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Active particles crossing sharp 
viscosity gradients
Jiahao Gong 1, Vaseem A. Shaik 2 & Gwynn J. Elfring 1,2*

Active particles (living or synthetic) often move through inhomogeneous environments, such as 
gradients in light, heat or nutrient concentration, that can lead to directed motion (or taxis). Recent 
research has explored inhomogeneity in the rheological properties of a suspending fluid, in particular 
viscosity, as a mechanical (rather than biological) mechanism for taxis. Theoretical and experimental 
studies have shown that gradients in viscosity can lead to reorientation due to asymmetric viscous 
forces. In particular, recent experiments with Chlamydomonas Reinhardtii algae swimming across 
sharp viscosity gradients have observed that the microorganisms are redirected and scattered due 
to the viscosity change. Here we develop a simple theoretical model to explain these experiments. 
We model the swimmers as spherical squirmers and focus on small, but sharp, viscosity changes. We 
derive a law, analogous to Snell’s law of refraction, that governs the orientation of active particles in 
the presence of a viscosity interface. Theoretical predictions show good agreement with experiments 
and provide a mechanistic understanding of the observed reorientation process.

Active particles are living or non-living entities that convert stored energy to directed motion and a suspension 
of these particles is termed active  matter1. Examples of active particles range from nanorobots and microorgan-
isms to birds, fish and even  humans2,3. Our focus here is on micron-sized active particles that move through a 
viscous fluid such that inertia is negligible. Active particles at this scale exhibit rich phenomena like boundary 
 accumulation4,5, upstream  swimming6–10, collective  motion11, active  turbulence12 and motility-induced phase 
 separation13.

Active particles often move through inhomogeneous environments with spatial gradients in  light14, heat, 
nutrient concentration or other chemical  stimuli15. These spatial gradients in their environment can affect the 
dynamics of active particles and lead to directed motion (or taxis). Taxis can be an active response, as particles 
sense the local gradients and actively change their motion. Examples include E. coli which prolongs runs when 
swimming up nutrient gradients to pursue nutrient-rich  regions16,17. On the other hand, taxis can be a passive 
response, caused solely by physical interaction with the environment that modifies particle dynamics. Exam-
ples of this sort include the chemotactic behavior of Janus  particles18,19 and active  droplets20,21. Inhomogeneous 
environments can also be leveraged to sort or organize active particles. For example, the photophobic response 
of E. coli can be used to ‘paint’ with the bacterium by subjecting a bacterial suspension to light  gradients22,23. 
Recent research has explored inhomogeneities in the rheological properties of fluids (such as  viscosity24,25, or 
 viscoelasticity26,27) as a mechanical (as opposed to chemical or biological) mechanism of spatial control and taxis.

Viscosity gradients are prevalent in mucus  layers28, oceans, lakes, and  ponds29, mostly caused by similar 
changes in temperature, salinity or nutrient concentrations. The average viscosity of mucus ranges from 2 cP-1000 
cP depending on the  organism30,31, while that of oceanic waters is 1.070  cP32 and the corresponding gradient 
in the vicinity of phytoplankton is 0.015 cP/µm33. In such gradients, particles tend to perform taxis by moving 
up or down the gradients (defined as positive and negative viscotaxis respectively). For instance, organisms like 
Leptospira and Spiroplasma have been observed to perform positive  viscotaxis34–37 while E. coli has been observed 
to perform negative  viscotaxis38. Recent experiments with Chlamydomonas Reinhardtii show contrasting behavior 
in weak vs strong  gradients24. In weak gradients, the algae accumulate in high viscosity regions due to their low 
speed but in strong gradients, they reorient to move towards low viscosities (negative viscotaxis).

A simple fluid mechanical mechanism for viscotaxis was developed by modeling active particles as con-
nected spheres driven by a fixed propulsive force in weak viscosity  gradients39. Such particles exhibit taxis due 
to a systematic mismatch of viscous drag acting on different spheres leading to a torque that generally reorients 
particles to move up viscosity  gradients39. Subsequent work modeled active particles as spherical squirmers, 
where the particle activity that generates thrust is included but abstracted to a representative surface slip, which 
is a particularly apt representation of active particles that do not undergo large changes of geometry such as 
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diffusiophoretic Janus particles and ciliated organisms like Paramecium or Opalina. In this case the interaction 
of the spatially varying viscosity with the active slip boundary conditions on a squirmer generically resulted in 
negative  viscotaxis40,41. A different swimmer, Taylor’s swimming sheet speeds up while moving along or against 
the  gradients42. These theoretical models all rely on weak, diffuse gradients in the fluid viscosity. However recent 
experiments have shown very interesting particle dynamics in sharp viscosity gradients both for  synthetic43 and 
biological active  particles25. In particular, we are interested here in experiments which probed the motion of 
Chlamydomonas Reinhardtii swimming across a sharp jump (or interface) in viscosity between miscible  fluids25. 
Among other results, it was found that the algae would be quickly reoriented by the interface in viscosity and if 
the organism approached the interface at a sufficiently shallow angle could be reflected by the interface if going 
from low to high viscosity (see Fig. 1). Here, we develop a simple fluid dynamical model to unravel the physics 
underlying these experiments. We model the swimmers as spherical squirmers and focus on small, but sharp, 
viscosity changes. We show that the reorientation process is always in the direction of lower viscosity and derive 
a law, analogous to Snell’s law of refraction, that governs the orientation of active particles in the presence of 
a viscosity interface. In analogy to ray optics, the refraction of the trajectory is always towards the medium of 
lower resistance. As we will show below, our theory (for pullers) matches well with experimental observations of 
Chlamydomonas Reinhardtii algae swimming across sharp viscosity  gradients25. Our results are also quite similar 
to recent theoretical work modeling gliders moving across a substrate features a jump in frictional properties. In 
particular, the functional form of the reorientation law we find is identical to that found for  gliders44. However 
that work, and other studies where the propulsive force is similarly  fixed39, shows reorientation towards higher 
viscosities as one might expect due to the modulation of drag alone.

We organize the paper as follows. In the following section, we provide the essential details of our model and 
the resulting particle dynamics. We then interpret the implications of our model and compare them with experi-
mental observations in “Results” section. We then provide some concluding remarks and finally the technical 
details concerning the mathematical methods used are left to “Methods” section.

A model for active particles crossing sharp viscosity gradients
We consider an active particle immersed in an otherwise quiescent fluid, moving near and across a region where 
the fluid has a relative sharp change of viscosity. This change in viscosity can be due to a corresponding variation 
in fluid temperature, salinity, or a nutrient dissolved in the fluid. Regardless of the origin, one expects sharp 
viscosity gradients to vanish due to diffusion over long times, but during the short time scales over which the 
particle crosses the interface, relatively sharp gradients can be  stable25. For instance, Chlamydomonas Reinhardtii 
algae, with a characteristic size of ≈ 10µ m, traveling at a body length per second take O(10 s) to approach and 
cross the interface while the salinity gradients take O(103 s) to  vanish25. We assume that the fluid viscosity is 
prescribed and steady, and not significantly disturbed by the presence and activity of the moving particle as in 
previous  work39–41; however, this is an uncontrolled approximation because we assume that the sharp gradient 
persists, nevertheless we will show that this reasonably captures the experimental  observations25. We note that 

Figure 1.  Trajectories of Chlamydomonas Reinhardtii going from low to high (top) and high to low (bottom) 
viscosities from recent experimental  work25. The trajectories on the left are relatively steep (closely aligned to 
the interface-normal) while those on the right are relatively shallow and display scattering at the interface when 
going from low to high viscosities. Image is from the paper by Coppola and  Kanstler25 which is licensed under 
https:// creat iveco mmons. org/ licen ses/ by/4. 0/CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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the viscosity gradients considered here are distinct from the long-lasting viscosity differences that can exist at 
the interface between immiscible fluids with non-negligible surface tension that can dramatically affect (and 
even prevent) the particle  crossing45–48.

For simplicity we assume changes in only one direction and choose a coordinate with the z−axis oriented in 
the direction of change, such that η = η(z) . The viscosity changes from one uniform viscosity η(z → −∞) = η0 
to another η(z → ∞) = η1 , and define a relative change in viscosity ε = (η1 − η0)/η0 . We will first assume the 
viscosity jumps (discontinuously) from η0 to η1 at z = 0 , as shown in Fig. 2. In this case the viscosity field may 
be written

where H(z) is the Heaviside function. This representation is of course an idealization (as finite diffusivity would 
instantly smooth any discontinuity); however, we will later show that relaxing this assumption to smooth changes 
in viscosity leaves our results unchanged. To make mathematical progress we focus on small changes in viscosity 
such that |ε| ≪ 1 , but we believe the main physical picture holds for any ε.

The fluid flow generated by the active particle satisfies the incompressible Stokes equations

where u is the velocity field and stress in a Newtonian fluid, σ = −pI+ ηγ̇  , where p is the pressure, 
γ̇ = ∇u + (∇u)T is the fluid strain-rate tensor.

The active particle swims with a translational velocity U and an angular velocity � due to its activity. Thus, 
the velocity of the fluid on the surface of the particle Sp , can be decomposed as

where us is the boundary velocity of the activity alone, r = x − xc , and xc =
(

xc , yc , zc
)

 denotes the particle 
(center) position and ẋc = U . Far from the particle the fluid remains quiescent, hence

Here we prescribe the activity of the particle us , but the translational and rotational velocity are fixed by the 
dynamic constraints on the particle. The particle is inertialess and neutrally buoyant and with no external forcing 
acting on it therefore the hydrodynamic force and torque on the particle must vanish

where np is a unit normal to the particle surface.

(1)η(z) = η0[1+ εH(z)],

(2)∇ · σ = 0, ∇ · u = 0,

(3)u(x ∈ Sp) = U +�× r + us ,

(4)u → 0 as |r| → ∞.

(5)F =

∫

Sp

np · σ dS = 0,

(6)L =

∫

Sp

r × (np · σ ) dS = 0,

Figure 2.  Schematic showing an active particle passing through sharp viscosity gradient and the associated 
coordinate system. The interface separates fluid of different viscosities η0 and η1 . The particle radius is a and its 
translational and rotational velocities are U , � , respectively.
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Specifically, we model the active particle as a spherical squirmer of radius a. In the squirmer model, the 
details of the surface activity of the swimmer are coarse-grained into a prescribed tangential slip velocity on 
the surface of a spherical  particle49–51. This model is particularly well-suited for ciliated microorganisms like 
Paramecium and Opalina that propel by synchronously beating numerous very small cilia on their surface, or 
diffusiophoretic Janus particles, which propel due to the motion of a thin layer of fluid on their surface as a result 
of chemical  gradients15. The slip velocity is generally decomposed into Legendre polynomials (called squirming 
modes) in the form

where p is the particle orientation, Pn is the Legendre polynomial of degree n and Bn represents the coefficients of 
the squirming modes. In homogeneous Newtonian fluids, the B1 mode alone determines the swimming velocity 
(we assume here B1 > 0 ), whereas B2 mode is the slowest decaying contribution to the far-field flow, furthermore 
the second mode determines whether propulsion is primarily from the front or the back of the swimmer. Organ-
isms, such as E. coli, which produce propulsion from their rear end are called pushers, have B2 < 0 whereas those 
that pull the fluid in front of them using their flagella are called pullers, such as Chlamydomonas Reinhardtii, 
and have B2 > 0 . Swimmers, with propulsion that is not distinctly fore or aft, such as Volvox carteri with flagella 
uniformly distributed on its surface, are called neutral and are well described by setting B2 = 0 . Here we look at 
only the effects of the first two modes, and while one is generally only well justified in neglecting higher-order 
modes in the far-field, we find dynamics here to be well captured by just the B1 mode.

The fluid flow field and particle velocity can be determined simultaneously by solving the Stokes equations 
for a force and torque-free particle. Here, we take a perturbative approach; when ε → 0 the viscosity is uniform 
and the solution to a single squirmer is well known, we then obtain the leading order correction in terms of the 
viscosity jump ε , by means of the reciprocal theorem (see “Reciprocal theorem” subsection in “Methods” for 
more technical details).

At the leading order in ε , the particle moves through a homogeneous Newtonian fluid of viscosity η0 and its 
velocity is well  known49,50

The viscosity variations relative to η0 are captured at the next order and the particle swims due to these varia-
tions at velocity

where we have assumed a regular expansion in ε , U(ε) = U0 + εU1 + O(ε2) , and �(ε) = �0 + ε�1 + O(ε2) . 
Here n = ez is the interface normal pointing from fluid of viscosity η0 to that of viscosity η1 while the functions 
A(zc) , B(zc) , C(zc) , D(zc) , f (zc) , and g(zc) depend on the particle’s separation from the interface and are given in 
“Methods” section. The piecewise behavior of these functions and of the velocities U1 , �1 is due to the fact that 
the particle is in contact with the viscosity interface when |zc| ≤ a and otherwise not. It is important to note that 
for |zc| > a the particle is still affected by the presence of the viscosity change due to hydrodynamic interactions 
mediated by the fluid at a distance.

We show later that the reorientation caused by �1 is always towards the low viscosity fluid. The physical rea-
son for this is similar to that observed in weak  gradients40. Both the rigid-body drag felt by the particle and the 
propulsive thrust generated by surface activity are altered by the presence of viscosity changes in the fluid (both 
due to contact and hydrodynamic interactions). Changes in the thrust tend to cause rotation towards regions 
of lower viscosity, while the opposite is true for changes to the drag, and in all instances the former dominates 
the dynamics (for spherical squirmers). The speed changes represented by U1 here are somewhat more complex 
than those observed in weak gradients, with even the neutral swimmer speeding up or slowing down depend-
ing on its position and orientation relative to the interface. However, these speed changes do not affect leading 
order trajectory of the particle.

In order to quantify particle reorientation, we simply integrate particle velocities. Noting that ẋc = U and 
ṗ = �× p , we substitute the leading order results for the particle velocities and project onto the interface normal 
direction n = ez to obtain

where the angle between the particle direction and the interface is defined by p · n = cos θ . Combining these 
equations gives

(7)us =

∞
∑

n=1

2Bn

n(n+ 1)
P′
n

(

p · np
)

p · (I− npnp),

(8)U0 =
2

3
B1p, �0 = 0.

(9)U1 = B1[A(zc)n + B(zc)p]+ B2
[

C(zc)n + D(zc)(pp · n)+ E(zc)(n · p)2n
]

,

(10)�1 =
[

B1f (zc)+ B2g(zc)
(

n · p
)]

(n× p),

(11)
dzc

dt
=

2

3
B1 cos θ + O(ε),

(12)
dθ

dt
= ε

(

B1f (zc)+ B2g(zc) cos θ
)

sin θ + O
(

ε2
)

,
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where β = B2/B1 . This differential equation entirely captures the leading order effect on particle orientation θ of 
a viscosity jump at a distance zc from the particle center. We note that any effect of viscosity on the translational 
velocity of the particle would enter at O

(

ε2
)

 in (13) and so is negligible compared to the leading order terms for 
ε ≪ 1 . As we will show, Eq. (13) is straightforward to integrate analytically for neutral squirmers, β = 0 , and 
easily integrated numerically for pushers ( β < 0 ) and pullers ( β > 0 ), and the rest of this paper are results and 
discussion that arise out of it.

Results
We begin first with analytical results for neutral squirmers, β = 0 , before proceeding to present numerical results 
for pushers ( β < 0 ) and pullers ( β > 0 ) and a comparison to recent experiments for pullers.

Neutral squirmers. The reorientation of a neutral swimmer can be immediately understood by examining 
the instantaneous rotational dynamics. To leading order equation (12) with B2 = 0 simplifies to

Noting that B1 and f (zc) are both positive, when ε > 0 we see that θ = 0 is an unstable fixed point and all ori-
entations flow towards θ = ±π . Conversely, for ε < 0 all orientations flow to θ = 0 . This means that no matter 
the orientation or position, the particle is always reorienting to align along n = ez and point in the direction of 
the lower viscosity, consistent with results for squirmers in weak viscosity  gradients40,41. Because f ∝ z−4

c  , the 
reorientation rate decreases very quickly with distance from the interface, and thus the reorientation process is 
ultimately dominated by contact with the interface. One consequence of these dynamics is that a particle going 
from low to high viscosity can be scattered off the interface depending on its incident orientation.

To quantify the reorientation we note that (13) is separable when β = 0 , integrating we obtain

where θi is the orientation at an initial position zi and likewise θf  is the final orientation at zf .
We define the ‘total’ reorientation caused by the interface as the particle crosses from far on one side to far 

on the other to be the limit when zi → −∞ and zf → ∞ (when the particle goes from η0 to η1 ). In this case the 
integral simply equals 1/3 and the total reorientation is given by the formula

This formula bears a striking similarity to Snell’s law of refraction, except here the ‘relative refractive index’ is 
given by the exponentiated relative viscosity difference. The reorientation is independent of the speed of the par-
ticle due to the linearity of the Stokes equations, in this case both the thrust generated by the particle and the drag 
felt by the particle would be proportional to the B1 mode. This form of reorientation law, sin θf = eα sin θi , was 
found for gliders moving across a substrate featuring a jump in frictional  properties44. In that case α = −2aζrt/ζrr 
where ζrr , ζrt are torque-rotation and torque-translation resistance coefficients of the particle respectively. The 
similarities arise because in both cases the particles are subject to linear drag laws.

Unlike the refraction of light, or gliders on a substrate, squirmers interact (hydrodynamically) with the inter-
face from any point in space, but the functional form of the interaction, given by f (zc) changes upon contact. 
Because of this we integrate equation (15) in multiple stages, separately accounting for the particle’s approach 
to the interface (zc = −∞ → −a , θ = θi → θ−a) , crossing the interface (zc = −a → +a, θ = θ−a → θa) and 
the departure from the interface (zc = +a → +∞ , θ = θa → θf ) as illustrated in Fig. 3a. In this way we can 
quantify the starting (θstart) and ending (θend) orientation in each of these stages

where for θstart = {θi , θ−a, θa} , and θend =
{

θ−a, θa, θf
}

 , we find α =
{

ε
32 ,

7ε
16 ,

ε
32

}

 , in that order in each of the 
three stages. We can also relate the particle’s initial and final orientations by combining Eq. (17) in all three 
stages. We notice that the amount of reorientation during the approach and departure from the interface is the 
same. However, the large value of α means that the reorientation process is dominated during contact with the 
interface (θ−a → θa) . And, as discussed earlier, the reorientation process is always in the direction of lower vis-
cosity. In analogy to ray optics, the refraction of the trajectory is always towards the medium of lower resistance. 
A similar preference was also shown by active particles in linear or diffuse viscosity  gradients24,40,41, and as we 
will show below (for pullers), matches well with experimental observations of Chlamydomonas Reinhardtii algae 
swimming across sharp viscosity  gradients25. In contrast, studies done where the propulsive force is fixed, both 
for swimmers in diffuse viscosity gradients and gliders across a frictional substrate, show reorientation towards 
higher viscosities as one might expect due purely to the modulation of drag.

(13)
dθ

d zc
=

3

2
ε
(

f (zc)+ βg(zc) cos θ
)

tan θ + O
(

ε2
)

,

(14)
d θ

d t
= εB1f (zc) sin θ .

(15)
sin θf

sin θi
= exp

[

3

2
ε

∫ zf

zi

f (zc)dzc

]

,

(16)sin θf = exp

[

η1 − η0

2η0

]

sin θi .

(17)sin θend = eα sin θstart ,
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We note that in deriving (16) we assume that the trajectory from one side to the other is physically realizable. 
This is not always the case. If the active particle is swimming towards a higher viscosity η1 > η0 , with a sufficiently 
shallow angle it may be reoriented back (reflected by the interface). But note, due to hydrodynamic interactions, 
the particle may be reoriented back before even coming into contact with the interface, or even after completely 
crossing the interface. To examine these phenomena we find the limit of validity of (16), which we define θi = θcrit 
which occurs when θf = π/2 , that is the swimmer is tangent to the interface at zf → ∞ , this case we find

Therefore, for η1 > η0 Eq. (16) is valid only when θi ≤ θcrit , as a particle with an initial angle, θi > θcrit 
(a sufficiently shallow angle of approach to the interface), will be reflected back (it will not reach 
zf → ∞ ). We can likewise define critical initial angles such that the particle does not cross the interface 
θcrit,a = arcsin

(

exp [15(η0 − η1)/(32η0)]
)

 , or even touch the interface θcrit,−a = arcsin
(

exp [(η0 − η1)/(32η0)]
)

 , 
using (17). We see that, much like the total reorientation, θcrit in (18) is dominated by particles which are scat-
tered at the interface, with only a narrow set of initial angles that lead to reflection before or after contact with 
the interface. Regardless of where the particle is reflected, the entire scattering process is symmetric (about the 
point when θ = π/2 as shown in Fig. 3b) and hence obeys the reflection law

for all particles when θi > θcrit , as previously shown for  gliders44.
We have thus far assumed a physically unrealistic discontinuous viscosity change and a simple neutral 

squirmer in order to derive these simple formulas. In the following sections, we relax these assumptions and 
find that neither significantly impact the reorientation process.

Smooth gradients. To investigate the reorientation and scattering of the particle due to a viscos-
ity change that varies smoothly (due to the effects of diffusion), instead of a Heaviside function in (1) we 
say H(z) = (1+ tanh(kz))/2 where k > 0 and 1/k is the effective length scale over which the viscosity var-
ies between η0 and η1 . Hence, this viscosity variation approaches the discontinuous profile used previously as 
k → ∞ . Calculation proceeds similarly to that in the sharp gradients. The angular velocity required for this 
calculation is found by substituting the tanh viscosity profile in the reciprocal theorem (27) and its expression 
looks the same as that found in sharp viscosity gradients (10) except for the functions f (zc) and g(zc) which are 
given in “Methods” section.

Despite the differences in viscosity profile and angular velocity, we find no difference in the overall reorienta-
tion (θi → θf ) between smooth and sharp viscosity gradients. The law governing the reorientation in smooth 
gradients is identical to that found in sharp gradients (16). This implies that the critical orientation required 
for scattering in smooth and sharp viscosity gradients is also the same. It appears that, as with the refraction of 
light, the interface between fluids of differing viscosity can be smoothed out and the total reorientation remains 

(18)θcrit = arcsin

(

exp

[

η0 − η1

2η0

])

.

(19)θf = π − θi

Figure 3.  Schematic showing the reorientation of an active particle as it ( a ) crosses a viscosity interface or ( b ) 
gets reflected by the interface. This reorientation depends largely on the viscosity difference η1 − η0 and the 
particle is reflected only when going from low to high viscosity if its initial orientation is sufficiently shallow, 
θi > θcrit.
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unchanged. This is surprising, because unlike light, the active particle interacts non-locally with the entire 
medium at once at all times due to hydrodynamics.

Pushers and pullers. For pushers and pullers the differential equation governing the reorientation (13) is 
not separable and so we compute the reorientation numerically for β  = 0 . We find that the reorientation and 
scattering of pushers or pullers are similar to those of neutral swimmers with only a weak dependence on the 
squirming ratio β . See Fig. 4a for the reorientation of the swimmers crossing the interface and Fig. 4b for the 
critical orientation required for scattering, obtained from the numerical solution of (13). Hence, the pushers and 
pullers, like the neutral swimmers, orient towards regions of lower viscosity. Going from high to low viscosity 
( ε < 0 ) pullers rotate slightly less while the pushers rotate slightly more than the neutral swimmer. Conversely 
going from low viscosity to high viscosity ( ε > 0 ) pullers rotate more while the pushers rotate less than a neutral 
swimmer thereby very weakly changing θcrit as shown in Fig. 4b.

Part of the reason for the weak dependence of reorientation on the B2 mode occurs because the rotation 
caused by this mode before and after crossing the interface is in the opposite direction (as g(zc) is an odd func-
tion) and hence counteract each other (they do not cancel due to the cosine term in (13)). Conversely, as dis-
cussed previously the rotation caused by the B1 mode is always in the same direction before and after crossing 
the interface (as f (zc) is an even function).

The weak dependence of reorientation on β can be leveraged to find the reorientation experienced by the 
pushers and pullers analytically. This is achieved by expanding the leading order (in ε ) orientation θ in terms of 
β and solving Eq. (13) at each order in β as shown in “Methods” section. In principle, such a perturbation holds 
for only |ε| ≪ |β| ≪ 1 but the weak functional dependence yields accurate results up to |β| ≈ 10 for any |ε| ≪ 1.

Comparison to experiment. We now compare our theory with recent experiments conducted with both 
wild-type (wt) and short-flagellated (sfl) Chlamydomonas Reinhardtii (CR), swimming across sharp viscosity 
 gradients25. Just as we have predicted above, the CR were found generically to reorient towards lower viscosities 
and there was a critical angle, going from low to high viscosity, past which the swimmers would be reflected by 
the viscosity interface. The initial and final orientations of the algae were recorded 1s before reaching and 1s after 
crossing the interface in the experiments. Using experimental velocities this equates to zi ≈ −3a and zf ≈ 3a 
where a = 5µ m is the approximate swimmer radius, and we use these values in our theory for comparison. In 
the experiments, the viscosity of one fluid (water) was held constant ( η = 10−3 Pa s) and a variety of different 
viscosities were used for the other fluid from 2 to 62× greater by dissolving varying concentrations of methylcel-
lulose in water, resulting in relative viscosity differences |ε| = 0.5–61. We compare our asymptotic theory, which 
assumes ε ≪ 1 , only to the smallest values ε = −0.5, 1 representing particle motion from high to low and low to 
high viscosities respectively. We note that the experimental data indicate small but systematic reorientation even 
in homogeneous Newtonian fluid ‘control’ experiments. In order to remove this effect we subtracted the reorien-
tation reported in homogeneous fluids from that in finite viscosity gradients and compared the difference with 
the theory. The experiments reported different swim speeds for wt and sfl algae, but found similar reorientation 
in viscosity gradients. This is consistent with our theory; our model predicts that the reorientation of a neutral 
swimmer is independent of speed (see Eqs. (15)–(18)), while the effect of the squirming ratio β is very weak for 
pushers and pullers, as shown in Fig. 4. In light of this, we represent both algae by a single squirmer whose B1 
mode is known from the known swim velocity of wt algae in homogeneous fluid 2B1/3 ≈ 100µm/s and B2 value 
from the stresslet exerted by same algae 10 pN×10µ m ≈ 4πηa2B2 found in other  experiments52, ultimately 
yielding the squirming ratio β = 2 . Lastly, the algae in experiments displayed diffusive dynamics at large time 
scales, with translational and rotary diffusivities DT , DR respectively. But here we neglect both diffusivities as the 
former does not affect the reorientation while the latter is small compared to angular velocity for the viscosity 
jumps of interest ε = O(1) , where DR ≈ 1 s −1 < |�| which is at least 4 s −1.
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Figure 4.  The reorientation of active particles that cross the interface ( a ) and the critical orientation required 
for scattering from the interface ( b ). Here, the solid, dashed, and dash-dotted lines in ( a ) correspond to the 
neutral swimmers β = 0 , pushers β = −5 , and pullers β = 5 , respectively. On the other hand, the different line 
colors in ( a ), ( b ) represent different viscosity jumps ε.
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Our theoretical model matches experimental observations reasonably well, in the aforementioned parameter 
regime. In Fig. 5a, we show the reorientation ( θf  vs θi ) for swimming from high to low viscosity ( ε = −0.5 ) while 
Fig. 5b shows swimming from low to high viscosity ( ε = 1 ). Figure 5c shows particles reflected by the viscosity 
interface. In all cases our model somewhat over-predicts the amount of reorientation but captures nicely the gen-
eral qualitative features observed in experiments. The largest discrepancy between theory and experiments occurs 
at shallow angles of approach to the interface (θi > π/5) , when particles undergo large changes in orientation. 
In particular, experimental data does not well satisfy a symmetric reflection law for particles that are reflected at 
the interface as shown in Fig. 5c, but the data in this sensitive regime is somewhat limited and further data may 
clarify this discrepancy. Over-predicting the reorientation naturally leads to a critical angle (θcrit ≈ π/5) found 
in theory that is lower than that reported in the experiments (θcrit = π/3) , where a shallower approach to the 
interface is needed to scatter (see Fig. 5d).

Quantitative differences between experiments and theory are not surprising as our perturbative approach 
assumes ε ≪ 1 while in experiments at best we have ε = O(1) . Another possible cause of quantitative discrep-
ancy may be due to confinement of the algae, in a microfluidic channel of height 20 µ m, in the experiments 
unlike the free-space assumption made in the theory. We approximated Chlamydomonas by a spherical squirmer 
whose gait remains fixed in viscosity gradients, while in reality alga has a spherical body with two flagella in 
front, whose beating pattern (or gait) varies with  viscosity25; we also assumed that the swimmer does not stir 
the viscosity field due to its motion and any mixing of the fluid in experiments is likely to weaken the effect of 
viscosity differences on reorientation and we expect these issues in particular to be exacerbated with shallower 
approachs to interface (θi > θcrit) , when particles spend a relatively large amount of time close to the interface. 
Finally, we neglected any density gradients that inevitably exist in viscosity gradients, and which preferentially 
alter motion of particle going from high to low viscosity (unlike in the opposite direction) due to relatively large 
volume of fluid dragged by the  particle43.
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Figure 5.  The reorientation of active particles that cross the interface ( a ), ( b ), are reflected by the interface ( c ), 
and the critical orientation required for scattering from the interface ( d ). Here, the lines with symbols in ( a ), 
( b ), and ( c ) represent the previous experiments using wild-type (wt) or short-flagellated (sfl) Chlamydomonas 
Reinhardtii25 while the dash-dotted lines correspond to the current theory for pullers β = 2 . Also, the only line 
in ( d ) represents the current theory.
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Conclusions
Motivated by the recent experiments showing Chlamydomonas Reinhardtii algae scattering at sharp viscosity 
 gradients25, we developed a simple analytical model for active particles swimming across sharp changes in the 
viscosity of the suspending fluid. We found that pushers, pullers and neutral swimmers all interact similarly with 
the interface. Swimmers are generically reoriented towards the region of lower viscosity (as found in previous 
studies with weak  gradients40,41). As a result, if active particles approach a viscosity interface at a sufficiently shal-
low angle they can be reflected if swimming from low to high viscosity; otherwise, they simply cross the interface 
undergoing a degree of reorientation set by the relative viscosity difference. This is similar to the refraction or 
reflection of the light due to a change in refractive index and the law we derive governing the reorientation of 
neutral swimmers similar to Snell’s law of ray optics (as previously shown for gliders on a frictional  substrate44). 
Our theory compares very well with experimental  observations25 and provides a simple model for the dynamics 
of active particles in fluids with inhomogeneous viscosity. These results suggest that tailoring the mechanical 
properties of fluids can be an effective method to control particle  speed53–56 and  orientation57–60, ultimately 
organize active matter systems.

Methods
Reciprocal theorem. The dynamics of a force-free and torque-free active particle in a fluid medium of 
arbitrary rheology is given  by61

where U = [U�]T is a six-dimensional vector containing the swimmer’s translational and angular velocities, 
and likewise F = [F L]T contains force and torque. R̂FU is the resistance tensor for the particle in a fluid of uni-
form viscosity η0 , Fs is the thrust force and torque due to particle activity in a homogeneous Newtonian fluid of 
viscosity η0 , while the additional force FNN accounts for the changes in the rheological properties (viscosity) of 
the fluid. The formulas are obtained by using the reciprocal theorem, by projecting onto a known auxiliary flow 
as an adjoint solution (denoted by a hat),

where V denotes the entire fluid volume outside the particle and τNN = σ + pI− η0γ̇ = (η − η0)γ̇ represents 
the extra (deviatoric) stress due to changes in viscosity from η0 . T̂U , ÊU are linear operators relating the stress and 
strain-rate in the fluid to particle velocity, σ̂ = T̂U · Û and ˆ̇γ = 2ÊU · Û in a fluid of homogeneous viscosity η0.

To facilitate the evaluation of swimming velocity in Eq. (20), we assume small relative viscosity differences 
ε ≪ 1 and regular perturbation expansion for any functional dependence on ε , for example h(ε) = h0 + εh1 + . . . . 
In this way, because the extra stress due to viscosity changes is O(ε),

the swimmer is moving through a homogeneous Newtonian fluid of viscosity η0 to leading order and its velocity 
is well known

The effects of viscosity variations relative to η0 are captured at the next order, where the swimming velocity is

Here, τNN ,1 = η0H(z)γ̇ 0 and γ̇ 0 = ∇u0 + (∇u0)
T is the rate of strain tensor associated with the leading order 

flow u0 . These small viscosity variations εη0H(z) alter the velocity of swimmer in homogeneous fluid U0 , �0 by 
a small correction U1 , �1 . An evaluation of integrals in Eqs. (26), (27) with discontinuous viscosity jump (H is 
a Heaviside function) yields this correction as

(20)U = R̂
−1

FU · (Fs + FNN),

(21)Fs =

∫

Sp

us · (np · T̂U) dS,

(22)FNN = −

∫

V

τNN : ÊU dV ,

(23)τNN = (η − η0)γ̇ = εη0H(z)γ̇ ∼ O(ε),

(24)U0 =
1

6πη0a

∫

Sp

us · (np · T̂U) dS =
2

3
B1p,

(25)�0 =
1

8πη0a3

∫

Sp

us · (np · T̂�) dS = 0.

(26)U1 = −
1

6πη0a

∫

V

τNN ,1 : ÊU dV ,

(27)�1 = −
1

8πη0a3

∫

V

τNN ,1 : Ê� dV .
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where for |zc| > a

and for |zc| ≤ a

When we assume a smooth viscosity profile H(z) = (1+ tanh(kz))/2 , we obtain

Pushers and pullers, the effect of β. In order to find the leading order effect of the second squirming 
mode for pushers and pullers, we assume β ≪ 1 and perform a regular perturbation expansion of the orienta-
tion in β

Here, we assumed |β| ≫ |ε| and retained the terms at O(β) unlike those at O(ε) . We substitute this expansion 
in (13) and solve the resulting equation at each order in β . At zeroth order, pushers or pullers become neutral 
swimmers and the orientation is given by (16). Any deviations relative to the reorientation of the neutral swim-
mer are captured at the next order where

The initial condition is θ1 = 0 as zc → −∞ . We solve (37) in multiple stages, separately accounting for the 
reorientation during the interface approach, crossing and departure. We find

as the particle touches the interface. Then

(28)U1 = B1
(

A(zc)n + B(zc)p
)

+ B2
(

C(zc)n + D(zc)(pp · n)+ E(zc)(n · p)2n
)

,

(29)�1 =
(

B1f (zc)+ B2g(zc)(n · p)
)

(n × p),

(30)
A(zc) =

a3(−a2 + 3z2c )

24z5c
, B(zc) =

a3(−a2 + z2c )

24z5c
, C(zc) =

a2(−5a4 + 12a2z2c − 9z4c )

96z6c
,

D(zc) =
a2(5a4 − 9a2z2c + 9z4c )

48z6c
, E(zc) =

a2(5a4 − 1812a2z2c + 9z4c )

96z6c
,

(31)f (zc) =
a3

16z4c
, g(zc) =

(−4a2 + 3z2c )a
2

32z5c
,

(32)
A(zc) =

zc(3a
2 − z2c )

24a3
, B(zc) =

zc(a
2 − z2c )

24a3
, C(zc) =

−5a4 + 6a2z2c − 3z4c
96a4

,

D(zc) =
8a4 − 3z4c

48a4
, E(zc) =

−a4 − 18a2z2c + 15z4c
96a4

,

(33)f (zc) =
3a2 − 2z2c

16a3
, g(zc) =

(−7a2 + 6z2c )zc

32a4
.

(34)

f (zc) =

∫ −a

−∞

a3{1+ tanh[k(z + zc)]}

8z5
dz +

∫ a

−a

z{1+ tanh[k(z + zc)]}

8a3
dz +

∫ ∞

a

a3{1+ tanh[k(z + zc)]}

8z5
dz,

(35)
g(zc) =

∫ −a

−∞

(20a4 − 9a2z2){1+ tanh[k(z + zc)]}

64z6
dz +

∫ a

−a

(18z2 − 7a2){1+ tanh[k(z + zc)]}

64a4
dz

+

∫ −a

−∞

(20a4 − 9a2z2){1+ tanh[k(z + zc)]}

64z6
dz.

(36)θ = θ0 + θ1β + O(β2, ε).

(37)
d θ1

d zc
−

3ε

2

f (zc)

cos2 θ0
θ1 =

3

2
εg(zc) sin θ0.

(38)

θ1|zc=−a =
G1

√

e−
ε
16 − sin2 θi

,

G1 =

∫ −1

−∞

ε sin θi

√

1− e
ε

16z3 sin2 θi

(

−12+ 9z2
)

64z5
dz.
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as the particle crosses the interface and eventually to

as the particle departs away from the interface. Accounting for the leading order reorientation, the final orienta-
tion of pushers or pullers as they cross and go far ahead of the interface is

where θ0f = θ0|zc→∞ follows from (16) as sin θ0f = eε/2 sin θi.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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