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Predicting cascading extinctions 
and efficient restoration strategies 
in plant–pollinator networks 
via generalized positive feedback 
loops
Fatemeh Sadat Fatemi Nasrollahi 1*, Colin Campbell 2 & Réka Albert 1,3*

The extinction of a species in a plant–pollinator mutualistic community can cause cascading effects 
and lead to major biodiversity loss. The ecologically important task of predicting the severity of the 
cascading effects is made challenging by the complex network of interactions among the species. In 
this work, we analyze an ensemble of models of communities of plant and pollinator species. These 
models describe the mutualistic inter-species interactions by Boolean threshold functions. We show 
that identifying generalized positive feedback loops can help pinpoint the species whose extinction 
leads to catastrophic and substantial damage to the whole community. We compare these results with 
the damage percentage caused by the loss of species identified as important by previously studied 
structural measures and show that positive feedback loops and the information gained from them 
can identify certain crucial species that the other measures fail to find. We also suggest mitigation 
measures for two specific purposes: (1) prevent the damage to the community by protecting a subset 
of the species, and (2) restore the community after the damage by restoring a subset of species. Our 
analyses indicate that the generalized positive feedback loops predict the most efficient strategies 
to achieve these purposes. The correct identification of species in each category has important 
implications for conservation efforts and developing community management strategies.

Communities of species are supported by numerous interactions among the species. Elucidating the relationship 
between inter-species interactions and the resultant repertoire of community compositions has been of general 
interest1–4. Representation of communities as networks and network-based dynamical modeling have been two 
of the most powerful methods in the field of computational ecology. The interactions among species include 
competition for common resources, predator-prey interactions, and mutualistic interactions (e.g., pollination and 
seed dispersal). Network-based studies of ecological systems range from the statistical analysis of food webs5–8, 
to network models of communities in which species have mutualistic and competing interactions9, and the use 
of multi-layer networks to incorporate several types of interactions simultaneously10,11.

Here we study plant–pollinator mutualistic interactions that lead to sustainable communities of species. While 
there are considerable efforts to maintain the biodiversity in such systems, ecological systems and specifically 
pollinator species still face degradation across the world. The loss of pollinator species has a dramatic negative 
effect on crops12–15 as the majority of food crops require pollination to survive16. These communities are subject 
to various types of perturbation from natural causes to human interference; hence the study of their reliability 
and stability is of crucial importance for agricultural management and ecological preservation efforts8,17–19.

A cascading effect and major biodiversity loss can result from the extinction of a species in a plant–pollinator 
mutualistic community. The complex set of interactions among the species challenges the estimation of the 
severity of the cascading effects and the development of restoration strategies. Bipartite networks are widely 
used to represent plant–pollinator communities; in such networks the two types of nodes denote the plant 
and pollinator species, and each edge denotes the interaction between a plant and a pollinator20. This network 
representation is also implemented to study species extinction and develop possible restoration strategies based 
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on network measures21. Studies have also used previously established network measures and newly developed 
algorithms to identify the keystone species whose extinction causes catastrophic damage to the plant–pollinator 
communities (e.g., see22). In this study we aim to analyze species extinction and community restoration in 
network ensembles generated by the well-established Campbell et al. model23 of plant–pollinator community 
assembly.

The Campbell et al. model uses two key assumptions to dynamically model plant–pollinator community 
assembly: First, there is an influx of species from a regional species pool, simulated as recurring invasion attempts, 
and second, species persist due to receiving enough benefit from their interactions with each other. The regional 
source pool of species is represented by a bipartite network encoding the mutualistic interactions; while this pool 
is not necessarily representative of a stable community, a subset of species might be able to form and sustain 
a community. These possible stable communities are identified as the attractors (long-term behaviors) of the 
dynamical model.

The response of such communities to perturbations has been well-studied; for instance, the effect of global 
and local species loss24,25, invasion of new species26, and translocation of species as a means for community 
restoration27 on the stable communities have been characterized. In this work, we contribute to this line of 
inquiry by identifying the species whose extinction causes considerable cascading damage to the communities. 
We show that the information gained from generalized positive feedback loops can best estimate the magnitude 
of this damage. We also study community restoration and use these positive feedback loops to identify the species 
whose re-introduction is most beneficial to the community.

In our previous work, we characterized the relationships between generalized positive feedback loops and 
showed that these relationships determine the number of alternative stable communities28. In this study we 
use these relationships to identify the key species in each of the cases of species extinction and community 
restoration. Specifically we seek to answer three main questions: (1) Which are the keystone species whose 
extinction leads to community collapse? (2) How and to what extent can we prevent cascading species extinction 
once we identify these keystone species? (3) If cascading extinction occurs, how and to what extent can we 
restore the community? We show that the knowledge gained from generalized positive feedback loops provides 
substantial insight to answer these questions. We also demonstrate that the study of positive feedback loops has 
advantages over previously studied methods in community management research.

Background on the Campbell et  al. model.  This discrete-time Boolean network model describes 
plant–pollinator community formation23. In this model, plant and pollinator species are represented by two 
different types of nodes. The habitual visitation of a plant by a pollinator is represented by two directed edges 
of opposite directions between the two nodes representing the interacting species. The nature of the interaction 
depends on the degree of the match between the length of the pollinator’s proboscis ( lpo ) and the plant’s corolla 
depth ( lpl ). There are two scenarios of possible mismatch: (i) If lpl > 1.1lpo the pollinator is in physical contact 
with the plant (contributing to its pollination), but is not able to feed from the plant nectar. The time and effort 
spent on visiting the plant is wasted; hence this type of interaction is represented as a positive edge toward the 
plant and a negative edge toward the pollinator. (ii) If lpl < 0.9lpo the pollinator is able to feed from the plant 
nectar but does not land on the plant and therefore fails to pollinate it. This type of interaction is represented as 
a negative edge toward the plant and a positive edge toward the pollinator. Otherwise, there is a high degree of 
matching and both species benefit from the interaction; both edges are positive.

This model takes advantage of ensembles of prototypical networks to not only reveal the properties of stable 
plant–pollinator communities, but also study the underlying mechanisms of extinction/restoration processes 
in such communities. In this model, plant–pollinator interactions are assigned such that the degree distribution 
follows an exponentially cut-off power law with properties matching empirical data29. The characteristic 
properties of species (plants’ corolla depths and pollinators’ proboscis lengths) are taken from skew normal 
distributions reported by Stang et al.30. Following the assignments of characteristic properties and interactions, 
only about 7.7% of the interactions in the regional species pool are mutually beneficial, and the rest are beneficial 
in one direction and detrimental in the other direction. We used 6 ensembles of 50–70 nodes; each ensemble 
consists of 1000 networks that have the same number of plant and pollinator species, while the degree distribution 
of the network and the characteristic length assigned to each node is different.

In the Campbell et al. model each species i is assumed to be either present (“active”) with the state σi(t) = 1 , 
meaning that its population abundance is above a threshold value at time t, or absent (“inactive”) with the state 
σi(t) = 0 , meaning that its population abundance is below a threshold value (though such a species still exists, 
and can invade from, the regional species pool). The synchronous update scheme is used in this model, i.e., the 
states of all nodes are updated at each time step t. The state of node i at time t + 1 is determined by the state of 
its regulators at time t via an update function f. Specifically,

where {σj} are the states of the regulators of node i at time t, E(j, i) is the weight of the interaction from node j 
to node i, and the step function H(x) equals 1 if x > 0 and zero otherwise. According to the update function, 
each species is required to have a net positive influence from the community to be able to establish or persist at 
each time step. Each positive interaction benefits the target species more than each negative interaction harms 
it. The model reflects this by assuming that the weight of a positive interaction is more than the absolute value 
of the weight of a negative interaction. To keep consistent with the Campbell et al. study, we use a weight of −1 
for negative interactions and +4 for positive interactions (see23 for additional details).

(1)σi(t + 1) = fi(σj(t)) = H
(

∑

j

E(j, i)σj(t)
)

,
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Key concepts of Boolean modeling.  The Campbell et al. model is a Boolean model—a model whose 
variables have binary states. The dynamics of Boolean models is determined by two features: the update function 
and the implementation of time via an update scheme. The Campbell et al. model is governed by a Boolean 
threshold function as described in Eq. (1), and originally used synchronous update, where all nodes are updated 
at multiples of a common time step. There also are non-deterministic update schemes that are more appropriate 
in certain contexts. In general asynchronous update (also called fully asynchronous update) a single, randomly 
selected node is updated at each time step. The recently introduced Most Permissive Boolean Networks 
(MPBNs) include two additional states: increasing and decreasing, stochastic transitions into these states and 
instantaneous transitions out of them. When projecting the four-state system’s state transitions to the states 0 and 
1, all possible update orders (including partial or full synchrony among nodes) are represented31.

In a Boolean model every temporal trajectory ends in a set of states in which it is trapped. This set of states 
is referred to as the attractor of the Boolean model. Attractors in which all nodes have a fixed state (either active 
or inactive) are called point attractors, steady states, or fixed points. Attractors that contain several states depend 
on the manner of update of the nodes. Synchronous update leads to a deterministic rotation through states in 
limit cycles, while stochastic update (e.g., updating a randomly selected node at each time step) leads to so-called 
complex attractors.

In general, the task of finding the attractors of Boolean models is challenged by the computational complexity 
caused by the exponential growth of the size of the state space. To resolve this problem, we use stable motif analy-
sis, a novel method that allows for efficient identification of attractors. This method relies on the construction of 
the expanded network, which encodes the information about the structure of the interaction network and the 
Boolean functions governing the dynamics32,33. In the following we describe the key concepts and methodologies 
involved in stable motif analysis and illustrate them using an example in Fig. 1.

Construction of the expanded network.  The expanded network expresses the Boolean update function 
of each node in disjunctive prime form, i.e., the complete sum of prime implicants, also called Blake Canonical 
form34. For each node i in the interaction network, there are two virtual nodes in the expanded network, which 
denote the node’s two possible states: the active state is represented by a virtual node that has the label i and the 
inactive state is represented by a virtual node labeled with ∼ i . “AND” gates among virtual nodes are represented 

fpl_1 = po_1(t) OR po_2(t) OR po_3(t)
fpl_2 = po_2(t)
fpl_3 = po_1(t) OR po_3(t) 
fpo_1 = pl_1(t) OR pl_3(t) 
fpo_2 = pl_1(t) OR pl_2(t) 
fpo_3 = pl_1(t) OR pl_3(t) 

Figure 1.   Illustration of Boolean modeling key concepts in the context of a plant–pollinator interaction 
network. (a) The interaction network with the Boolean threshold functions converted to disjunctive prime 
format. (b) The expanded network in which there is a black composite node for each “AND” gate and two virtual 
nodes representing the possible node states. The active state is denoted by the node name and the inactive 
state is shown using the name of the node prefixed with ∼ . The inactive stable motif highlighted with grey 
corresponds to the full community collapse. One of the multiple driver sets of this stable motif is indicated by 
solid black outlines. The whole grey stable motif is in the LDOI of this driver set. The stable motif highlighted 
with dark green is one of the active stable motifs driven by either virtual node pl_2 (outlined) or po_2. The 
virtual nodes highlighted with light green are stabilized as a result of stabilization of this stable motif, i.e., they 
are in the LDOI of the dark green stable motif. The LDOI of the dark green stable motif also contains the virtual 
nodes of the dark green stable motif, as generally true for all stable motifs.
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by composite nodes. Any edge from a virtual node to another virtual node indicates a sufficiency relationship, 
i.e., the node state described by the source virtual node is sufficient for the node state described by the target 
virtual node. Any edge from a virtual node to a composite node indicates a necessary relationship, i.e., the node 
state described by the source virtual node is necessary for the the node state described by the virtual node that 
the composite node points to. The totality of the inputs of a composite node are together sufficient, as this group 
of virtual nodes represents a prime implicant of the Boolean update function. In Fig. 1a an interaction network 
made up of 3 plant and 3 pollinator nodes and the corresponding Boolean functions are illustrated. Panel (b) 
shows the corresponding expanded network, which contains twelve virtual nodes and four composite nodes 
(black circles).

Stable motif analysis.  A stable motif is defined in the expanded network such that it is a strongly 
connected subgraph (a subgraph that has a least one path in both directions for any pair of virtual nodes) that 
(i) is consistent, meaning that it does not contain a virtual node and its negation, (ii) is composite-closed, i.e., 
it includes all of the input virtual nodes to the composite nodes inside the component, and (iii) is a minimal 
subgraph, meaning that no subset of it can satisfy all the above conditions. In Fig. 1b the grey subgraph is a stable 
motif that represents the inactivity of all its constituent nodes. The dark green subgraph is another stable motif 
representing the activity of the two nodes involved.

Conditionally stable motifs are weaker counterparts of stable motifs that only stabilize if a specific (set of) 
condition(s) is satisfied. Specifically, conditionally stable motifs are strongly connected subgraphs of the expanded 
network such that (i) the subgraph is consistent, i.e., it does not contain a virtual node and its negation, (ii) the 
subgraph is not composite-closed, i.e., it contains at least one composite node without containing all of its incom-
ing virtual nodes35. The external virtual nodes that are the inputs to the composite nodes inside the subgraph 
make up the conditions of the conditionally stable motif. If during the dynamics of the system, stabilization of a 
stable motif results in the stabilization of the conditions of a conditionally stable motif, the conditionally stable 
motif becomes a stable motif. We call such a stable motif the support of the conditionally stable motif.

Each stable motif of the Campbell et al. model can be interpreted as the smallest group of species that achieve 
and maintain a specific survival state. Thus, it can either be a sub-community (in which nodes have a stationary 
active state) or the simultaneous extinction of all species in the group (in which nodes have a stationary inactive 
state)28. Stabilization of each stable motif (i.e., achieving and then maintaining the associated state) restricts the 
system trajectories into a specific region of the state space called a trap space. A trap space is a subset of the state 
space that has two properties: (i) A subset of the nodes have a fixed state in the trap space and (ii) If the system 
enters the trap space, it cannot leave36.

Stable motifs and conditionally stable motifs supported by them stabilize sequentially and confine the system 
to the smallest possible region of the state space called minimal trap space. If all nodes are fixed to either their 
active or inactive state within the minimal trap space, it corresponds to a fixed point. One of the significant 
advantages of MPBNs is that in this framework attractors are the same as minimal trap spaces; a complex attractor 
in which a subset of nodes oscillate also corresponds to a minimal trap space. This minimal trap space contains 
the maximal possible number of nodes that can achieve a stationary state and is guaranteed to contain a single 
attractor31. Stable motif and trap space based attractor-finding algorithms do not rely on the full search of state 
space, hence can efficiently identify the attractors of Boolean models37–40.

Logical domain of influence and stable motif driver sets.  To study the magnitude of the effect of 
species extinction on plant–pollinator communities, we take advantage of the concept of Logical Domain of 
Influence (LDOI). LDOI determines the influence of a fixed node state or of a stabilized stable motif on the rest 
of the components in a system41. The LDOI of a node state σi(t) = σi , denoted LDOI(σi) , is determined by a 
percolation process on the expanded network (recall that each virtual node of the expanded network corresponds 
to the state of a node of the regulatory network). Starting from the virtual node that corresponds to σi , we follow 
the outgoing edges. There are two possibilities: (i) We reach another virtual node: in this case the edge represents 
a sufficiency relationship and the virtual node is added to the LDOI(σi) . (ii) We reach a composite node: in this 
case we only add the composite node to the LDOI(σi) if all the virtual nodes that have incoming edges to the 
composite node are already in the LDOI(σi) . The LDOI of a set of node states (e.g., of a stable motif) can also 
be found. In this case the only difference is that we have multiple starting points in the percolation process on 
the expanded network. Fig. 1b illustrates this concept: the LDOI of the stable motif highlighted with dark green 
include the virtual nodes highlighted with light green, as well as the virtual nodes of the stable motif itself.

Another relevant concept implemented in this study is the stable motif driver set42. A driver set of a stable 
motif is a minimal set of node states (virtual nodes) whose LDOI contains all the node states in the stable 
motif. Each stable motif can have multiple driver sets. Driver sets can be internal, meaning that the stable motif 
contains the driver set, or external, meaning that the driver set resides outside the stable motif. The entire stable 
motif is contained in the LDOI of its driver set. Fig. 1b indicates one of the driver sets of each of the two stable 
motifs; the entire grey stable motif is in the LDOI of the virtual nodes { ∼po_1, ∼po_2, ∼po_3} outlined by 
solid black lines and the dark green stable motif is in the LDOI of {pl_2} outlined by solid black line. The LDOI 
algorithm is founded on the assumption that node states that correspond to the starting virtual nodes are fixed 
and maintained, and hence does not allow a node state contradictory to the starting virtual nodes to be added to 
the LDOI. The algorithm truncates the process at this point and does not move further in the expanded network. 
The python implementation of Ref.41 is available at https://​github.​com/​yangg​angthu/​Boole​anDOI.

Conversion of Boolean threshold functions to Boolean logical functions.  To construct the 
expanded network and perform stable motif analysis, the threshold functions need to be converted to Boolean 

https://github.com/yanggangthu/BooleanDOI
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logical functions using “AND”, “OR”, and “NOT” operators in disjunctive prime form. During this process, the 
species that do not receive any benefits from the species pool (i.e., the nodes that do not have any incoming 
positive edges) cannot establish. According to our analysis of the model, only 33.7% of the species pool 
have a chance to participate in a stable community. We omit the species that cannot participate in any stable 
community from the network, thus the effective network becomes smaller. As explained in detail in our previous 
work28, the conversion from threshold functions to Boolean disjunctive form also reveals negative edges that 
have no functional consequence. For example, having a positive regulator and up to three negative regulators is 
equivalent to just having the positive regulator: the target node will be active if the positive regulator is active 
and it will be inactive if the positive regulator is inactive. Such superfluous negative edges are deleted while the 
coupled positive edges remain in the network. We determined that among the species that have the opportunity 
to establish an average of 41.4% of the interactions are mutually beneficial, 36.7% are only beneficial in one way, 
and the rest are beneficial in one way and detrimental the other way. The persistence of some interactions with 
a negative impact on one of the species reflects the existence of interactions that are not true mutualisms in real 
ecological communities, including for instance nectar robbing.

In large networks with each node having numerous regulators, the converted Boolean functions become 
extensive due to combinatorial explosion. As an instance, for a node that has 3 positive regulators and 5 negative 
regulators the Boolean function in disjunctive prime form has 33 prime implicants, each involving an “AND” 
gate. Such a complex expanded network is very difficult and time-consuming to analyze. To tackle this problem, 
we previously developed a simplification method that eliminates randomly selected negative regulators for each 
node such that the remaining regulators retain the probability of H(x) = 128. This simplification method reduces 
the number of negative edges and simultaneously dials up the strength of the remaining negative edges such 
that the Boolean function is statistically equivalent to the original threshold function. Intuitively, the remaining 
negative regulators compensate for the dropped negative regulators and represent the collective cost of the wasted 
opportunities because of incompatible interactions. In the same example above, the simplified function only 
has 3 prime implicants, each corresponding to one of the positive regulators. This simplification method shifts 
the weight of the dropped negative regulators to the remaining ones and implicitly assumes that each remaining 
negative regulator can overcome the positive regulators; in other words, the collective cost of the negative regula-
tors (including those dropped) can overcome the effect of active positive interactions. This assumption results 
in an inhibitor-dominant Boolean function. Assuming that node i has Np positive regulators and Nn negative 
regulators, the simplified Boolean function in disjunctive prime form can be written as:

in which {Pk} are the positive regulators, {Nl} are randomly sampled negative regulators, and x is the number of 
negative regulators we keep. The conservation of probability of H(x) = 1 is used to calculate x (for more details 
see28). The conversion of the threshold functions to disjunctive prime form causes the deletion of 92.2% of the 
negative edges and our proposed simplification process results in the additional loss of 7.6% of the negative 
edges. Since these edges were always paired with positive edges with an opposite direction, plants and pollinators 
remain connected. As most of the simplified plant–pollinator networks do not include negative feedback loops, 
their expanded network is disjoint and its strongly connected subgraphs consist of only active or only inactive 
node states. The stable motifs consist of only active or inactive node states in such networks28.

Network of functional relationships and identification of attractors.  Following the conversion 
of the threshold functions to Boolean logical form, the construction of the expanded network is feasible and 
one is able to identify stable motifs and conditionally stable motifs supported by stable motifs. In our previous 
study28 we developed an efficient method to identify the conditionally stable motifs and their supports. Once the 
support(s) of each conditionally stable motif is (are) identified, a new entity called motif group is constructed; 
each motif group consists of the focal conditionally stable motif and one of its supports. Each of such motif 
group can stabilize independently of the rest of the network.

We also defined two functional relationships among stable motifs and motif groups. Two motifs or motif 
groups are mutually exclusive if they have at least one shared node that has different states in each of them. A 
motif is in the LDOI of another motif if the LDOI of the set of virtual nodes of the latter contains the virtual 
nodes of the former; this means the stabilization of the latter yields stabilization of the former. A usual case for 
an LDOI relationship between two stable motifs is if their virtual nodes overlap.

Constructing the network of functional relationships allows for identifying the maximal consistent combina-
tions of stable motifs and motif groups; combinations that do not consist of mutually exclusive stable motifs and 
motif groups. Each of these consistent combinations then leads to one minimal trap space. The LDOI relation-
ships were also implemented to speed up the process: Combinations of two stable motifs or motif groups that 
have a LDOI relationship do not need to be considered, as the effectiveness of that combination in trapping the 
system does not surpass the effectiveness of the source of the LDOI relationship.

Unlike the original stable motif analysis37,38, this method does not require exploring all sequences of stable 
motifs and conditionally stable motifs to identify minimal trap spaces; rather it relies on the functional relation-
ships among stable motifs and conditionally stable motifs to identify the groups that lead to such trap spaces. As 
a result, it speeds up the attractor identification process28.

Attractor control.  An advantage of stable motif analysis is the insight it offers on the trajectories the system 
can take. For a vast majority of Boolean models and update methods (and in all MPBNs) the set of minimal trap 
spaces coincides with the set of attractors. The exceptions consist of so-called motif-avoidant attractors, which 
are complex attractors that visit the state space in such a way that avoids the activation of stable motifs available 

(2)fi = (σP1(t) OR . . .OR σPNp (t)) AND NOT σN1
(t) . . . AND NOT σNx (t),
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to the system40. The Campbell et al. model does not have motif-avoidant attractors28, thus in the following we 
will use “attractor” and “minimal trap space” interchangeably.

Each of the possible autonomous trajectories in the Campbell et al. model is characterized by the stabilization 
of a combination of stable motifs and leads to an attractor. As a result, each attractor can be uniquely identified by 
the corresponding combination of stable motifs. One can also use this information on the dynamical trajectories 
to drive the system toward a desired attractor by controlling each of the stable motifs in a sequence attractor37,38. 
To control a motif, one needs to identify and activate its driver set—a minimal set of node states that contains 
the whole stable motif in its LDOI41,42. Having the driver sets of the stable motifs in a sequence, the control set of 
each attractor (the set of nodes whose fixed state makes the system converge to the attractor from any initial state) 
can be identified. Typically there exist multiple control sets, and each contains a small number of node states38,43.

Stable motif-based control methods can also be implemented to drive the system away from an unwanted 
attractor. By blocking the stable motif (or family of overlapping stable motifs) that leads to the undesired attractor, 
it is impossible for the system to reach that attractor. For instance, Campbell et al. targeted specific interactions 
in the expanded network and destroyed them in order to prevent the formation of stable motifs that lead to an 
undesired attractor. They analyzed the expanded network and identified the smallest set of edges that if removed, 
the stable motifs that correspond to the undesired attractor and their stabilization effects are eliminated44. Stable 
motif based network control is specifically insightful in the study of extinction of species and restoration strate-
gies in the case of plant–pollinator communities.

Results
The Campbell et al. model provides an excellent framework to identify species whose extinction leads to 
community collapse and species whose reintroduction can restore the community (see Fig. 2 for an illustration 
of these processes). Our first objective, finding the effect of species extinction on the rest of the species in an 
established community, is achievable using the concept of Logical Domain of Influence (LDOI)41; the LDOI 
represents the influence of a (set of) fixed node state(s) on the rest of the components in a system. In this section 
we first present our proposed method to calculate the LDOI for the Boolean threshold functions governing 
the Campbell et al. model of plant–pollinator community assembly. Then we verify that the simplified logical 
functions preserve the LDOI and hence can be implemented to further analyze the effect of extinction in 
plant–pollinator networks. Next, we address one of the main questions that motivated this study: Can stable 
motif driver set analysis facilitate the identification of keystone species? We discuss the identification of the 
driver sets of inactive stable motifs and motif groups and present the results of stabilizing these sets to measure 
the magnitude of the effect of species extinction on the communities. Lastly we discuss possible prevention 
and mitigation measures based on the knowledge acquired from driver sets of stable motifs and motif groups.

LDOI in the Boolean threshold model.  The LDOI concept was originally defined on Boolean functions 
expressed in a disjunctive prime form. Here we extend it to Boolean threshold functions. We implemented it as 
a breadth first search on the interaction network, as exemplified in Fig. 3. Assume that we want to find the LDOI 
of a (set of) node(s) S0 = {n1, . . . , nN } and their specific fixed state Q(S0) = {σn1 , . . . , σnN } . Starting from the set 
S0 , the next set of nodes S1 that can acquire a fixed state due to the influence of Q(S0) consists of the nodes that 
have an incoming edge from the nodes in the set S0 in the interaction network. The nodes in set S1 are the subject 
of the first search level. For each node ni ∈ S0 and n′i ∈ S1 we assume a “worst case scenario” (i.e., maximal 
opposition of the effect of ni on n′i from other regulators) to find the possible sufficiency relationships between 
the two. There are five cases: 

1.	 If ni is a positive regulator of n′i , then σni = 1 is a candidate for being sufficient for σn′i = 1 . We assume that all other 
positive regulators of n′i that have an unknown state (i.e., are not in Q(S0) ) are inactive and all negative regulators 
of n′i that have an unknown state are active. If 

∑

j Wij > 0 under this assumption, then the active state of ni is 
sufficient to activate n′i . The virtual node n′i that corresponds to σn′i = 1 is added to LDOI(Q(S0)).

2.	 If ni is a positive regulator of n′i , then σni = 0 is a candidate for being sufficient for σn′i = 0 . We assume all 
other positive regulators of n′i that have an unknown state are active and all negative regulators of n′i that have 
an unknown state are inactive. If 

∑

j Wij ≤ 0 under this assumption, then the inactive state of ni is sufficient 
to deactivate n′i . The virtual node ∼ n′i that corresponds to σn′i = 0 is added to LDOI(Q(S0)).

3.	 If ni is a negative regulator of n′i , then σni = 1 is a candidate for being sufficient for σn′i = 0 . We assume all 
positive regulators of n′i that have an unknown state are active and all other negative regulators of n′i that 
that have an unknown state are inactive. If 

∑

j Wij ≤ 0 under this assumption, then the active state of ni is 
sufficient to deactivate n′i . The virtual node ∼ n′i that corresponds to σn′i = 0 is added to LDOI(Q(S0)).

4.	 If ni is a negative regulator of n′i , then σni = 0 is a candidate for being sufficient for σn′i = 1 . We assume all 
positive regulators of n′i that have an unknown state are inactive and all other negative regulators of n′i that 
that have an unknown state are active. If 

∑

j Wij > 0 under this assumption, then the inactive state of ni is 
sufficient to activate n′i . The virtual node n′i that corresponds to σn′i = 1 is added to the LDOI(Q(S0)).

5.	 If none of the past four sufficiency checks are satisfied, the node n′i will be visited again in the next search 
levels.

The second set of nodes that can be influenced, S2 , are the nodes that have an incoming edge from the nodes in the 
set S1 . The algorithm goes over these nodes in the second search level as described above. This search continues 
to all the levels of the search algorithm until all nodes are visited (possibly multiple times) and either acquire a 
fixed state and are added to the LDOI or their state will be left undetermined at the end of the algorithm. In Fig. 3, 
we illustrate this search to find the LDOI(∼pl_1). The first search level is S1 = {po_1, po_3} ; ∼pl_1 is sufficient 
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to deactivate po_3, but not po_1. As a result, ∼po_3∈ LDOI(∼pl_1). This process continues until all levels are 
visited and at the end of the algorithm LDOI(∼pl_1) = {∼po_3, ∼pl_2, ∼pl_3, ∼pl_4, ∼pl_5, ∼po_1, ∼po_2 }.

To measure the accuracy of the simplification method originally introduced in28, we analyzed logical domains 
of influence in 6000 networks with 50–70 nodes. These networks are among the largest in our ensembles and 
have the most complex structures. We randomly selected (sets of) inactive node states, found their LDOIs using 
the Boolean threshold functions and the simplified Boolean functions, and compared the two resulting LDOIs. 
We used 8 single node states and 8 combinations of size 2 to 4 for each network. We found that in all cases 
the LDOI calculated using the simplified Boolean functions matches the LDOI calculated using the Boolean 
threshold functions.

Next, we analyzed (sets of) active node states and their LDOIs in the same ensembles of networks. Similar 
to the previous analysis, we used 8 single node states and 8 combinations of size 2 to 4 for each network. Our 
analysis shows that in 77.1% of the cases the LDOI calculated using the simplified Boolean functions matches 
the LDOI calculated using the Boolean threshold functions. In 22% of the cases the LDOI calculated from the 
simplified Boolean functions contains the LDOI calculated from the threshold functions, and it also contains 
extra active node states, overestimating the LDOI by 57.5% on average. These additional members of the LDOI 
result from the fact that the simplified Boolean functions contain fewer negative regulators than the threshold 
functions. The guiding principle of the simplification method is that the probability of H(x) = 1 conserves the 
probability of each node having an active state across all the states it can have. In contrast, the probability of 
the propagation of the active state is not necessarily preserved and tends to be higher in the simplified Boolean 
model; thus the LDOI of the active node states is overestimated in some cases.

In the rest of the cases (about 1%), the LDOI calculated from the simplified Boolean functions does not 
fully capture the LDOI calculated from the threshold functions. This again is caused by the sparsification of 

Figure 2.   Illustration of species extinction and restoration in a hypothetical 6-species community. (a) 
The interaction network (on the left), and the maximal richness community possible for this network (the 
community with the most established species). Nodes highlighted with green represent established species. 
(b) The initial extinction of two species, po_1 and po_2 (left) and the community that results after cascading 
extinctions (right). Nodes highlighted with grey represent extinct species. (c) An intervention to restore pl_2 
(left), which induces the restoration of further species, finally leading to a restored community with all the 
species present (right). The nodes highlighted with teal represent the restored species.
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the negative edges in the simplified Boolean functions. In the threshold functions, the activation of 4 or more 
negative regulators of a target node combined with one active positive regulator is sufficient to deactivate the 
target node, i.e., there might be inactive node states in the LDOI of a set of active node states. However, some 
of these negative regulators drop in the simplified Boolean model and the inactive state of the target node is 
not necessarily in the LDOI of the set of active node states in the simplified case. This is the rare mechanism by 
which the simplified model might underestimate the influence of active node states on the rest of the network.

In the following section we are interested in analyzing the effect of species extinction on the established com-
munity, i.e., we look at the LDOI of (sets of) inactive node states. Observing that the influence of extinction of 
species is measured correctly in the simplified Boolean models, we conclude that these models can be utilized 
to further analyze the process of extinction and its ecological implications.

Stable motif based identification of species whose loss leads to cascading extinctions.  Each 
stable motif or motif group can have multiple driver sets; stabilization of each driver set leads to the stabilization 
of the whole motif or motif group. In plant–pollinator interaction networks, the stable motifs either represent a 
sub-community (when the constituent nodes stabilize in their active states) or the simultaneous extinction of all 
species in the group (when the constituent nodes stabilize to their inactive states). Stabilization of the nodes in 
the driver set of an inactive stable motif results in stabilization of all the nodes in the stable motif to their inactive 
state, i.e., cascading extinction of the constituent species.

The knowledge gained from stable motif analysis and the network of functional relationships offers insight 
into the cascading effect of an extinction that constitutes a driver set of an inactive stable motif. The magnitude 
of this effect depends on (i) the number of nodes that the inactive stable motif contains and (ii) the number of 
virtual nodes (including motifs and motif groups) corresponding to inactive species that are logically determined 
by the stabilization of the inactive stable motif.

To investigate the role of stable motifs in the study of species extinction in plant–pollinator networks, we 
simulated extinctions that drive inactive stable motifs in 6000 networks with the sizes of 50–70 nodes. We con-
sidered driver sets of size 1, 2, or 3, and implemented them by fixing the corresponding node(s) to its (their) 
inactive state. As a point of comparison, we also performed a “control” analysis using the same networks with 
the same size of initial extinction; however, the candidates of initial extinction are inactive node states that do 

Figure 3.   Breadth first search of the interaction network to find the LDOI of a (set of) fixed note state(s) in 
Boolean threshold functions governing the dynamics of plant–pollinator networks. (a) An interaction network 
with five plants and 3 pollinators. (b) The breadth first search in the case of starting from the node state ∼pl_1. 
The nodes with incoming edges from pl_1 make up S1 = {po_1, po_3} . The second sufficiency check is satisfied 
for node state ∼po_3, as a result ∼po_3∈ LDOI(∼pl_1). The same process is applied for node po_1, but none of 
the sufficiency checks are satisfied, so this node will be visited again later. The next level of the search consists 
of the nodes that have incident edges from S1 , i.e., S2 = {pl_2, pl_3, pl_4, pl_5} . The second sufficiency check is 
satisfied for all of these nodes and they are all fixed to their inactive state in the LDOI(∼pl_1). Lastly, we reach 
S3 = {po_1, po_2} . Node po_1 is reached again, and with both its positive regulators fixed to their inactive states 
the second sufficiency check is satisfied and node po_1 is fixed to its inactive state as well. The same holds for 
po_2 and hence LDOI(∼pl_1) = {∼po_3, ∼pl_2, ∼pl_3, ∼pl_4, ∼pl_5, ∼po_1, ∼po_2 }.
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not drive stable motifs or motif groups. Based on the properties of the drivers of stable motifs, one expects that 
following the extinction of driver species, cascading extinctions of other species follow, while the same does not 
necessarily hold for non-driver species. As a result, we expect to observe greater damage to the original com-
munity when driver species become extinct.

We assume that the “maximal richness community”—the community (attractor) in which the largest number 
of species managed to establish—is the subject of species extinction. This maximal richness community results 
from the stabilization of all active stable motifs. All other attractors that have some established species contain a 
subset of all active stable motifs and thus will contain a subset of the species of the maximal richness community. 
While for a generic Boolean model with multiple attractors one expects that a perturbed version of the model 
also has multiple attractors, this specific perturbation of a plant–pollinator model (namely, extinction of species 
in the maximal richness community) has a single attractor. We prove this by contradiction. Assume there are two 
separate attractors in the perturbed model, which means that there is at least one node that has opposite states in 
these two attractors. Note that this bi-stability is the result of the perturbation and not a property of the original 
system as the maximal richness community (an attractor) is the starting point for the introduced extinction. 
Specifically, the inactive state of the extinct node has to lead to the stabilization of another node to its active versus 
inactive states in the two separate attractors. The only case in which the stabilization of an inactive node state 
can result in the stabilization of an active node state is if there is a negative edge from the former to the latter in 
the interaction network after simplification. Since the Boolean function in 2 is inhibitor dominant, the negative 
regulators that remain in the Boolean model must be in their inactive states in the maximal richness attractor. 
As they are already inactive (extinct), they are not candidates for extinction. The only nodes that are candidates 
for extinction are the ones that positively regulate other nodes; perturbing the system by fixing these candidates 
to their inactive states cannot lead to the active state of a target node. In conclusion, bi-stability is not possible.

We found the new attractor of the system given the (combination of) inactive node state(s) using the the 
functions percolate_and_remove_constants() and trap_spaces() from the pyboolnet Python 
package. We quantify the effects of the initial extinction(s) on the maximal richness attractor by the percent-
age change in the number of active species, which we call damage percentage. Note that this choice of maximal 
richness community as the reference and starting point allows us to detect the cascading extinctions following 
the initial damage.

In Fig. 4 the left column plots show the average damage percentage caused by the extinction of 1 (top panel), 
2 (middle panel), or 3 (bottom panel) species that represent driver sets of stable motifs and motif groups, while 
the right column plots illustrate the average damage percentage as a result of the extinction of 1, 2 or 3 species 
that represent non-driver nodes. Comparing the two columns, one can notice that stabilization of the driver 
sets of stable motifs and motif groups leads to considerably larger damage to the communities. This is due to the 
fact that stabilization of driver sets ensures the stabilization of entire inactive stable motifs and motif groups and 
hence ensures cascading extinctions. Comparing the plots in the left column, we see that the larger the driver 
sets are, the larger the damage to the community becomes. This is because larger driver sets are more likely to 
stabilize larger stable motifs and motif groups. This figure illustrates the significance of stable motifs and their 
driver sets in the study of species extinction in plant–pollinator communities.

In Fig. 4 left column, the full driver set of one inactive stable motif or motif group was stabilized. However, the 
species that become extinct might only contain a subset of a driver set of a stable motif or motif group, i.e., they 
only stabilize a subset of the inactive node states in the stable motif or motif group. We compare the extinction 
effect caused by the stabilization of a full driver set of four nodes with the effect of the extinction of four nodes 
that contain a partial driver set in Fig. 5 using the batch of the largest networks in this study, i.e, the batch that 
contains networks with 30 nodes representing plant species and 40 nodes representing pollinator species. This 
choice is due to the fact that the existence of stable motifs and motif groups having a driver set of four node states 
is highly probable in larger networks. As expected, the stabilization of the complete driver set leads to greater 
damage. Stabilization of the same number of nodes that contain a partial driver set leads to significantly less 
damage and species loss in the community; the median damage percentage in the case of stabilization of partial 
driver sets is 22.6% while it is 69.2% in the case of stabilization of the full driver sets. We also note that damage 
of more than 90% occurs rarely and is only possible when a full driver set is stabilized (see Fig. 5 right plot). This 
suggests that the motif groups that lead to total extinction tend to have a driver set with more than four nodes; 
in other words, only the simultaneous extinction of five or more species would lead to total community collapse.

Motif driver set analysis outperforms structural measures in identifying keystone species.  The 
literature on ecological networks offers multiple measures that reflect the importance of each species for 
community stability. One family of such measures is centrality (quantified by the network measures degree 
centrality and betweenness centrality). Previous studies45,46 have shown that species (nodes) with higher 
centrality scores are keystone species in ecological communities (i.e., species whose loss would dramatically 
change or even destroy the community). The nodes with highest in-degree centrality (such as pl_2 in Fig. 6a) 
represent generalist species that can receive beneficial interactions from multiple sources and survive. The nodes 
with highest betweenness centrality (such as pl_2 and po_2 in Fig. 6a) represent species that act as connectors 
and help the community survive. We find that high centrality corresponds to specific patterns in the expanded 
network: the inactive state of generalist or connector species is often the driver of a cascading extinction. 
Indeed, stable motif analysis of the expanded network in Fig. 6b confirms that there is an inactive stable motif 
(highlighted with grey) driven by the minimal set { ∼pl_2}. The fact that node pl_2 is a stable motif driver means 
that in the case of the extinction of pl_2 the whole community collapses.

To compare the effectiveness of stable motif analysis to the effectiveness of the more studied structural 
measures to identify keystone species, we performed an analysis similar to the previous section. We compared 
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the magnitude of cascading extinctions in the case of extinction of stable motif driver nodes and of nodes with 
high values of previously introduced structural importance measures. Specifically, we used node betweenness 
centrality, node contribution to nestedness47, and mutualistic species rank (MusRank)22 to find crucial species 
based on their structural properties. For more details on definition and adaptation of these two measures see 
“Methods”. In this analysis, we used each measure to target species in the simplified Boolean models as follows: 

1.	 Betweenness centrality: The 10% of species with the highest betweenness centrality are chosen to be candi-
dates for extinction.

2.	 Node contribution to nestedness: The species with the most interactions tend to contribute the least to the 
community nestedness. Targeting them most likely leads to a faster community collapse48. As a result, 10% 
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Figure 4.   Histogram plots illustrating the average percentage of the damage caused in an established 
community after the extinction of species. This analysis is performed over 6000 networks with the size of 50–70 
nodes. To study the extinction of species we started from the maximal richness community, then we fixed the 
nodes that correspond to the focal species to the their inactive states. The original extinctions are excluded from 
the damage percentages. The left column plots show the average damage percentage caused to the maximal 
richness community by the extinction of a driver set of size 1 (top), 2 (middle), or 3 (bottom) of an inactive 
stable motif or motif group. For each network, we determined all the relevant driver sets of one stable motif or 
motif group, we performed the extinction and calculated the resulting damage, then we calculated the average 
damage percentage over all data points collected for the same network. The right column plots show the average 
damage percentage caused to the maximal richness community by the extinction of 1 (top), 2 (middle), and 
3 (bottom) non-driver, randomly chosen nodes. Each time a randomly selected combination of non-driver 
nodes were the subject of simultaneous extinction until all combinations are explored and then we calculated 
the average damage percentage over all data points collected for each network. The number of networks that 
qualify for each of these 6 categories differ (e.g., some networks have a stable motif with a driver set of size 2 but 
no stable motif with a driver set of size 3). In the left column 5529, 3212, and 1980 networks and in the right 
column 5779, 5626, and 5423 networks qualified respectively. The red lines represent the mean value of all the 
presented data points in each plot.
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of species with the lowest contribution to network nestedness are chosen to be candidates for extinction. 
For more details on this measure, please see “Methods”.

3.	 Pollinator MusRank: The pollinator species with the highest MusRank importance are more likely to interact 
with multiple plants, so the 10% of pollinator species with the highest importance are chosen to be candidates 
for extinction. For more details on this measure, please see “Methods”.
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Figure 5.   Histogram plots illustrating the average percentage of the damage caused in an established 
community after the extinction of species. This analysis is performed over 1000 networks with the size of 
70 nodes (30 nodes representing plant species and 40 nodes representing pollinator species). The original 
extinctions are excluded from the damage percentages. The left plot shows the average damage percentage 
caused to the maximal richness community by the extinction of 2 species that are a subset of the 4-node driver 
set of an inactive stable motif or motif group plus 2 randomly selected non-driver species. The right plot shows 
the damage percentage caused to the maximal richness community by the extinction of 4-node driver sets of the 
same inactive stable motifs and motif groups. Each time the driver set of one stable motif or motif group was 
the subject of extinction and we calculated the average damage percentage over all data points collected for each 
network. 295 networks qualified for this analysis.

Figure 6.   Generalist species in the interaction network and the expanded network. (a) A simplified network 
consisting of 3 plant and 3 pollinator species. pl_2 is a generalist species, i.e., it has two incoming edges 
indicating that it can survive on either of its sources of pollination, po_1 or po_2. The expanded network in (b) 
illustrates that the stabilization of the grey stable motif stabilizes all the nodes to their inactive states, and hence 
causes full community collapse. ∼pl_2 is the minimal driver set of the grey stable motif, consistent with the 
strong damage induced by the loss of a generalist species.
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4.	 Plant MusRank: The plant species with the highest MusRank importance are more likely to interact with 
multiple pollinators, so the 10% of plant species with the highest importance are chosen to be candidates for 
extinction.

Figure 7 illustrates the results of this analysis in 6000 networks with 50–70 nodes. In each network the 1-node, 
2-node, and 3-node driver sets of inactive stable motifs are identified and made extinct. In the same networks 
10% of nodes based on betweenness centrality, node contribution to nestedness, and node MusRank score were 
chosen to be candidates for extinction. To match the “driver set” data, all choices of 1, 2, or 3 nodes in these sets 
were explored and the damage was averaged over each extinction size for each network. We observe the cascading 
extinction and calculate the damage percentage relative to the maximal richness attractor. The plot represents 
the collective data over all initial simultaneous extinction sizes of 1, 2, and 3 species.

Comparing the four methods, one notices that the histograms acquired using stable motif driver sets, node 
betweenness centrality, and node contribution to nestedness are very similar, showing a peak for the 10–20% 
bin of the damage, and a long tail that reaches a damage percentage of 80–100%. The MusRank score performs 
less well in identifying the crucial species. Also, the frequency of the higher damage percentages shows that node 
contribution to nestedness is the closest to the “driver set” method in identifying nodes whose extinction causes 
the collapse of the whole community, making it the best structural measure out of the three. Nevertheless, the 
driver set method finds keystone species that cannot be identified via structural measures, as the corresponding 
damage percentage histogram has the most prominent tail at the right edge of the panel. Indeed, stable motif 
driver sets identified 82%, 80%, and 546% more species whose extinction leads to 60% or higher damage to 
the community when compared to betweenness centrality, node nestedness, and node MusRank score based 
methods respectively.
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Figure 7.   Histogram plots illustrating the performance of driver set analysis versus structural measures in 
identifying keystone species. The analysis was done on 6000 networks with sizes of 50–70 nodes. The starting 
point is the maximal richness community, i.e., the attractor in which the most species establish. For each 
network 1, 2, and 3 node(s) were selected and simultaneously fixed to their inactive states. After the cascading 
damage the new attractor is compared to the maximal richness attractor to calculate the damage percentage. The 
structural measures—betweenness centrality, node nestedness contribution, and node MusRank score—were 
calculated for all nodes in each network; the top 10% according to the relevant ordering were candidates to 
being fixed to their inactive states. The network IDs were matched, i.e., only the networks that had candidate 
nodes according to all four measures for each extinction size are included in this plot. The total number of data 
points is 6360. The red solid lines represent the mean and the black dashed lines represent the median over all 
data points in each plot.
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The reason for the higher effectiveness of driver set analysis is illustrated in Fig. 8 in which the MusRank 
score and node contribution to nestedness are calculated for two example networks. One can see how these two 
measures might incorrectly identify less vital species. In the left column of Fig. 8, MusRank identifies the node 
po_2, highlighted with green, as the most important species. However, this node does not have any outgoing 
edges; its extinction does not lead to any cascading extinction. The inability of the MusRank score to consider 
the direction of edges causes such misidentification. In the right column, the three nodes highlighted with 
yellow have the lowest contributions to network nestedness. The expanded network shows that these three 
nodes together are not able to cause full community collapse, while the three-node driver set of the inactive 
stable motif can. Since the nestedness definition depends on the number of mutual interactions, it might fail to 
identify some of the keystone nodes that are necessary to the stability of the community (for more details on 
node nestedness see “Methods”).

Previously it was shown that identifying the stable motifs and their driver sets can successfully steer the system 
toward a desired attractor or away from unwanted ones37,38,43. Stable motif analysis of the Boolean model offers 

Figure 8.   Networks illustrating examples of when structural measures fail to identify keystone species. In 
both columns simplified networks consisting of 3 plant and 3 pollinator species are presented. The MusRank 
is calculated for all the nodes in the network in the left column and denoted in the node labels. The expanded 
network corresponding to this network is shown below. Node contribution to network nestedness is calculated 
for all the nodes in the network in the right column and denoted in the node labels. Similarly the expanded 
network that correspond to it is shown below. Note that these two networks have different edges. In the 
left column MusRank score identifies node po_2, highlighted with green, as the most important, while the 
expanded network shows that the extinction of po_2 does not cause any further damage to the community, as 
this node has no outgoing edges. This is due to the fact that MusRank calculation process fails to consider the 
directed network and replaces all the directed edges with undirected ones. The MusRank score does not identify 
po_3 as a crucial species; however, virtual node ∼po_3, outlined with black in the expanded network is a driver 
of a stable motif that has all other nodes in its LDOI; the extinction of po_3 leads to full community collapse. In 
the right column, the nodes highlighted with yellow (pl_2, pl_3, and po_2) have the lowest node contribution 
to nestedness, which predicts that these nodes are likely crucial to the stability of the community. Analyzing the 
expanded network, one can see that these three nodes together are not able to drive the inactive stable motif 
highlighted with teal. The minimal driver set for this stable motif, outlined with black, consists of { ∼po_1, ∼
po_2, ∼po_3}; together these nodes drive the inactive stable motif and cause full community collapse. The 
nestedness-based measure was not able to capture the significance of nodes po2 and po_3.
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insight into the dynamical trajectories of the system; hence control strategies can be developed accordingly. In 
the next section we use stable motif driver sets to suggest control methods and analyze their efficiency.

Damage mitigation measures and strategies for endangered communities.  There are two 
substantial questions related to managing the damage induced by species extinction: (1) How can one prevent 
the damage as much as possible? (2) Once the damage happens, the reintroduction of which species can restore 
the community and to what extent? In this section we aim to answer these questions in the context of the 
Campbell et al. model, implementing stable motif based network control. This analysis can inform agricultural 
and ecological strategies employed to prevent and mitigate damage.

Damage prevention.  One of the most important questions in ecology is what strategies to use so that we can 
prevent and avert extinction damage to the community. In this section we analyze how the knowledge from 
stable motif analysis and driver sets can be implemented to minimize the effect of extinction of keystone species 
in case of limited resources. Each attractor of the original system can have multiple control sets; stabilizing the 
node states in each control set ensures that the system reaches that specific attractor. The same information from 
the attractor control sets can be implemented to prevent the system from converging into unwanted attractors. 
Zañudo et al. illustrated that by blocking (not allowing to stabilize) the stable motifs that lead to the unwanted 
attractors, one can decrease the probability (sometimes to zero) that the system arrives in those attractors38. In 
order to block an attractor, the control sets of that attractor are identified and the negations of the node states in 
the control sets are externally imposed. This approach eliminates the undesired attractor; however, new attractors 
might form that are similar to the eliminated attractor. Campbell et al. showed that in order to avoid such new 
attractors one needs to block the parent motif, which in this case is the largest strongly connected subgraph of 
the expanded network that contains the inactive virtual nodes44. Here, we investigate how stable motif blocking 
based attractor control can identify the species whose preservation would offer the highest benefit in avoiding 
catastrophic damage to the community. This information would aid the development of management strategies 
in plant–pollinator communities.

To avoid all attractors that lead to some degree of species extinction, one needs to block all the driver sets 
of all inactive stable motifs and motif groups in a given network. Implementing this in 100 randomly selected 
networks with 25 plant and 25 pollinator nodes, we found that 45.6% of the species in the maximal richness 
community need to be kept (prevented from extinction) to ensure the lack of cascading extinctions. Given that 
management resources are usually limited, active monitoring and conservation of almost half of the species in 
a community seems costly and impractical. Hence, we set a more feasible goal of identifying and blocking the 
driver set(s) of the largest inactive stable motif or motif group in each network. The same 100 networks containing 
50 nodes are the subject of analysis in this section. The reason for performing the analysis in a relatively limited 
ensemble is that it involves the identification of all driver sets of the largest inactive stable motif or motif group, 
which is computationally expensive. For each network, the driver set of the largest inactive stable motif or motif 
group (which corresponds to the extinction of all the species in that group) is identified and blocked (that is, 
the corresponding species are not allowed to go extinct). Then the same number of species as in the driver set 
of that stable motif or motif group are selected and stabilized to their inactive state. We considered all combina-
tions of node extinctions outside the blocked subset, calculated the damage percentage relative to the maximal 
richness community, and then averaged over all data points for each network. As a control, we repeated the 
analysis without blocking; the size of the initial extinction is the same as in the previous analysis for consistency.

Figure 9 shows the result of the analysis described above for 100 networks. The left box and whiskers plot 
illustrates the damage percentage relative to the maximal richness community when the blocking feature is 
activated, while the right box and whiskers plot shows the damage percentage relative to the maximal richness 
community when the blocking is disabled. The average and median damage percentages are 14.96% and 13.04% 
respectively when the largest inactive stable motif or motif group was blocked and 24.73% and 20.38% when it 
was not. This ∼10% difference in the average between the two sets of results, as well as the fewer cases of high-
damage outliers in the left plot, demonstrates that by preventing the extinction of species identified by stable 
motif analysis, one can prevent catastrophic community damage considerably.

To estimate the fraction of species that would need to be monitored to prevent their extinction, we compared 
the size of the maximal richness attractor and the size of the driver set of the largest stable motif. The maximal 
richness community represents an average of 32% of the original species pool, approximately 15 out of 50 species. 
The driver sets of the largest stable motifs had an average size of 2.5 node states over all 100 networks, i.e., about 
16.6% of the maximal richness community. In ecological terms, given limited resources, the information gained 
from stable motif driver sets can help direct the conservation efforts toward the keystone species that play a key 
role in maintaining the rest of the community in a cost-effective manner.

Restoration of a group of species.  Although human preservation efforts have been directed toward community 
conservation, there are many industrial activities that lead to ecosystem degradation. Ecologists are interested 
in developing restoration strategies to be deployed after a stable community is hit by catastrophic damage to 
recover biodiversity and the ecosystem functions it provides49. Here we propose that stable motif analysis and the 
driver sets identified from the expanded network can give insight into restoration measures. While we examined 
the inactive stable motifs in the study of species extinction, here we focus on the active stable motifs as our goal 
is to restore as much biodiversity as possible.

Several network measures have been proposed to identify the species that if re-introduced would restore the 
community considerably. Two of the most studied algorithms include maximising functional complementarity 
(or diversity) and maximising functional redundancy50. The first strategy targets the restoration of the species 
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that provide as many functions to the ecosystem as possible; this approach results in a community that has a 
maximal number of functions provided by different groups of species. Alternatively, maximising the functional 
redundancy yields a community in which several species perform the same function. While this resultant com-
munity might have a limited number of functions, it is robust. Both of these community restoration approaches 
have been studied extensively (e.g. see21).

We hypothesize that restoring the species that constitute driver sets of active stable motifs can help max-
imise the number of species post-restoration. Since there is evidence that functional diversity correlates with 
the number of species in the community51, we compare the post-restoration communities identified by stable 
motif driving with the functional diversity maximisation approach. As discussed in section LDOI in the Boolean 
threshold model, the Boolean simplification of the threshold functions leads to an overestimation of the LDOI 
of active node states (compared to the original threshold functions) in some networks. We evaluate the negative 
effects of this overestimation by checking the effectiveness of the restored species in the original threshold model.

The same 6000 networks we examined in the last section were the subject of this analysis. To create an unbi-
ased initial community, we create the damaged communities by eliminating the same number of species from 
the maximal richness community as the number that will be restored. We identify the inactive stable motif or 
motif group with the driver set size of 1, 2, or 3 node states that causes the most damage to the maximal richness 
community. We then eliminate the species corresponding to this driver set to reach the most damaged community 
for the given size of the initial extinction. This community is the starting point for two analyses. In the stable 
motif driving approach we stabilized an active stable motif that has a driver set of the same size as the initial 
extinction to reach a post-restoration community and calculated the percentage of the extinct species that were 
restored. In the functional diversity maximization based approach we re-introduced the same number of species 
selected from the to 10% of species in terms of their contribution to functional diversity.

To calculate the functional diversity of a community one needs to (1) define and construct a trait matrix, 
(2) determine the distance (trait dissimilarity) of pairs of species, (3) perform hierarchical clustering based on 
the distances to create a dendrogram, and (4) calculate the total branch length of the dendrogram, i.e., the sum 
of the length of all paths51,52. Petchey et al. argued that resource-use traits among plant and pollinator species 
can be used to classify the organisms into separate functional groups53 and Devoto et al. proposed the use of 
the adjacency matrix based on the interaction network as the trait matrix21. In this study we do the same and 
implement the bipartite adjacency matrix to construct the distance matrix.

Since the networks of the Campbell et al. model are directed, we modify the algorithm in that we have two 
separate adjacency matrices, one denoting the edges incoming to plant species and the other denoting the edges 
incoming to pollinator species. The hierarchical clustering algorithm is then run on each of these matrices sepa-
rately, resulting in a dendrogram for each adjacency matrix. If extinction occurs in a community, the functional 
diversity of the survived community can be determined by calculating the total branch length of the subset of the 
dendrogram that includes only the survived species. The restoration strategy using this method is to re-introduce 
the nodes whose branches add the most to the total branch length of this subset, i.e., maximise the functional 
diversity of the survived community54. For more details see “Methods”.

In each network, the percentage of the extinct species that were restored was calculated and averaged over 
all data points for each restoration size and each network. Figure 10 illustrates the results of this investigation. 
Applied to the simplified Boolean model, the median restoration percentage in the case of active stable motif 

Largest inactive SM blocked Largest inactive SM not blocked

10

20

30

40

50

60

70

D
am

ag
e 

pe
rc

en
ta

ge

Figure 9.   Box plots comparing the damage communities face if the largest inactive stable motif or motif 
group is completely blocked, i.e., all the drivers of this inactive stable motif or motif group are prevented from 
stabilizing versus if the same stable motif or motif group is allowed to stabilize. This analysis was performed 
over 100 randomly selected networks that contain 25 plant and 25 pollinator nodes. All the driver sets of an 
inactive stable motif or motif group are identified. From left to right the box and whiskers plots show the average 
damage percentage relative to the maximal richness community if the largest inactive stable motif is blocked 
and the same quantity if the largest stable motif or motif group is not blocked respectively. For the left box and 
whiskers plot, all combinations of inactive node states except the driver sets are considered, and for the right box 
and whiskers plot all combinations are explored. Due to the computational complexity caused by combinatorial 
explosion, this analysis was performed over 100 randomly selected 50-node networks.
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driver set method (blue plot) is 80%. The functional diversity maximization strategy to restoration (yellow 
plot) yields a lower median restoration percentage, 73%, as well as a large number of low-restoration outliers. 
Although one might argue that identifying beneficial species using the functional diversity maximization strategy 
works well, the higher percentage of the cases of 80–100% restoration in case of the active stable motif driver set 
analysis indicates that the latter identifies some of the most effective restorative species that are not identified 
via the former method. As in a minority of cases the simplified Boolean model overestimates the positive impact 
of the sustained presence of a species (see section LDOI in the Boolean threshold model), we sought to verify 
the effectiveness of the predicted restoration candidates in the original threshold model. The blue (respectively, 
yellow) box and whiskers plot on the right represents the restoration percentages of the same species as in the 
left blue (respectively, yellow) plot when these species are restored in the threshold model. The median of the 
right blue plot is 70%, while the median of the right yellow is 63%, preserving the advantage of the stable motif 
driver sets. We conclude that although the simplified Boolean model overestimates the restoration effectiveness 
of certain driver sets (visible in the fact that the lower whisker of the blue plot on the right goes well below the 
lower whisker of the blue plot on the left), stable motif driver sets are more effective in both comparisons.

Community restoration via attractor control.  As illustrated in section “Restoration of a group of species”, stable 
motif analysis identifies promising and cost-effective group restoration strategies. In this section we aim to go 
further and identify interventions that can maximally restore a community. Previous stable motif based network 
control methods37,38,55 require a search for the smallest set of node states to control the system once the stable 
motif stabilization trajectories are identified. This smallest set may not contain a node from each stable motif 
in the sequence. In this work, however, we know that each stable motif or motif group needs to be controlled 
individually28 because the stabilization of none of the motifs results in the stabilization of another. As a result, 
the control set of each attractor is the same as the union of the driver sets of all members in the consistent 
combination corresponding to that attractor.

In this section we examined this attractor control method by setting the communities with 70% or more of 
the species in the maximal richness community as the target, i.e., the attractors that have 70% of the species 
in the maximal richness community are assumed to be the desired attractors. We then recorded the size of the 
minimal control set needed to achieve each of these attractors. Note that stabilizing each of these control sets 
guarantees that the system reaches the corresponding attractor38.

For this section, we analyzed 6000 networks that have 50–70 nodes. Figure 11 represents box-and-whiskers 
plots of the size of the minimal set of species that need to be restored, where the target community sizes are 
classified into three groups based on the percentage of the species relative to the maximal richness attractor. 
One can see that in half of the cases, the restoration of either 1 or 2 species manages to restore more than 70% of 
the maximal richness community. The largest set has 8 species that need to be restored; however, this data point 
is an outlier. As illustrated, driver set analysis and stable motif based attractor control can efficiently identify 
the species that play an influential restorative role and suggest management strategies that are effective at the 
scale of the whole community. To assess the impact of the LDOI inflation on this result, we used the restoration 
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Figure 10.   Box and whiskers plots illustrating the average percentage of the extinct species that are restored 
following the stable motif driver set restoration strategy (blue) versus the functional diversity based approach 
(yellow). This analysis is performed over 6000 networks with sizes of 50–70 nodes. Starting from the maximal 
richness community, for each network one inactive stable motif with a driver set of 1, 2 or 3 nodes was stabilized 
to reach a new damaged community. This task was performed until the community with the most extinct 
species was identified. This is the community we set as the starting point for the restoration process using both 
methods. The pair on the left represents the two methods applied to the simplified Boolean model. For both 
methods we identified 1, 2, or 3 influential nodes for community restoration and we calculated the percentage of 
the extinct species that could be restored. The pair on the right represents restoring the same species identified 
by each method in the previous analysis in the original threshold model. In all analyses the community 
restoration percentage was averaged over all combinations of the same size, for each network and each method. 
The IDs of all networks are matched.
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candidates identified by control sets of the attractors of the Boolean model in the threshold functions of a subset 
of networks. The results of comparing the restoration percentage is shown in Fig. 14. The first quartile, median 
and third quartile values are 78.26%, 86.6%, and 100% for the simplified Boolean models and 43.78%, 72.41%, 
and 85.71% for the threshold model.

To further compare the results of restoration obtained from the two models we sorted the species in the order 
of their contribution to community restoration following a catastrophic damage. We randomly selected 100 
of the largest (70-node) networks, which have the highest probability of a discrepancy between the threshold 
functions and the simplified Boolean model. In 72% of the cases the two rankings matched completely, and in the 
majority of the remaining cases only one species was misplaced in the simplified Boolean model-based ranking. 
To conclude, there is a significant advantage to the implementation of the simplified Boolean model and the 
drawback can be addressed by a follow-up checking on the original threshold functions.

Discussion
Network-based modeling of ecological systems such as plant–pollinator communities holds significant value as 
it captures the behavior of such systems without needing fine-grain details; this analysis has contributed useful 
insights to maintaining species56. In this work we specifically focused on the study of extinction and restoration 
of species and communities in plant–pollinator interaction networks and analyzed the role of generalized posi-
tive feedback loops in developing an understanding of the behavior of the system in the case of perturbation. 
To achieve this, we utilized the dynamic Boolean network model of mutualistic plant–pollinator community 
assembly developed by Campbell et al.23. This model is well-studied and its results have been supported by 
experimental evidence; for example, the potentially beneficial effect of the introduction of a generalist plant into 
an existing plant–pollinator community has been experimentally verified by Russo et al.57.

The analysis in this work relies on the concept of expanded network32,33 and its construction. The expanded 
network representation integrates the dynamic model and the structure of the interaction network. The benefit 
of such representation is that one can identify the so-called stable motifs—the smallest group of nodes that can 
maintain their state regardless of the state of the rest of the nodes in the network. To achieve this, in our previous 
work we converted the Boolean threshold functions to disjunctive prime logical form by consolidating nega-
tive edges28. Here, we showed that the logical domain of influence (LDOI) of the inactive node states predicted 
by the latter matches the LDOI calculated by the former, concluding that the disjunctive prime form, although 
simplified, is a suitable approximation for the Boolean threshold functions when studying species extinction.

While the same does not hold for the LDOI of the active node states, we showed that in the majority of the 
analyzed cases the LDOI calculated using the simplified Boolean functions matches the LDOI calculated from 
the threshold functions. In 22% of the analyzed cases, the simplified Boolean functions overestimated the LDOI 
of the active node states. To assess the quantitative effect of this negative impact, we calculated the percentage 
of community restoration on the original threshold models when restoring the species indicated by the stable 
motif driver sets and Functional Diversity maximization method, respectively, on the simplified models. We 
found that both methods are affected by this inflation in the LDOI of the active node states. Nevertheless, the 
restoration candidates identified by the stable motif driver set method outperform the candidates identified by 
the functional diversity maximization method. The additional states in the LDOI of an active node state may lead 
to an overestimation of the effectiveness of certain restoration candidates. We suggest that during the selection 
of restoration strategies the user/modeler use the stable motif driver sets on the simplified Boolean to identify 
the restoration candidates and then determine the LDOI of these candidates on the threshold functions using 
the algorithm described in the first section of the Results. As If the LDOI demonstrates that the target outcome 
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Figure 11.   The number of species that need to be restored to save 70% of more of the species in the maximal 
richness community. In this analysis 6000 networks with 50–70 nodes were the subject. For each networks all 
the attractors that have 70% or more of the species in the maximal richness attractor are identified and set to 
be the target attractors. The control set of these attractors are then classified into three groups based on the 
percentage as illustrated in the figure. From left to right, the box and whiskers represent the size of the control 
set of attractors that have 70–80%, 80–90%, and 90–100% of the species in the maximal richness attractor 
respectively.
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can be achieved via the restoration of the focal node(s), one can move forward with the identified restoration 
strategy. Any misidentified node(s) can be disregarded. As there are multiple driver sets, and thus multiple 
predicted restoration candidates, we expect that a sufficient number of effective restoration strategies remain.

Previously we illustrated that identification of subgraphs and their relationships simplifies the task of attractor 
identification28. In this study, we build on this method to identify the attractor control sets—sets of node states 
that if stabilized, the system is guaranteed to settle in the corresponding attractor. Stable-motif based attrac-
tor control is particularly useful when studying species extinction and community restoration. We attempted 
to answer specific questions regarding the sustainability of plant–pollinator communities by identifying the 
generalized positive feedback loops in the corresponding interaction networks. Our results indicate that the 
analysis of positive feedback loops shows promising potential to be used as a complementary tool in community 
management endeavours. Specifically, we used the positive feedback loops to identify three groups of species: 
(1) keystone species whose loss lead to considerable damage to the community, (2) the subset of keystone spe-
cies that should be prioritized for conservation efforts given the limited management resources, and (3) species 
whose restoration benefit the community the most.

While the valuable information given by the driver sets depends on the construction of a Boolean model as 
an added layer to the bipartite network, the authors believe that the intuitive nature of the Boolean modeling 
framework proposed by Campbell et al. study23 allows for the construction and parameterization of Boolean 
models of other mutualistic networks. The Campbell et al. model entails an ensemble of synthetic plant–pollina-
tor networks whose properties reflect the statistical properties of real plant–pollinator networks. To be able to 
quantify the size of the effect of species extinction or restoration from a Boolean model of a specific mutualistic 
network, the model needs to incorporate the actual species as nodes, the actual interactions as edges, the actual 
benefits of each interaction (e.g., arising from the morphological match between species). The full complement 
of information is not generally available, especially for large networks, and therefore cannot at present be sys-
tematically incorporated into our analysis. Without a quantitative match between the real system and model, 
a quantitative match between effect sizes cannot be expected. Instead, the Campbell et al. synthetic model and 
our analysis explain the qualitative behavior of the community (the gain or loss in species composition) in the 
case of extinction and re-introduction of species. Our work establishes a general and efficient method to identify 
keystone species and the species whose restoration benefits the community considerably. The methodology of 
this study can be straightforwardly implemented for real mutualistic communities once the aforementioned 
information becomes available.

Methods
Identification of stable motif driver sets.  Each stable motif has a driver set—a minimal set of node states 
that contains the whole stable motif in its LDOI. Previously Yang et al.41 and Rozum et al.43,55 developed python 
packages that include functions that identify the driver sets of stable motifs through brute-force evaluation. In 
this study, we implemented the idea that in order for a strongly connected component of the expanded network 
to be composite-closed, the virtual nodes that are targets of composite nodes within that component should be 
reachable. We optimized the process of finding the driver sets by taking advantage of a natural separation of 
virtual nodes based on their position relative to composite nodes (AND gates). A virtual node that has outgoing 
edges to only composite nodes cannot be a driver, as it is not sufficient for the stabilization of any other virtual 
nodes. In contrast, a virtual node that is a target of an edge starting from a composite node is much more likely 
to be a in a driver set; one can start the search for a driver set by starting from the virtual nodes that have an 
incoming edge from the composite nodes within that stable motif. This implementation simplifies the task of 
identifying the driver sets and reduces the search time as we assign a priority to the virtual nodes with an 
incoming edge from the composite nodes instead of brute-force evaluation. As an example one notices that all 
the virtual nodes that are in one of the driver sets of the grey stable motif in Fig. 1 are nodes that have incoming 
edges from the composite nodes within the same stable motif.

Measures to identify keystone species.  Node contribution to nestedness.  A perfectly nested network is 
defined as a network in which for any two arbitrary nodes i and j, if the degree of i is smaller that the degree of j, 
then the vicinity (the set of neighbors) of i is contained in the vicinity of j58. Intuitively, nestedness characterizes 
the propensity that each node’s edges can be categorized as subsets of another node’s edges. It has been shown 
that ecological networks are highly nested59, i.e., the species with which the specialists interact are a subset of 
the species with which generalists do. Bascompte et al. have shown that empirical mutualistic networks (e.g., 
networks of plants and pollinators) are highly nested59 and introduced a measure based on the number of shared 
partners to quantify nestedness in such networks. Assume M is the adjacency matrix of an undirected network, 
in which Mij is 1 if there is an interaction between nodes i and j and 0 otherwise. Each node in this network is 
characterized by a degree ki =

∑

j Mij . Based on Bastolla et al.’s findings9, species i and j benefit if their number 
of shared symbiotic neighbours, nij =

∑

l ailalj = (M2)ij is as large as possible. As a result, Jonhson et al. propose 
to use

as the contribution of node i to the network nestedness47. This study is focused on undirected mutualistic net-
works, while our networks are directed. We adapted the measure above as follows
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in which Md is the adjacency matrix of the directed network and kini  and kinj  are the in-degree of nodes i and 
j respectively. The choice of in-degree reflects the properties of generalist species that have many incoming 
interactions and can survive under perturbations. According to Eq. (3), the species that have a large fraction of 
shared neighbours and a low in-degree have a large contribution to network nestedness. These species have a low 
number of interactions, but those are mutual with other species from the same group. Such species with the most 
contribution to community nestedness are the most vulnerable ones to extinction48, i.e, they are susceptible to 
extinction if their limited sources vanish from the community. On the other hand, the species with few mutual 
partners and a large in-degree contribute less to network nestedness. They are more resilient to extinction as 
they have multiple sources of benefit.

Mutualistic Species Rank (MusRank).  The novel non-linear ranking algorithm called Mutualistic Species Rank 
(MusRank) was proposed to identify the crucial species whose extinction causes considerable damage to a 
mutualistic community22. In this work, plants are considered to be the passive species and pollinators are the 
active species. Their rankings are named Vulnerability for the passive and Importance for the active species. It is 
assumed that the importance of an active species is the sum of the vulnerabilities of its passive partners; the more 
passive partners an active species has and the more vulnerable they are, the more important the active species 
is. The vulnerability of a passive species, on the other hand, is bounded by the least important active neighbours 
it interacts with. The vulnerability of passive species VP = 1, . . . ,Pmax and the importance of active species 
IA = 1, . . . ,Amax are calculated at iteration n as a function of their value at iteration n− 1 as follows:

For each vulnerability and importance, first the intermediate value is calculated on the left and then normal-
ized to the mean value on the right. This iterative calculation continues until it reaches a fixed point in which a 
ranking of importances and vulnerabilities is achieved. This study found that the fixed point does not depend 
on the initial conditions, hence we chose the value of 1 for all importances and vulnerabilities at iteration n = 0.

Maximisation of functional diversity as a restoration strategy.  This approach relies on hierarchical 
clustering, which is an unsupervised machine learning technique. To calculate functional diversity of a 
community we use the bipartite adjacency matrix in place of a trait matrix. We used the Euclidean distance 
between two columns of the adjacency matrix as the dissimilarity measure of the corresponding two species. We 
perform hierarchical clustering based on the distances to create a dendrogram. Specifically, we implemented a 
nearest point clustering algorithm using the function cluster.hierarchy.linkage() from the python 
package scipy. We then calculate the total branch length of the dendrogram, i.e., the sum of the length of 
all paths51,52. If extinction occurs in a community, the functional diversity of the survived community can 
be determined by calculating the total branch length of the subset of the dendrogram that includes only the 
survived species. To develop a restoration strategy using this method, one needs to re-introduce the nodes whose 
branches add the most to the total branch length of this subset, i.e., maximise the functional diversity of the 
survived community54.

Figure 12a shows an interaction network made up of 4 plant and 3 pollinator nodes. The adjacency matrix 
that contains the information about the edges incoming to plant nodes is denoted by Md−pl and shown within 
the same panel. The matrix Md−pl is fed as the trait matrix to the function linkage() to generate the clustering 
data and dendrogram in Fig. 12b. This function calculates the Euclidean distances between the two columns of 
the adjacency matrix that corresponds to a pair of species. For instance, the distance between po_1 and po_2 
is 
√

((1− 1)2 + (1− 0)2 + (0− 1)2 + (0− 1)2 = 1.73 and the distance between po_1 and po_3 is 1. Based 
on the distances, the function clusters the nodes (in this case pollinator nodes); nodes (or clusters) with the 
smallest distance are clustered together at each step until no node remains. In the resulting dendrogram the 
vertical segments indicate the Euclidean distances between the nodes. The functional diversity of the whole 
community equals the sum of the branch lengths of the dendrogram, i.e., functional diversity is 4.46 in this 
case. Let’s assume among pollinators only po_3 survives the extinction; in this case functional diversity of the 
community is equal to the branch length of po_3, 1.73. To choose a restoration strategy using this method, one 
needs to re-introduce the nodes that increase functional diversity the most. For instance, in this example let’s 
assume we can only restore one pollinator. The addition of po_1 adds 1 to the functional diversity, while the 
addition of po_2 adds 1.73 according to the dendrogram. In this case, the restoration priority belongs to po_2. 
Looking at the interaction network in panel (a), one realizes the significance of po_2 over po_1 as po_2 benefits 
pl_4 that no other pollinator can save. The same algorithm was also performed to cluster plant nodes and identify 
restoration priorities among them. Fig. 13 demonstrates how functional diversity can be calculated using linear 
algebra in the context of a more complex example network. The functions that perform the described processes 
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Ṽ
(n)
P =

1
∑Amax

A=1 MAP
1

I
(n−1)
A

→ V
(n)
P =

Ṽ
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are available at https://​github.​com/​Fatem​ehFN/​consi​stent_​groups_​of_​sms. To the best of our knowledge, it is the 
only python code that calculates of functional diversity for directed bipartite networks and suggests restoration 
strategies accordingly (Fig. 14).
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Figure 12.   Box and whiskers plots illustrating the percentage of the community restoration following the 
restoration of the candidates identified by attractor control sets of the Boolean model. The method described 
in section Community restoration via attractor control was used in 1000 networks with 35 plant nodes and 25 
pollinator nodes. The species identified by the control sets of the attractors that represent at least 70% of the 
maximal richness community were restored in the simplified Boolean model (the plot on the left) and in the 
original threshold functions (the plot on the right). The first quartile, median, and third quartile values are 
78.26%, 86.6%, and 100% for the left box and whiskers, and 43.78%, 72.41%, and 85.71% for the right box and 
whiskers respectively.
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Figure 13.   Calculation of functional diversity for a subset of the community. (a) Illustrates an interaction 
network with 4 plant and 3 pollinator nodes and the directed adjacency matrix Md−pl containing the binary 
information on the edges incoming to plant nodes. (b) Shows the dendrogram resulted when the matrix Md−pl 
was used for clustering. There are four branches labeled with letters A through D. The functional diversity of any 
subset of the dendrogram is equal to the sum of the branch lengths (considering the branches from the base of 
the dendrogram) of that subset. For example, the branch length corresponding to po_3 is the sum of the lengths 
of branches B and C, i.e. 0.73+1.
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Figure 14.   An example illustrating the calculation of functional diversity for a subset of a community for a 
network that consists of 25 plant and 25 pollinator nodes using linear algebra. This network reduces to 6 plant 
and 4 pollinator nodes after simplification. (a) Demonstrates the directed adjacency matrix Md−pl containing 
the binary information on the edges incoming to plant nodes. (b) Shows the dendrogram resulted when the 
matrix Md−pl was used for clustering. There are five branches labeled with letters A through E. The functional 
diversity of any subset of the dendrogram is equal to the sum of the branch lengths (considering the branches 
from the base of the dendrogram) of that subset. For example, the branch length corresponding to po_1 is the 
sum of the lengths of branches C and E. To calculate functional diversity of a sub community using algebra, first 
we calculate the distribution matrix, which denotes the distribution of branches in each pollinator. For instance, 
po_1 goes through branches C and E to reach the base of the dendrogram. As a result, rows C and E are equal 
to 1 under column po_1. (c) Illustrates the last final steps to cal; vector I denotes the length of each branch, and 
matrix Asub denotes the sub-matrix of A that only involves po_2 and po_3 (assume an example in which only 
po_2 and po_3 survive among pollinators). Then vector a which is the sum of the columns of Asub is constructed 
and converted to a binary vector a0/1 . Functional diversity of the survived community is then equal to the 
transposed a0/1 multiplied by the vector I.
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Data availability
The identification of minimal trap spaces and stable motifs was performed using the python package pyboolnet 
available  at https://​github.​com/​hklar​ner/​pyboo​lnet. The Logical Domain of Influence of the simplified Boolean 
models was calculated using the python package BooleanDOI available at https://​github.​com/​yangg​angthu/​Boole​
anDOI. The identification of conditionally stable motifs, consistent groups of motifs and motif groups, and attrac-
tors was done using the python package available at https://​github.​com/​Fatem​ehFN/​consi​stent_​groups_​of_​sms.

Code availability
The code developed in this study is also available at https://​github.​com/​Fatem​ehFN/​consi​stent_​groups_​of_​sms. 
It includes: (1) Control operations that contain the functions that identify the driver sets of stable motifs and 
conditionally stable motifs, and the functions that perform extinction and restoration of species and report 
the damage or restoration percentages. (2) Structure operations that contain functions that find the structural 
measures for each network. These include node nestedness, node MusRank score, Functional diversity and the 
corresponding restoration strategy. (3) Relationship operations that contain the functions that calculate the 
Logical Domain of Influence in threshold functions. (4) Example networks and the corresponding codes that 
illustrate the process by which one can reproduce the results in this study. The network ensembles are available 
from the corresponding authors upon reasonable request.
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