three-output nonlinear state delay system. A fuzzy logic system is developed to estimate 
the unknown nonlinear dynamics of the current and delayed states of the model embedded in the 
control input. Chattering-free control input (continuous DBS pulses) without any singularity problem 
is the superiority of the proposed control method. To guarantee the bounded stability of the closed-
loop system in a finite time, the upper bounds of the external disturbance and minimum estimation 
errors are updated online with adaptive laws without any offline tuning phase. Simulation results are 
provided to show the robustness of AFTSMC in the presence of uncertainty and external disturbances.

Epilepsy refers to a set of chronic neurological diseases typified by repetitive (at least two) spontaneous sei-
zure attacks due to abnormal bursts of electrical activity in the brain that can bring about temporary brain 
 dysfunction1. According to the regional emergence of excessive electrical activity in the brain, the International 
League Against Epilepsy (ILAE) classified seizures as focal (partial), generalized, and  unknown2,3. Focal seizures 
are established in a local area of the brain. They can be further classified based on the patient’s awareness during 
a seizure attack as aware (simple) and impaired awareness (complex). In generalized seizures, both hemispheres 
are involved at the onset of the seizure, and awareness is impaired in most cases. The regional onset is unspecified 
in unknown seizures, but other manifestations are  known3. These classes can also be subdivided into the motor 
or non-motor subsets regarding movement  manifestations2–4. Childhood absence epilepsy (CAE) is a subset of 
genetic/idiopathic generalized epilepsy characterized by frequent daily absence (non-motor) seizures in children 
between 2 to 13 years old. The typical features of CAE include sudden cessation of activity and awareness (e.g., 
staring blankly), short time duration episodes (approximately 9 s), and 2.5–3.5 Hz bilateral, synchronous spike-
and-wave discharges (SWDs) in the recorded electroencephalogram (EEG) signal during seizure episodes in the 
 brain5,6. Elucidating the pathogenesis of CAE, as well as developing efficacious remedies, are the fundamental 
challenges that should be tackled by researchers.

Various studies on patients with absence seizures and animal models acknowledged that the SWDs in elec-
trophysiological recordings mainly originated from the aberrant neuronal interplay between the cerebral cortex 
and thalamus that constitutes the corticothalamic network. In fact, the reticular thalamic nucleus, thalamic relay 
nuclei, and cortical neurons form a reciprocal neuronal circuit demonstrating a significant contribution in the 
absence of seizure  onset7–13. In accordance with experimental results, numerous computational corticothalamic 
models have been developed to discover the underlying mechanisms of transition from regular brain activity to 
 SWDs14–25. To replicate the spontaneous SWDs in EEG recordings of rats with the absence of epilepsy, Suffczynski 
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et al.21 developed a network model of the corticothalamic circuit in which the thalamus model consisted of 
the thalamocortical relay cells and reticular nucleus, and the cortex role imitated by the excitatory pyramidal 
cell population and inhibition interneuron population. Using these mutually interconnected neuronal popula-
tions, SWDs can be rendered by dynamical bifurcation in a bistable system. Later Rodrigues et al.22,23 recruited 
a mean-field model of the human cortico-thalamic circuit to present the transition from the inter-ictal phase 
to SWD. Marten et al.24 presented a modified mean-field model of human EEG activity that could explain not 
only the classical SWDs dynamics but also more dynamical phenomena, e.g., polyspike complexes.  Destexhe7,8 
developed a conductance-based neuronal model of the thalamocortical circuit and emphasized the pivotal role of 
corticothalamic feedback and GABA receptors in hyper-synchronized oscillations and SWDs patterns. Motivated 
by this work, a 3-neuron pattern of CAE was  formulated25. According to this model, long corticothalamic loop 
delay and low  GABAA activity of thalamic relay cells are associated with CAE. Despite  GABAA deficiency, it was 
demonstrated that axonal myelination, which occurs by reaching adulthood, might shorten the corticothalamic 
loop delay and lead to outgrowing seizures.

CAE might negatively impact school-aged children’s social behavior, self-confidence, and education, accen-
tuating the necessity of prompt and efficient  treatment26,27. Although antiepileptic drugs are the most common 
prescription for CAE patients, they are ineffective in intractable cases, and long-term usage might cause side 
effects, e.g., liver  disorders28. Neurosurgical resection, which is the removal of brain tissues contributing to 
epilepsy, is risky due to the generalized nature of the absence of epilepsy and irreversible  consequences29–31.

Deep brain stimulation (DBS), the application of electrical pulses to specific brain regions using implanted 
electrodes, is often employed to treat movement disorders such as Parkinson’s disease (PD)32,33 as well as to relieve 
and control the symptoms in patients with intractable  seizures34. Although the DBS therapy for seizure suppres-
sion dates back more than 40  years35,36, the outcomes left much to be desired. A thorough understanding of the 
underlying mechanism by which DBS terminates the seizure is of great importance. Concerning the cardinal role 
of the thalamus in seizure development and inhibition, the anterior and centromedian nuclei of the thalamus have 
been targeted to suppress refractory  epilepsy37. Despite the promising results, the mechanism of action of DBS is 
not thoroughly clear. From the cellular perspective, DBS can regulate the activity of GABAergic neurons located 
in the reticular thalamic nucleus to produce inhibitory postsynaptic potentials and induce synaptic inhibition of 
excitatory corticothalamic relay  neurons38. It has been demonstrated that the strength and duration of absence 
epilepsy are weakened by amplifying the GABAergic inhibitory  power39.

Determining stimulation parameters such as amplitude, pulse width, and frequency is a significant challenge 
to the success of DBS technique. Open-loop  control40–46 and closed-loop  control47–54 have been the two main 
approaches to address this challenge. However, the open loop control approach strictly depends on the neurolo-
gist’s experience and provides constant pre-determined stimulation on either a  continuous43,44 or  periodic42 basis, 
which gives rise to excessive battery usage and, eventually, battery replacement  surgery55,56. Moreover, persistent 
brain electrical stimulation without considering the current state of the disease interrupts the patient’s regular 
activity and might cause involuntary  movements57. On the contrary, a closed-loop control system monitors the 
disease biomarkers and automatically provides real-time variable intensity stimulations, taking into account the 
onset and strength of the  attacks52. Motivated by these benefits, various closed-loop control DBS schemes have 
been designed to treat neurological and neuropsychiatric  disorders58–62.  In58, a data-driven linear state-space 
model in which the parameters were learned by a novel input waveform was developed to build a dynamic 
input–output framework for neural activities. Furthermore, a real-time closed-loop simulation testbed to con-
trol the mood in depression was implemented.  In59, a population of 100 thalamic neurons model was simulated 
to evaluate the effect of extracellular electrical stimulation on the generated local field potentials (LFPs) in 
tremor conditions. An autoregressive with exogenous input (ARX) model was employed to model the relation-
ship between the stimulus current and LFPs. To restore the power spectral profiles of tremor-free conditions, 
an adaptive minimum variance controller was adopted, which regulates the stimulation intensity and thereby 
corrects the abnormal patterns of neuronal activity. Ehrens et al.60 used a fragile stochastic neuronal network 
model, which entails seizure and non-seizure modes regarding the synaptic weights between neurons. A hidden 
Markov model (HMM) was established to detect the seizure occurrences (unstable modes) followed by a state 
feedback gain to suppress the seizure attacks. To suppress the motor symptoms of PD, Su et al.61 proposed a DBS 
framework based on proportional-integral (PI) control to track the dynamic beta oscillatory activity presented 
in reference signals during voluntary movement. A linear controlled auto-regressive model was employed to 
represent the relationship between stimulation frequency and beta band power and then was coupled with 
Routh-Hurwitz stability analysis to tune the coefficients of the PI controller.  In63, a Radial basis function neural 
network (RBFNN) was used in a supervisory control algorithm as an inverse model of the computational model 
of PD to track the desired dynamic beta power. To track the model uncertainty and provide robustness to noise 
and disturbance in control of brain states using DBS, Fang et al.64 proposed an adaptive robust controller to 
cancel uncertainties included in a state-space brain network model. Monte Carlo simulations were performed 
to validate the suggested algorithm.

Myriad closed-loop control systems were developed in recent years to suppress the epileptic seizures generated 
by computational models of  epilepsy47–51,54. Wang et al.47 proposed a PI controller to control the high-amplitude 
seizure activity simulated by a neural mass model (NMM). Researchers  in50, investigated an NMM representing 
the epileptic activities of the brain as a black box and established an auto-regressive moving-average Volterra 
model to approximate the black box input (stimulation)-output (EEG) relationship. Then, a model predictive 
controller was developed to remove the epileptic waves. Zhang et al.54 designed two closed-loop PI controllers to 
eliminate SWDs by automatically regulating the amplitude and frequency of DBS. To this end, a basal ganglia-
corticothalamic model of absence epilepsy was approximated using the linear controlled auto-regressive model 
and recursive least square methods. The coefficients of the PI controllers were determined by the Routh-Hurwitz 
stability criterion. Despite the promising results exhibited by the mentioned control methods, the unmodeled 
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dynamics and parameter uncertainties due to the highly nonlinear and time-varying nature of the neurological 
systems, external disturbance rejection, and stable function of the controller in real applications have not been 
entirely addressed.

Apart from simulation studies, a handful of clinical DBS systems to suppress epilepsy have been developed 
in the last two decades. Responsive Neurostimulation System (RNS, NeuroPace) is the first FDA-approved com-
mercially available closed-loop device that provides responsive brain stimulation with respect to the electrocor-
ticogram (ECoG) recordings through one or two depth and/or subdural cortical strip leads that are implanted 
at the seizure focus of focal onset seizure patients. This device demonstrated favorable outcomes on 11 out of 
27 patients with  epilepsy65–67.  In68, an implantable concurrent sensing and stimulation DBS device that relies on 
LFP and ECoG sensors was developed and validated in an ovine model of epilepsy. A support vector machine 
(SVM) classification algorithm was recruited to separate the biomarkers from the stimulation artifact. DiLorenzo 
et al.69 devised a seizure advisory system in connection with an implantable 16-channels intracranial monitoring 
to predict seizures. The preclinical tests were performed in a canine model and then implantation of 15 patients 
to evaluate the method.

Sliding mode control (SMC) is a powerful nonlinear robust control strategy featuring outstanding perfor-
mance to compensate for the parameter uncertainty and bounded external disturbances in highly nonlinear 
 systems70,71. To achieve seizure abatement, a classical SMC was integrated with an RBFNN approximator to 
propel the EEG waves recorded from cortical areas with undesired dynamics to track the normal background 
 waves49. In this work, the DBS-corticothalamic system was formulated to a canonical structure, and the system’s 
dynamics were approximated by RBFNN, while disturbance rejection and model uncertainties were handled 
by the classical SMC. The main disadvantage of the proposed controller is the asymptotic stability of the SMC 
due to the linear structure of the sliding surface. To tackle the stability problem, terminal sliding mode (TSM) 
control that contains fractional order of sliding surfaces was developed to ensure the finite-time convergence 
of the system trajectories to the  origin70,72. However, TSM cannot address the chattering  phenomena70 of the 
control input, which endangers the system’s safety in real applications. Moreover, it suffers from the singularity 
problem that may lead to infinite control input to guarantee the ideal TSM  motion73–75. Qian et al.51 presented a 
finite-time fractional order SMC in combination with RBFNN to suppress epilepsy seizures in a well-established 
thalamocortical NMM. To design and stability analysis of the closed-loop system, an appropriate coordinate 
transformation was introduced to represent a regular form of the NMM. The main bottleneck of the work is 
that to transform the original NMM to the regular form and design the controller signal, prior knowledge of the 
NMM dynamics is necessary. To overcome the aforementioned problems (asymptotic stability, chattering, and 
singularity of the controller and the knowledge of the plant dynamics), in this paper, a robust control technique 
based on adaptive fuzzy TSM control (AFTSMC) is developed for control of the oscillatory spiking pattern of 
the three-neuron pattern of CAE whereby the controller is not dependent on any knowledge of the dynamics of 
the system to be controlled. The main contributions of this work are as follows:

• To implement the proposed MIMO control algorithm, the dynamics of the membrane voltage of three-neuron 
CAE  motif8,25 should be represented and modeled as a three-input three-output nonlinear state delay model, 
and three continuous DBS pulses (control input) are designed to force the CAE pattern to track the normal 
state. This representation is based on the decomposition of the nonlinear dynamics of the current and delayed 
states of the CAE  system8,25. Indeed, the continuous DBS pulses are automatically generated based on the 
MIMO model of the CAE motif. To achieve this, the unknown nonlinear dynamics of the MIMO model are 
approximated with the fuzzy logic system (FLS).

• A fast TSM-type reaching law is embedded in the continuous nonsingular control input to accelerate the 
speed of the motion to the sliding surface far away from the surface in finite time. The superiority of the 
continuous control law is that it’s chattering-free.

• On the sliding surface, the fractional-integral structure of the surface guaranteed the convergence of the 
tracking error to the neighborhood of zero in finite time.

• The nonlinear dynamics of the current and delayed states of the model embedded in the control input are 
approximated with the FLS, and adaptive laws based on the terminal gradient descent algorithm are devel-
oped for online updating the weights of the estimator.

• To guarantee the bounded stability of the closed-loop system, the upper bounds of the external disturbance 
and minimum estimation errors are updated online using terminal-based adaptive laws without any offline 
tuning phase.

Model and control problem
Model. CAE is a 2.5–3.5 Hz bilateral, synchronous sudden spike followed by the wave discharges (SWDs) 
observed in the EEG pattern of the children during seizure episodes. SWD patterns with similar characteristics 
in human subjects were also reported in the experimental works conducted on animal homologs. Electrophysi-
ological recordings of the spike-and-wave seizures in animal models showed the aberrant neuronal interplay 
between the cerebral cortex and the two main thalamic cells involved thalamocortical and the inhibitory neu-
rons of the thalamic reticular nucleus. These experiments suggested that the connections of the  GABAA and 
 GABAB receptors can play an important role in the activation of spike-and-wave seizures. It has been proven 
that the seizure appeared in the mouse homolog by reduction of the conductance of  GABAA receptors. Further-
more, both the thalamus and cortex are essential to the absence of seizures. As each cell type of the thalamus and 
cortex neurons contain the voltage-dependent currents necessary to define their properties, the dynamics of the 
electrical activity of the cortical (CT), thalamic relay (TC), and reticular (RT) nuclei neurons are represented as a 
conductance-based Hodgkin-Huxley type neuron model. The topology of the three-coupled network is depicted 
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in Fig. 1, and the dynamics of the membrane voltage of the neurons are modeled with the following nonlinear 
first-order differential  equations8,25:

where in (1), CTC = CCT = CRT = 1 μF  cm−2 is the capacitance of the membrane of CT, TC, and RT neurons 
and VTC , VCT , and VRT is the membrane voltage of the CT, TC, and RT neurons, respectively. The ionic mem-
brane currents (μA  cm−2) are denoted by IL , a leak current, INa , a transient voltage-gated current of  Na+ ions, 
IK , a transient voltage-gated current of  K+ ions, ITS , a low-threshold current of  Ca++ ions for RT neuron, IM , a 
depolarization-activated current of  K+ ions, IT , a low-threshold current of  Ca++ ions for TC neuron, Ih , a mixed 
 Na+-K+ current activated by hyperpolarization, IK2 , a slow current of  K+ ions, and, ITCext  , ICText  , and IRText  , external 
currents of TC, CT, and RT neurons, respectively due to the input from other brain regions. Without the coupling 
effect of synaptic currents, if the external current of the neurons is set at zero, the voltage of the three neurons is 
at rest, and for a large nonzero value of the external currents, the voltage of the neuron is denoted with periodic 
spiking activity. In the simulation, the parameters of the CT and RT external current are set at 0 μA  cm−2 and ITC 
is assumed to be 5 or 6 μA  cm−2. Detailed dynamics of the ionic membrane currents are provided in Appendix 
A of the Supplementary Materials.

The synaptic currents ( Iisyn, i ∈ {TC,CT ,RT} ) are in the following form:

where the general form of AMPA,  GABAA, and  GABAB currents with the value of their parameters are sum-
marized in Table 1. In the current equations, the parameters E (mv) and g  (mS  cm−2) are the reversal potential, 
and maximal conductance, respectively, and s is the fraction of the channels opened with the presynaptic neu-
ron. In the dynamic equation of s, the parameter T is the concentration of neurotransmitters released with the 
presynaptic neuron, and the parameters α (m/s m/M) and β (m/s) are two constants. Two time delays τ1 and τ2 
are included in the model of neurotransmitter concentration as the conduction delay for the corticothalamic and 
thalamocortical delays, respectively. In the simulation, the thalamocortical delay is set to 2.8 ms and the corti-
cothalamic delay is varied between 2 and 10 ms based on the dynamics of normal and CAE states. In the model 
of the synaptic current from the RT neuron to the TC neuron due to the  (GABAB), the parameter rGABAB is the 
model of the receptor of  GABAB current. In the simulation, the values of the external current of the TC neuron 
and maximal conductance from the RT neuron to the TC neuron ( IRTGABAA

 ) are different values for modeling the 
normal state ( ITCext = 5µA cm−2, gGABAA

= 0.65 mS  cm−2) and CAE state with an oscillatory spiking pattern 

( ITCext = 6µA cm−2, gGABAA
= 0.32 mS  cm−2)25.

(1)

CTC
dVTC

dt
= −IL − INa − IK − IT − Ih − IK2 − ITCsyn + ITCext

CCT
dVCT

dt
= −IL − INa − IK − IM − ICTsyn + ICText

CRT
dVRT

dt
= −IL − INa − IK − ITS − IRTsyn + IRText ,

(2)

ITCsyn = ICTAMPA + IRTGABAA
+ IRTGABAB

ICTsyn = ITCAMPA

IRTsyn = IRTGABAA
+ ITCAMPA,

Figure 1.  The topology of the three coupled TC, CT, and RT nuclei neurons.
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Control problem. The main objective of the controller is to force the membrane voltage of the TC, CT, 
and RT neurons in CAE condition to track the normal state of the model. To this end, the conductance-based 
model described in (1) is used as a CAE model (virtual patient). To implement AFTSMC by delivering the con-
tinuous DBS stimulation (control input) to suppress the oscillatory pattern of the neurons, the dynamics of the 
membrane voltage of the three-neuron CAE motif in (1) should be represented as a canonical MIMO nonlinear 
model with the following nonlinear differential equation:

where x = [x1, . . . , xm]
T , xτ = [x1(t − τ), . . . , xm(t − τ)]T ,m = 1, ..., 3 is a measurable membrane potential 

of TC, CT, and RT neurons and u = [u1, . . . , um]
T is the control input (continuous DBS pulses). d(t) denotes 

unknown external disturbances and uncertainties of the system, which is bounded with a positive unknown 
value, i.e., ‖d(t)‖ < υ . The unknown continuous vector functions f(x, t), fτ (xτ , t) and G(x, t) are defined as

Assumption 1 G(x, t) is a positive definite matrix that is conditioned to G(x, t) > χ0Im , where χ0 is a positive 
real parameter and Im is an m×m identity matrix.

Assumption 2 The desired trajectory xd(t) is a continuous membrane potential of TC, CT, and RT neurons in 
a normal condition that is measurable and its first-order dynamic exists.

Assumption 3 The time delay τ is known and measurable.

(3)ẋ(t) = f(x, t)+ fτ (xτ , t)+ G(x, t) · u(t)+ d(t),

(4)
f(x, t) =

[

f1(x, t), . . . ,fm(x, t)
]T

fτ (xτ , t) =
[

fτ1(xτ , t), . . . ,fτm(xτ , t)
]T

(5)G(x, t) =







g11(x, t) · · · g1m(x, t)
.
.
.

. . .
.
.
.

gm1(x, t) · · · gmm(x, t)






.

Table 1.  Synaptic current equations and their parameters for the neuron model.

Current Equation Dynamics and their equations Parameters

TC synapses

ICTAMPA gAMPAsAMPA(VTC − EAMPA)
d
dt sAMPA = αAMPATAMPA(1− sAMPA)− βAMPAsAMPA

TAMPA = 2.84
/ (

1+ e(2−VCT (t−τ1))/ 5
)

gAMPA = 0.1

EAMPA = 0

αAMPA = 0.94

βAMPA = 0.18

IRTGABAA
gGABAA

sGABAA

(

VTC − EGABAA

)

d
dt sGABAA = αGABAATGABAA

(

1− sGABAA

)

− βGABAA sGABAA

TGABAA = 2.84
/ (

1+ e(2−VRT )/ 5
)

gGABAA
= 0.1− 0.7

EGABAA = −85

αGABAA = 5

βGABAA = 0.18

IRTGABAB

gGABAB
s4GABAB

/ (

s4GABAB
+ Kd

)

×
(

VTC − EGABAB

)

d
dt sGABAB = 0.18rGABAB − 0.034sGABAB

d
dt rGABAB = 0.5TGABAB

(

1− rGABAB

)

− 0.0012rGABAB

TGABAB = 2.84
/ (

1+ e(2−VRT )/ 5
)

gGABAB
= 0.13793

EGABAB = −95

Kd = 100

CT synapses

ITCAMPA gAMPAsAMPA(VCT − EAMPA)
d
dt sAMPA = αAMPATAMPA(1− sAMPA)− βAMPAsAMPA

TAMPA = 2.84
/ (

1+ e(2−VTC (t−τ2))/ 5
)

gAMPA = 4.138

EAMPA = 0

αAMPA = 0.94

βAMPA = 0.18

RT synapses

IRTGABAA
gGABAA

sGABAA

(

VRT − EGABAA

)

d
dt sGABAA = αGABAATGABAA

(

1− sGABAA

)

− βGABAA sGABAA

TGABAA = 2.84
/ (

1+ e(2−VRT )/ 5
)

gGABAA
= 6

EGABAA = −85

αGABAA = 5

βGABAA = 0.18

ITCAMPA gAMPAsAMPA(VRT − EAMPA)
d
dt sAMPA = αAMPATAMPA(1− sAMPA)− βAMPAsAMPA

TAMPA = 2.84
/ (

1+ e(2−VTC )/ 5
)

gAMPA = 1.428

EAMPA = 0

αAMPA = 0.94

βAMPA = 0.18
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The tracking error of the conductance-based model is defined as ei = xdi − xi . To design AFTSMC the 
nonsingular terminal sliding surface is considered with the following function:

where σ > 0 and 1 < η < 2 are positive design numbers. If the initial states of the system are outside the sliding 
surface, a fast TSM-type reaching law is designed to ensure the convergence of the system states to the sliding 
surface in finite time as follows:

where the matrices K1 = diag(k11, ..., k1m) > 0m×m and K2 = diag(k21, ..., k2m) > 0m×m are design control 
parameters and 0 < ρ < 1 . According to Eq. (6), the first derivative of the sliding manifold is

The control input is designed in the following form:

Lemma 1 If a Lyapunov description of finite-time stability is given as follows:

where α1,α2 > 0 and 0 < � < 1 , then, the settling time is calculated by the following equation61:

Lemma 2 If a1, a2, ..., an are all positive numbers, and 0 < p ≤ 2 , then the following inequality always maintains61:

Theorem 1 Consider the dynamical MIMO system with delay in (3), the assumptions (2) and (3) are held and 
the nonlinear dynamics of the system with the external disturbances are assumed to be known. The integral-based 
terminal switching surface is considered as (6), the control input is designed by (9), and the finite-time reachability 
condition to the sliding surface is ensured with (7). If the dynamic states of the model with any initial conditions are 
outside the sliding surface, then the finite-time convergence of the model dynamics to the switching surface si = 0 
is guaranteed. On the switching surface, the tracking error decreases to zero in a finite time.

Proof Consider the first dynamic of the tracking error with ė(t) = ẋd(t)− ẋ(t) , the first derivative of the sliding 
surface vector using (8) is rewritten as

By considering the Lyapunov function V = 0.5sT s and substituting (13) in its first dynamic, it yields

where K1 = ησdiag(|e|η−1)K1 and K2 = ησdiag(|e|η−1)K2 are modified gain matrices. Using Lemma 2, we have

where k1 = minj
{

k1j
}

> 0 and k2 = minj
{

k2j
}

> 0, j = 1, ...,m are minimum eigenvalues of matrices K1 and 
K2 , respectively, and 0.5 < (1+ ρ)

/

2 < 1 to satisfy the condition of Lemma 2. The finite-time convergence to 
the sliding surface s = 0 is guaranteed based on the criterion presented in Lemma 2 and using Eq. (11), the finite 
time for reaching the sliding surface is as follows:

(6)si(t) =

t
∫

0

ei(t)dt + σ |ei(t)|
ηsign(ei(t)), i = 1, ...,m

(7)ṡ = −K1s− K2|s|
ρ sign(s),

(8)ṡ = e + ησdiag(|e|η−1)ė.

(9)u(t) = G
−1(x, t)(−f(x, t)− fτ (xτ , t)−d(t)+ ẋd(t)+

1

ησ
|e|2−ηsign(e)+K1s+K2|s|

ρsign(s)).

(10)V̇(x)+ α1V(x)+ α2V
�(x) ≤ 0,

(11)T ≤
1

α1(1− �)
ln

α1V(x0)
1−� + α2

α2
.

(12)
(

a21 + · · · + a2n
)p

≤
(

a
p
1 + · · · + a

p
n

)2

.

(13)

ṡ = e + ησdiag(|e|η−1)(ẋd(t)− ẋ(t))

ṡ = e + ησdiag(|e|η−1)(ẋd(t)− f(x, t)− fτ (xτ , t)− G(x, t) · u(t)− d(t))

ṡ = e + ησdiag(|e|η−1)(ẋd(t)− f(x, t)− fτ (xτ , t)− d(t))− ησdiag(|e|η−1)G(x, t)

× G
−1(x, t)(−f(x, t)− fτ (xτ , t)− d(t)+ ẋd(t)+

1

ησ
|e|2−ηsign(e)

+ K1s+ K2|s|
ρsign(s))

ṡ = −ησdiag(|e|η−1)
(

K1s+ K2|s|
ρ sign(s)

)

.

(14)V̇ = −s
T
K1s− s

T
K2|s|

ρsign(s),

(15)V̇ ≤ −2k1V − 2
1+ρ
2 k2V

1+ρ
2 ,
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After the reaching of the states to the sliding surface s = 0 , according to the terminal sliding surface con-
sidered in (4), the convergence time required to achieve the global stable attractor of (6) ( ei = 0 ) for any initial 
condition xi(tri ) is finite and is computed as follows:

This completes the proof of Theorem 1.

Adaptive fuzzy terminal sliding mode control (AFTSMC). Since in the real DBS systems, the dynam-
ics of nonlinear functions f(x, t)+ fτ (xτ , t)+ d(t) and G(x, t) are unknown, the control input (9) cannot imple-
ment. In the current study, to eliminate the limitation, FLS is applied to approximate the unknown nonlinear 
dynamics of the system. If f̂(x,ψt

f ), f̂τ (x,ψ
t
fτ
) and Ĝ(x,ψt

g ) are the fuzzy estimations of f(x, t), fτ (xτ , t) and 
G(x, t) , respectively, the control input (9) can be modified as follows:

where ε0 > 0 is a very small parameter. In (18), the regular form Ĝ(x,ψt
g )

−1 is used to overcome the singularity of 
Ĝ(x,ψt

g ) and thus the well definition of control input (18). A detailed description of FLS is provided in Appendix 
B of the Supplementary Materials. Let us define the minimum approximation errors of the fuzzy estimator as

where f̂∗(x,ψ∗
f ) , f̂

∗
τ (xτ ,ψ

∗
fτ
) , and Ĝ∗(x,ψ∗

g ) are the optimal estimated functions. We have used the following 
inequalities to limit the values of the minimum approximation errors:

where εfi , εfτi and εg are unknown small values and will be estimated with adaptive rules. To online designation 

of f̂(x,ψt
f ), f̂τ (xτ ,ψ

t
fτ
) , and Ĝ(x,ψt

g ) , the adaptive parameters of the fuzzy estimator in (S.24) and (S.25) should 
be updated online with the following adaptation rules:

where κfi , κfτi > 0 and κgij > 0 . ζfi (x) , ζfτi (xτ ) , and ζgij (x) denote fuzzy basis vector fixed with the designer (see 
equation S.23 in Appendix B of the Supplementary Materials). To guarantee the stability of the closed-loop system 
in the presence of approximation errors, external disturbances, and regularized inverse Ĝ(x,ψt

g ) , the corrected 
control signal ur(t) is added to the control input (18) as a robustifying term

where ur(t) is designed as follows:

(16)tr ≤
1

k1(1− ρ)
ln

k1V
1−ρ
2 (x0)+ 2

ρ−1
2 k2

2
ρ−1
2 k2

.

(17)tsi =
ση

η − 1

∣

∣xi(tri )
∣

∣

η−1
.

(18)
uc(t) =

Ĝ
T (x,ψt

g )

ε0Im + Ĝ(x,ψt
g )Ĝ

T (x,ψt
g )

×

(

−f̂(x,ψt
f )− f̂τ (xτ ,ψ

t
fτ
)+ ẋd(t)+

1

ησ
|e|2−ηsign(e)+ K1s+ K2|s|

ρsign(s)

)

,

(19)
εf (x, t) = f(x, t)− f̂

∗(x,ψ∗
f ) =

[

εf1 · · · εfm
]T

εfτ (xτ , t) = fτ (xτ , t)− f̂
∗
τ (xτ ,ψ

∗
fτ
) =

[

εfτ1
· · · εfτm

]T

(20)εg (x, t) = G(x, t)− G
∗(x,ψ∗

g ) =







εg11 · · · εg1m
.
.
.

. . .
.
.
.

εgm1
· · · εgmm






,

(21)
∣

∣

∣
εfi (x, t)

∣

∣

∣
≤ εfi ,

∣

∣

∣
εfτi

(xτ , t)
∣

∣

∣
≤ εfτi

,

∣

∣

∣
εgij (x, t)

∣

∣

∣
≤ εg , ∀x ∈ Dx

(22)
ψ̇ t
fi
= −κfiση|ei|

η−1ζfi (x)si

ψ̇ t
fτi

= −κfτi
ση|ei|

η−1ζfτi
(xτ )si

(23)ψ̇ t
gij

= −κgijση|ei|
η−1ζgij (x)siucj ,

(24)u(t) = uc(t)+ ur(t),

(25)ur(t) =
s
∣

∣s
T
∣

∣(ε̂f + ε̂fτ + ε̂g |uc| + d̂ + |u0|)

σ0�s�
2 +ϒ

,
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where ε̂f  , ε̂fτ , and ε̂g are the estimation of the upper bound of the minimum approximation errors εf  , εfτ , and 

εg , respectively, d̂ is the estimation of the bound of the external disturbance term, and σ0 > 0 . ϒ is an adaptive 

small parameter designed with

where κ0, γ0, γ1, γ2, γ3 are all positive parameters. In (25) u0(t) is designed as follows:

Theorem 2 Consider the dynamical MIMO nonlinear model with delay in (3), the assumptions (1)–(3)  are hold, 
and the nonlinear time-varying dynamicsf(x, t), fτ (xτ , t) and G(x, t) are approximated using FLS with (S.24) and 
(S.25). If the control input is designed as (24) with the adaptation laws in (22), (23), and (26),  then the following 
results are guaranteed:

1. All signals in the closed-loop system are bounded
2. the sliding variable decreases to the neighborhood of zero as follows:

where k1 and k2 denote the minimum eigenvalues of matrices K1 and K2, respectively. (28) and (29), confirm 
that the region �s� ≤ δ = min(δ1, δ2) will be achieved in finite time and then, the tracking error decreases finite 
time to a boundary layer

The proof is given in Appendix C of the Supplementary Materials.

Remark 1 According to the bounds of (28) and (29), the matrices K1 and K2 should be large enough to decrease 
the boundary δ . This increases the amplitude of the control input (pulse width or pulse amplitude of a DBS pulse) 
which limits the implementation of the controller in a real FES system.

Remark 2 The term sig(s)ρ in the reachability law embedded in control input (18) and η in sliding surface (6) 
are considered a bridge between linear SMC ( ρ → 1, η → 1 ) and TSMC. These parameters should be selected 
appropriately to guarantee the finite-time convergence of the tracking error to the boundary layer and to achieve 
the control input without any singularity or chattering.

Remark 3 In this paper, to satisfy the sufficient controllability condition of (3) it was assumed that the gain 
matrix of the control input is positive definite. In clinical applications of the closed-loop DBS system, if the 
positive definite G(x, t) do not exist, the proposed control scheme can be extended to the system by multiplying 
the regular matrix B(x) by the matrix G(x, t) such that G′(x, t) = G(x, t)B(x) is positive definite and hence, the 
new control signal u′(x) = B(x)u(x) is utilizable.

(26)
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∣
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T
∣
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∣

∣

∣
s
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∣

∣

∣
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(27)
u0(t) = ε0(ε0Im + Ĝ(x,ψt

g )Ĝ
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)

.

(28)�s� ≤









�

�

�
f
∗(x,ψ∗

f )− f̂(x,ψt
f )

�

�

�
+

�

�

�
f
∗
τ (xτ ,ψ

∗
fτ
)− f̂τ (xτ ,ψ

t
fτ
)

�

�

�
+

�

�

�
G
∗(x,ψ∗

g )− Ĝ(x,ψt
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Simulation results
The simulation results of the CAE and normal states of the spiking patterns of TC, CT, and RT neurons with the 
tracking results of the AFTSMC for suppression of the oscillatory pattern of the CAE are provided in this section. 
The schematic of the closed-loop control system through adaptive DBS using AFTSMC is indicated in Fig. 2. 
To implement the controller, 15 fuzzy estimators are used to approximate the nonlinear dynamics of the plant 
embedded in the control input. The simulation is performed on the desktop computer (containing an Intel (R) 
Core (TM) i7-9700K @ 3.60 GHz CPU and 32 GB DDR4 RAM) in MATLAB R2020a Simulink (64-bit) under 
Windows 10. The sampling period of 0.001 ms is used for updating the adaptive values of the FLS estimator and 
the controller. The mean running time of the closed-loop system for the total period of 2000 ms simulation is 
about 25 min.

Figure 3 shows the typical results of the membrane voltage of TC, CT, and RT neurons in response to the 
external current of TC neuron for normal and CAE states with the different values of maximal conductance 
from RT neuron to TC neuron. If the external current of the TC neuron increased from 5 to 6 μA  cm−2 with the 
decrement of the strength of the maximal conductance from the RT neuron to the TC neuron from 0.65 to 0.32 
mS  cm−2, the rhythm of the neurons changes from bursting or single spiking to tonic spiking. Indeed, the com-
plexity of the dynamics of the neurons is dependent on the values of the external TC current and the maximal 
conductance from the RT neuron to the TC neuron. The smaller selection of the maximal conductance, the faster 
rhythm of the neurons in the CAE state. To calculate the tracking error, the desired trajectory is the membrane 
voltage of the TC, CT, and RT neurons in the normal state (Fig. 3a). The goal of the AFTSMC is to automatically 
generate the continuous controlled current (DBS pulses) to return the oscillator spiking patterns of the three 
neurons to the normal bursting patterns in the presence of uncertainty and disturbance current.

Figure 2.  Schematic of the closed-loop control system for elimination of oscillatory spiking pattern through 
adaptive DBS using AFTSMC.
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Figure 3.  Typical results of the membrane voltage of TC, CT, and RT neurons with the different values of 
external current of TC neuron and maximal conductance from RT neuron to TC neuron for normal (a) and 
CAE (b) states.
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Adaptive fuzzy terminal sliding mode control of DBS pulses. In this part, the results of the closed-
loop tracking of the membrane voltages of the CAE state using the proposed AFTSMC are presented. To evaluate 
the accuracy of the tracking, the root mean square of the tracking error (RMSE) is calculated in the following 
form:

where xj and xj,d are the membrane voltage of each neuron for CAE and normal states, respectively and N is the 
number of samples in the total time of the simulation. The input of the fuzzy estimators is the membrane voltage 
of the TC, CT, and RT neurons and for each voltage five Gaussian-type membership functions were defined in 
the following:

where c11 = c12 = c13 = −60 , c21 = c22 = c23 = −40 , c31 = c32 = c33 = 0 , c41 = c42 = c43 = 40 , c51 = c52 = c53 = 60 and 
δ1 = δ2 = δ3 = 1 to cover the full possible changes of the states. The initial conditions of the model for the actual 
and desired states were set in random values between − 20 and − 60 mv and the initial weights of the FLS estima-
tor were set in random values uniformly distributed between 0 and 1. The parameters of the controller are selected 
with the trial-and-error method to maintain the high accuracy of the tracking (minimum RMSE) and continuous 
control input (DBS pulses) in the different runs of the closed-loop system, and then kept for further analysis in 
the presence of uncertainty of the model parameters and external disturbance. The typical results of the tracking 
for three neurons are indicated in Fig. 4. Excellent tracking with the RMSE of 0.3997, 0.4015, and 1.6491 mv is 
achieved using the proposed AFTSMC for TC, CT, and RT neurons, respectively. Figure 5 shows the results of 
the continuous (chattering-free) control input without any excessive control effort. When the membrane volt-
age of the three neurons is at rest, the controller generates the DBS current with the minimum energy and only 
in response to the spiking pattern of the desired voltages increases automatically the amplitude of stimulation 
pulses to a sharp value to rapidly track the peak of the action potential of the desired trajectory. In contrast, due 
to the discontinuity of the classical AFSMC in the reaching law of the control input (results of Fig. 6) across the 
sliding surface, the high switching control activity is appeared in the control input and degrades the performance 
of the tracking and causes the problem in the implementation of the control input in real-time applications.

An important issue in controlling the spiking behavior of the CAE model is evaluating the effects of external 
disturbances on the tracking performance of AFTSMC. The sources of external disturbances may include the 
un-modeled complexity of the external ionic currents, the unknown synaptic currents from the other neurons 
in the network applied to the CT, TC, and RT neurons, etc. The proposed controller should robustly handle the 
effect of these external disturbances without degradation of the tracking performance. To evaluate the ability 
of the proposed AFTSMC to reject the external disturbance, a non-regular constant current (pulse amplitude, 

(31)RMSE =
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N
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∣
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Figure 4.  (a) Typical results of the tracking using AFTSMC. (b) Zoom-in version of (a) between 700 and 
800 ms.
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1.75 μA  cm−2 and pulse width, 1 ms) was applied to the dynamic equation of TC neuron in (1) for 2000 ms. The 
pulse is generated based on a gamma distribution with a frequency of 14 Hz. Figure 7 shows the results of the 
spiking pattern of the membrane voltage of TC, CT, and RT neurons for the CAE state in the presence of the 
external disturbance current applied to the CT neuron. The results in comparison with the results of Fig. 3(b) 
indicate that as the random current pulses are applied to the TC neuron, the inter-spike-interval nature of the 
three neurons changes so that the spiking pattern occurs following the external disturbance current is applied 
while sometimes as the current pulses are suddenly exerted, the spiking behavior is not observed or is delayed.

Figure 8 shows the typical results of the tracking under the disturbance current of the CT neuron with a 
pulse amplitude of 1.25 μA  cm−2. The RMSE for TC, CT, and RT neurons are 0.3080, 0.2694, and 1.6736 mv, 
respectively. The controller could effectively adjust the control signal of the TC neuron to reject the effect of the 
disturbance current applied to the CT neuron. Results of the mean RMSE (± one standard deviation) obtained 
over 15 trials of the simulation for control of the CAE state in the presence of non-regular external disturbance 
current applied to CT neuron using AFTSMC in comparison with the AFSMC and super-twisting sliding mode 
control (STSMC)70 are depicted in Fig. 9. The initial conditions of the gating variables of ionic channels and 
membrane voltage of TC, CT, and RT neurons, the desired pattern of the membrane voltages, the initial weights 
of the FLS estimators, and the onset of the pulses in the external current applied to the TC neuron were set in 
random values and changed subsequently from one trial to another trial of the simulation. The mean RMSEs 
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Figure 5.  (a) Typical results of the control effort using AFTSMC. (b) Zoom-in version of (a) between 700 and 
800 ms.
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Figure 6.  (a) Typical results of the tracking using AFSMC. (b) Control input.
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using AFTSMC for the TC neuron with the pulse amplitude of 1.25, 1.5, 1.75, and 2 μA  cm−2 are 0.47, 0.52, 0.63, 
and 0.76 mv, respectively, for the CT neuron are 0.35, 0.47, 0.50, and 0.52 mv, respectively, and for the RT neuron 
are 0.55, 0.83, 0.92, and 0.83 mv, respectively.

To evaluate the robustness of the controller to handle the effect of the time-varying uncertainty of the system 
parameters, the values of maximal conductance and reverse potential of the ionic currents of three neurons 
were changed randomly over 0–50% range about the nominal values (last column of the Tables S1, S2, and S3 of 
Appendix A of the Supplementary Materials) over the total time of the simulation. The variation of each param-
eter was obtained by passing the uniform distribution sequence with an appropriate selection of its parameters 
(minimum and maximum) to the second-order low-pass filter with the natural frequency of 0.05 Hz and adding 
the constant nominal value of the parameter. Figure 10 shows the tracking results and control pulses generated 
with the proposed controller over 25% uncertainty. The RMSEs over one trial of the simulation are 0.2428, 
0.3613, and 1.3995 mv, respectively for TC, CT, and RT neurons. The interesting observation is the automatic 
generation of positive and negative amplitudes of DBS pulses for tracking control of the RT neuron. In contrast, 
the amplitude of the DBS pulses generated with the controller in the results of Figs. 5 and 8 was only in the nega-
tive range. Figure 11 shows the results of the mean RMSE (± one standard deviation) obtained over 15 trials of 
the simulation without uncertainty in comparison with random variation of 15, 30, and 50% uncertainty of the 
maximal conductance and reverse potential of the ionic currents of three neurons in each trial of the simulation 
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Figure 7.  Typical results of the membrane voltage of TC, CT, and RT neurons for CAE state in the presence of 
the external disturbance current with a gamma distribution with an average rate of 14 Hz applied to CT neuron.
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Figure 8.  Typical results of the tracking using AFTSMC in the presence of external disturbance current applied 
to CT neuron.
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Figure 9.  Results of the mean RMSE (± one standard deviation) obtained over 15 trials of the simulation for 
control of the CAE state using AFTSMC in comparison with the results of AFSMC and STSMC under non-
regular external disturbance current applied to CT neuron with different pulse amplitude.
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Figure 10.  Typical results of the tracking using AFTSMC over 25% uncertainty about the nominal values of 
maximal conductance and reverse potential of the ionic currents of the three neurons.
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through AFTSMC in comparison with the results of AFSMC and STSMC. The mean RMSEs using AFTSMC 
for the TC neuron without the uncertainty and over 15, 30, and 50% uncertainty are 0.75, 0.77, 0.82, and 0.95 
mv, respectively, for the CT neuron are 0.54, 0.53, 0.64, and 0.77 mv, and for the RT neuron are 0.79, 1.13, 1.15, 
and 1.55 mv, respectively.

Discussion and conclusions
This paper developed a three-input (continuous DBS pulses), three-output (membrane voltage of neuron) model-
based controller using robust AFTSMC to suppress the spiking pattern in a CAE dynamical model. The proposed 
model consists of cortical, thalamic relay, and reticular nuclei neurons. Although in the previous  work48, a finite-
time fractional order SMC in combination with RBFNN was used to control the epilepsy seizures in a dynamical 
SWD model, prior knowledge of the model dynamics was required to design the DBS pulses. In contrast, in the 
current paper, the unknown nonlinear dynamics of the current and delayed states of the model used in the control 
input were estimated with the adaptive fuzzy controller. A critical issue in controlling the nonlinear dynamical 
systems in the simulations of brain networks is evaluating the effects of external disturbances and uncertainties on 
the tracking performance of the closed-loop system. The sources of external disturbances and uncertainties may 
include the un-modeled complexity of the external ionic currents, the subject-to-subject variability of the param-
eters, the unknown dynamics (interaction between the nuclei, the unknown different threshold firing levels of 
neurons in the population), etc. In the current study, the upper bounds of the external disturbance and minimum 
estimation errors were updated online with adaptive laws without any offline tuning phase. Although increasing 
the effect of the external disturbance or uncertainty degraded the tracking performance, the results of Figs. 9 
and 11 demonstrated the efficiency of the proposed controller in handling the effects of the external disturbance 
and uncertainty of the model parameters in comparison with the AFSMC and STSMC. Moreover, according to 
the results of Figs. 8 and 10, the control signal (pulse amplitude) required for the proposed AFTSMC increased 
sharply in a normal range only when the spiking pattern of the three neurons was generated. Nevertheless, the 
DBS pulses showed very stable values without any extra activity in comparison with the results of Fig. 6(b) 
using AFSMC when the pattern of the membrane voltage was in the rest state. But, designing the automatic 
control pulses using the canonical MIMO nonlinear model is a significant challenge due to the singularity of the 
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Figure 11.  Results of the mean RMSE (± one standard deviation) obtained over 15 trials of the simulation for 
control of the CAE state using AFTSMC in comparison with the results of AFSMC and STSMC under time-
variation of maximal conductance and reverse potential of the ionic currents of three neurons.
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estimated matrix gain of the control input during its inverse calculation. To address this limitation in the current 
study, the regularized form of the estimated matrix with a proper selection of the parameter ε0 was used. Another 
challenge facing the MIMO structure of the controlled system is the adjustment of several control parameters 
to achieve high tracking accuracy and robustness in the presence of external disturbance and uncertainty. To 
reduce the complexity of the centralized MIMO closed-loop controller with high calculation and easily select the 
control parameters, a decentralized form of the controller may be an alternative practical approach for the simple 
implementation of the controller in real DBS systems. The superiority of the decentralized structure is that the 
MIMO dynamical model is converted to the separated single-input single-output (SISO) subsystems with each 
controller acts solely on its subsystem, and the interactions between the subsystems are approximated with the 
adaptive fuzzy controller embedded in each subsystem. The performance of the decentralized closed-loop DBS 
using AFTSMC should be further investigated and constitutes future research.

In the current study, the structure of the MIMO-controlled system was designed based on the highly nonlin-
ear (conductance-based Hodgkin-Huxley type neuron model) CAE dynamical system, and the adaptive fuzzy 
controller was recruited to estimate the unknown dynamics of the plant. One important issue that should be 
considered in a real closed-loop DBS system is the speed of the control algorithm to meet the real-time applica-
tion. Regarding the computational complexity of the proposed control algorithm, with the sampling period of 
0.001 ms, when the algorithm was executed on the CPU the mean run time of the closed-loop system for the 
total time of the simulation (2000 ms) was about 25 min. It is worth noting that a CPU sequentially processes 
the data. But, in real-time applications of closed-loop DBS, the control algorithm should be implemented on an 
FPGA (Field-Programmable Gate Array) which is an integrated circuit with so many parallel hardware resources. 
Implementation of the control algorithm on the FPGA benefits from parallel data processing and this leads to a 
great reduction in the run time of the proposed procedure, which may be addressed in future studies.

In a real DBS system, the monophasic (anodic or cathodic) and biphasic (with and without inter-pulse delay 
between symmetric and asymmetric anodic and cathodic phases)  waveforms76 may be generally used to deliver 
the stimuli pulses. But, to satisfy neural tissue safety, the pulse trains of charge-balanced biphasic currents are 
delivered into the neural  tissues77,78 and the stimulation parameters (pulse amplitude, pulse width, and frequency) 
can be adjusted individually or simultaneously with the control algorithms. Short pulse width reduces the damage 
risk of the neural tissue, and the increment of the pulse amplitude depends on the spatial relationship between 
the tip of the electrode and the target neural fibers. The high frequency of the stimulation can directly affect the 
average power consumption of the DBS hardware and decreases its battery life. Another problem is the spread of 
the electric field due to the location and geometry of the tip of the electrode during selective stimulation of the 
special neural tissues. The admissible amplitude or width of the stimuli pulses should be appropriately adjusted 
to focally stimulate the target brain nucleus with the lowest effect on the neighboring non-target tissues. In 
the current study, the control gain of the model in (3) was considered as a 3 × 3 nonlinear matrix and 9 fuzzy 
estimators were used to estimate the effect of the three control inputs on the dynamics of each neuron. Thus, 
we believe that the proposed control scheme can automatically adjust the pulse amplitude or pulse width of the 
DBS pulses with the electrodes implanted in the region of appropriate neural fibers to suppress the seizure in a 
real-time closed-loop DBS system.

Limitations
In the closed-loop stimulation approaches, different physiological signals are used in controlling the neurostimu-
lator output. These data sources include  LFP79,  ECoG80, electromyogram (EMG)80 and kinematic (acceleration)81. 
Selection of the appropriate biological signals depends on resolution, invasiveness, and relevance to the patient’s 
symptoms. In previous closed-loop DBS methods, the recorded biosignal time series were not directly applied as 
the input to the controller. In fact, the researchers processed the recorded signals and extracted different features 
to control the stimulator output. Synchrony of the neural  oscillations48 and sub-band power of the brain  signals82 
are examples of the considered features in DBS which are relevant to the disease symptoms. But, in the proposed 
closed-loop DBS technique, the recorded membrane voltage directly drives the controller without any additional 
processing stage. In other words, in the proposed method, the control signal varies in a continuous manner such 
that the output of the plant tracks the desired membrane voltage. Since the stable intracellular recording of the 
action potentials requires periodic calibration of the experimental setup, the long-term clinical application of 
this approach is limited. To eliminate the limitation of the tracking-based controller and make it suitable for 
clinical applications, the time series tracking error should be substituted by an appropriate feature tracking error. 
A candidate feature can be the synchrony of the LFP signals of the brain nuclei. Another limitation of the pro-
posed control scheme in designing the control input is the delay of the model states. In this paper, to estimate the 
nonlinear dynamics of the delayed states in the input of the fuzzy estimator it was assumed that the value of the 
delay is known. To hardware implementation of the proposed control algorithm in a real-time closed-loop DBS 
system, since the delay in the nonlinear dynamics of the system is unknown it should be approximated online 
using the time-delay estimation (TDE)  methods83,84 such that the stability of the closed-loop system including 
TDE algorithm is guaranteed.

Data availability
No datasets were used in the current study and all data needed for the simulation are included in this published 
article and its supplementary materials file. The MATLAB codes used for the generation of the results are avail-
able from the corresponding author on reasonable request.
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