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A machine learning approach 
to the development 
and prospective evaluation 
of a pediatric lung sound 
classification model
Ji Soo Park 1,5, Kyungdo Kim 2,5, Ji Hye Kim 1, Yun Jung Choi 1, Kwangsoo Kim 3,5* & 
Dong In Suh 1,4,5*

Auscultation, a cost-effective and non-invasive part of physical examination, is essential to diagnose 
pediatric respiratory disorders. Electronic stethoscopes allow transmission, storage, and analysis of 
lung sounds. We aimed to develop a machine learning model to classify pediatric respiratory sounds. 
Lung sounds were digitally recorded during routine physical examinations at a pediatric pulmonology 
outpatient clinic from July to November 2019 and labeled as normal, crackles, or wheezing. Ensemble 
support vector machine models were trained and evaluated for four classification tasks (normal 
vs. abnormal, crackles vs. wheezing, normal vs. crackles, and normal vs. wheezing) using K-fold 
cross-validation (K = 10). Model performance on a prospective validation set (June to July 2021) was 
compared with those of pediatricians and non-pediatricians. Total 680 clips were used for training and 
internal validation. The model accuracies during internal validation for normal vs. abnormal, crackles 
vs. wheezing, normal vs. crackles, and normal vs. wheezing were 83.68%, 83.67%, 80.94%, and 
90.42%, respectively. The prospective validation (n = 90) accuracies were 82.22%, 67.74%, 67.80%, and 
81.36%, respectively, which were comparable to pediatrician and non-pediatrician performance. An 
automated classification model of pediatric lung sounds is feasible and maybe utilized as a screening 
tool for respiratory disorders in this pandemic era.

Abbreviations
AI	� Artificial intelligence
FN	� False negatives
FP	� False positives
MFCC	� Mel-frequency cepstral coefficient
SVM	� Support vector machine
TN	� True negatives
TP	� True positives
UMAP	� Uniform manifold approximation and projection

Since the development of the first stethoscope by René Laennec in 1816, auscultation has been essential in the 
diagnosis of respiratory disorders1. Auscultation is quick, cost-effective, non-invasive, and radiation-free com-
pared to other modes of diagnosis. Its role is especially important in children, who have more frequent respira-
tory infections and wheezing events than adults2–5. Auscultation with a stethoscope has certain limitations: it 
usually requires an in-person encounter, and lung sounds are prone to subjective interpretation and cannot be 
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reviewed or shared between clinicians6. However, with the use of electronic stethoscopes, lung sounds can be 
stored, shared, and analyzed with various methods7–9.

The two most commonly noted abnormal lung sounds are wheezes and crackles. A wheeze is defined as a 
musical, high-pitched sound that can be heard upon inspiration and/or expiration, suggesting airway narrowing 
and airflow limitation. Wheezes typically appear as sinusoidal oscillations with sound energies in the range of 
100 Hz to 1000 Hz, and lasting for longer than 80 ms. Crackles are short, explosive, nonmusical sounds, heard 
upon inspiration and sometimes during expiration, suggesting intermittent airway closure and opening of small 
airways. Crackles typically appear as rapidly dampened wave deflections, with typical frequencies and dura-
tions of 650 Hz and 5 ms, respectively, for fine crackles, and 350 Hz and 15 ms, respectively, for coarse crackles. 
Wheezing may be heard during bronchiolitis, asthma exacerbation, or other obstructive airway disorders, and 
crackles may suggest pulmonary edema, pneumonia, or interstitial lung diseases10.

Previous studies have been performed in the attempt to classify abnormal lung sounds by using machine 
learning techniques11,12. However, there have been few studies on pediatric lung sound classification; most stud-
ies involve detection of wheezing, which is the most distinctive adventitious lung sound13,14. Urban et al. have 
detected wheezing from overnight recordings of inpatients by sensitivity and specificity of 98%, and Gryzwalski 
et al. have detected abnormal lung sounds with mean F1 score of 0.625. Pediatric lung sounds differ from adult 
lung sounds in that the respiratory rates and heart rates vary widely according to age and are harder to obtain in 
children because of low cooperability. Although there are a few public lung sound databases, most datasets lack 
or include only a small number of pediatric lung sounds15–17.

In this study, we aimed to derive a machine learning model to classify pediatric electronic respiratory sounds 
from a database of real-world auscultation sounds collected from a pediatric respiratory clinic.

Results
In the training and internal validation set, a total of 1022 clips were collected; of these, 27 clips were excluded 
because of heart murmurs, 221 because of background conversation noise, and 94 because of excessive contact 
noise caused by movement of the stethoscope. A total of 680 lung sound clips were eligible for analysis, includ-
ing 288 classified as normal, 200 as crackles, and 192 as wheezing sounds (Fig. 1). The prospective validation 
set included 90 consecutive clips collected during the prospective validation period (normal: 28, crackles: 31, 
wheezing: 31). The mean length of clips in the training and internal validation set was 4.1 ± 1.8 s and the mean 
length of clips in the prospective validation set was 4.0 ± 1.5 s. The mean respiratory rate was 30.2 and 27.2 
breaths/min, respectively, in the two datasets (Table 1). The comparison between our datasets and the publicly 
available International Conference on Biomedical and Health Informatics (ICBHI) 2017 Challenge Respiratory 
Sound Database are show in Table 2 and in eTable 1.

Typical mel-spectrograms of the three classes are presented in Fig. 2. The typical normal lung sound mel-
spectrogram shows homogeneous power intensity in the ~ 200 Hz frequency mainly during inspiration and in 
early expiration. Crackle is characterized by multiple short high-intensity bursts over a wide frequency around 
200–300 Hz, mainly during inspiration. Wheezing is characterized by continuous musical sounds of narrow 
frequency bands above 200 Hz. The 2D-plot of the training and internal validation data, generated by using 
UMAP, yielded clusters of each of the three classes. There was a degree of noise in the wheezing data, with wheez-
ing subgroups overlapping with the crackle and normal groups. The 2D-plot of the prospective validation data 
yielded clear clustering of the three classes (Fig. 2). Mel-spectrograms and the UMAP presentation of the publicly 

Figure 1.   Study flowchart of the collection of lung sound data for (A) the training and internal validation set 
and (B) the prospective validation set.
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available ICBHI 2017 pediatric data are presented in Fig. 3. Overall, the ICBHI pediatric data showed similar 
patterns as our data, but a few of the crackle and wheezing samples were mixed in the normal sample cluster.

Out of the machine learning models tested, the ensemble of SVMs produced best results (eTable 2). The 
machine learning model’s accuracy during K-fold cross-validation with the internal validation set for differentia-
tion of normal vs. abnormal, crackles vs. wheezing, normal vs. crackles, and normal vs. wheezing were 83.68%, 
83.67%, 80.94%, and 90.42%, respectively. The accuracy of the model during prospective validation with the 
set of 90 clips (28 normal, 31 crackles, and 31 wheezing) for those four tasks was 82.22%, 67.74%, 67.80%, and 
81.36%, respectively. While the ICBHI pediatric data shows low recall due to severe imbalance between classes, 
other performance metrics were comparable to those of from our data (Table 3). Performance of other models 
tested on the ICBHI data is described in eTable 3.

In the physician performance tests, the average accuracies of the pediatric infection and pulmonology special-
ists for the four tasks were 84.89%, 77.74%, 78.64%, and 84.41%, respectively. The average accuracies of physi-
cians with other specialties were 80.67%, 66.13%, 73.90%, and 76.27%, respectively. The model performance was 
lower than that of pediatric specialists for all tasks, and higher than that of non-pediatric physicians in all tasks 
except for normal vs. crackles). None of the differences in performance between physicians and the model were 
statistically significant (Table 4). The precision, recall, and F1-scores of physicians for each task are described in 
the Supplementary Material eTable 4.

Discussion
In this study, we developed and evaluated a machine learning model to classify pediatric electronic lung sounds 
by using real-world auscultation sounds collected from outpatient clinics. The model yielded a high accuracy of 
over 80% in all tasks during internal validation, with an accuracy of over 90% for normal vs. wheezing sounds. 
Upon prospective validation, the accuracy of the model for the four tasks decreased modestly, outperforming 
physicians other than pediatricians in three of the four tasks.

Table 1.   Data characteristics of lung sound clips in the training and internal validation set and the prospective 
validation set.

Training and internal validation set

Normal Crackles Wheezing Total

(n = 288) (n = 200) (n = 192) (N = 680)

Length of clip (s) 4.7 ± 1.8 4.3 ± 1.7 3.1 ± 1.2 4.1 ± 1.8

Number of breath cycles

1 cycle 3 (11.1%) 42 (21.0%) 64 (33.3%) 138 (20.3%)

2 cycles 256 (88.9%) 158 (79.0%) 128 (66.7%) 542 (79.7%)

Respiratory rate (/min) 27.3 ± 10.2 28.4 ± 12.3 36.4 ± 16.5 30.2 ± 13.4

Heart sound

Inaudible 71 (24.7%) 49 (24.5%) 50 (26.0%) 170 (25.0%)

Normal 217 (75.3%) 151 (75.5%) 142 (74.0%) 510 (75.0%)

Prospective validation set

Normal Crackle Wheezing Total

(n = 28) (n = 31) (n = 31) (N = 90)

Length of clip (s) 4.9 ± 1.6 4.0 ± 1.2 3.3 ± 1.2 4.0 ± 1.5

Number of breath cycles

1 cycle 2 (7.1%) 13 (41.9%) 15 (48.4%) 30 (33.3%)

2 cycles 26 (92.9%) 18 (58.1%) 16 (51.6%) 60 (66.7%)

Respiratory rate (/min) 26.1 ± 8.5 24.6 ± 6.1 30.8 ± 13.0 27.2 ± 9.9

Heart sound

Inaudible 3 (10.7%) 0 (0.0%) 2 (6.5%) 5 (5.6%)

Normal 25 (89.3%) 31 (100.0%) 29 (93.5%) 85 (94.4%)

Table 2.   Composition of number of breath cycles in the current study data and the International Conference 
on Biomedical and Health Informatics (ICBHI) 2017 Challenge Respiratory Sound Database.

Dataset Total Normal Wheeze Crackles

ICBHI 2017

Pediatric 782 642 75 65

This study 1312 599 367 407

Training set 1222 544 320 358

Test set 150 54 47 49
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Figure 2.   Typical mel-spectrograms labeled as normal (A), crackles (B), and wheezing (C), and UMAP 
visualization of lung sounds (D). (A) The typical normal lung sound mel-spectrogram exhibits homogeneous 
power intensity at ~ 200 Hz, mainly during inspiration and early expiration. (B) Crackles are characterized by 
multiple short, high-intensity bursts over a wide frequency, around 200–300 Hz, mainly during inspiration. (C) 
Wheezing is characterized by continuous musical sounds of narrow frequency bands, above 200 Hz. (D) The 
three classes of lung sounds are projected into three clusters by using UMAP for both the training and internal 
validation set and the prospective validation set. UMAP uniform manifold approximation and projection.

Figure 3.   Mel-spectrogram and UMAP visualization of pediatric samples from publicly available lung 
sound dataset the International Conference on Biomedical and Health Informatics (ICBHI) 2017 Challenge 
Respiratory Sound Database. Mel-spectrograms labeled as normal (A), crackles (B), and wheezing (C), and 
UMAP visualization of lung sounds (D).
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The classification performance of the model was highest for normal vs. wheezing sounds during internal 
validation, and for normal vs. abnormal sounds during prospective validation. Model performance was lowest 
for normal vs. crackle sounds during internal validation, and for crackle vs. wheezing sounds during prospec-
tive validation. Wheezing is a continuous musical sound with a distinct frequency band, produced by air flow-
ing through a partially obstructed airway. Crackles are discontinuous noises with a wide range of frequencies, 
caused by intermittent airway closure and opening that is difficult to localize on a spectrogram. On the other 
hand, normal lung sounds, or vesicular sounds, are defined as non-musical, low-pass-filtered noises with a drop 
in energy at 200 Hz10. Therefore, it is easier to distinguish between wheezing and normal lung sounds than 
between wheezing or normal lung sounds and crackles, which is essentially a mixture of other lung sounds. This 
phenomenon was also demonstrated in the physicians’ performances, where crackles vs. wheezing and normal 
vs. crackle accuracies were lower than those of normal vs. abnormal and normal vs. wheezing for both pediatric 
and non-pediatric specialists. Past studies on machine learning-aided lung sound classification yielded high 
performance in in identifying wheezing in both adults and children11–13, but crackles and other adventitious 
sounds have rarely been successfully classified in children14,18.

The respiratory sounds of children are more challenging to collect and use for training, for various reasons. 
First, the respiratory rates of children vary widely according to age, compared to those in adults. In our training 
and internal validation dataset, the mean respiratory rate was 30.2 breaths/min, with a standard deviation of 13.4 
breaths/min. This is a very wide range compared to the normal respiratory rate in adults (12 to 16 breaths/min). 
In addition, the smaller thoracic cage, relatively larger heart, and higher conductance of the chest wall in young 
children result in higher degrees of interference of heart sounds during chest auscultation than in adults19,20. 
Therefore, the majority of the recorded lung sounds will have heart sounds in the background. Finally, infants 
and young children are not cooperative during long sessions of auscultation and need constant soothing during 
physical examination, restricting the sufficient collection of clean respiratory sounds. In our study, we used a fair 
number of lung sounds obtained from children during routine physical examinations in the respiratory clinic, 
which allowed for the accurate classification of pediatric lung sounds despite these obstacles.

While it is harder to perform high-quality auscultation in children than in adults, the clinical significance 
of respiratory auscultation is more emphasized in children. Common respiratory disorders in children include 
respiratory infection, asthma, and foreign body aspiration21,22. Although radiologic diagnosis is generally easily 
accessible and highly accurate, they must be performed with discretion to minimize the radiation hazards, and 
there are still many parts of the world where radiologic tests are not readily available for children23. In addition, 

Table 3.   Model performance during internal validation, prospective validation, and external validation. 
ICBHI International Conference on Biomedical and Health Informatics 2017 Challenge Respiratory Sound 
Database.

Accuracy Precision Recall F1-score

Internal validation (N = 680)

Task 1: normal vs. abnormal 0.8368 0.8325 0.8340 0.8332

Task 2: crackles vs. wheezing 0.8367 0.8382 0.8360 0.8363

Task 3: normal vs. crackles 0.8094 0.8007 0.7938 0.7966

Task 4: normal vs. wheezing 0.9042 0.9053 0.8863 0.8936

Prospective validation (N = 90)

Task 1: normal vs. abnormal 0.8222 0.7920 0.8122 0.8000

Task 2: crackles vs. wheezing 0.6774 0.6804 0.6774 0.6761

Task 3: normal vs. crackles 0.6780 0.6972 0.6849 0.6746

Task 4: normal vs. wheezing 0.8136 0.8298 0.8191 0.8127

External validation (N = 782) (ICBHI 2017 pediatric data)

Task 1: normal vs. abnormal 0.835 0.649 0.171 0.793

Task 2: crackles vs. wheezing 0.764 0.828 0.707 0.764

Task 3: normal vs. crackles 0.911 1 0.031 0.871

Task 4: normal vs. wheezing 0.915 1 0.187 0.888

Table 4.   Comparison of the accuracies of the model and 10 physicians for the prospective validation set. M 
model, P pediatric specialists, O physicians with other specialties. a Chi-square test.

Model Pediatric specialists Other specialties p-valuea (M vs P) p-valuea (M vs O)

Task 1: normal vs. abnormal 0.8222 0.8489 0.8067 0.633 0.845

Task 2: crackle vs. wheezing 0.6774 0.7774 0.6613 0.128 0.922

Task 3: normal vs. crackle 0.6780 0.7864 0.7390 0.102 0.423

Task 4: normal vs. wheezing 0.8136 0.8441 0.7627 0.698 0.497
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during viral pandemics, rapid, noninvasive screening and severity assessment of an individual’s respiratory state 
are essential24. In the Pneumonia Etiology Research for Child Health study, mortality from radiologic pneu-
monia was associated with different types of digitally recorded lung sounds25. Artificial intelligence (AI)-aided 
respiratory auscultation can help with diagnosis and prognostic prediction in children with respiratory disorders.

The ensemble model used in our study, based on SVMs, has the advantage of low computational costs while 
outperforming physicians other than pediatric pulmonology and infectious disease specialists. Recently, deep 
learning has yielded promising results in the medical domains where large volumes of data are generated, includ-
ing lung sound classification tasks in adults. However, in children, where it is harder to obtain a large number 
of samples, there is a high possibility of overfitting, in addition to a high computational burden in the learning 
and inference process. By using SVM, which avoids problems with local minima during the learning process 
and avoids overfitting, our model can make efficient decisions with a modest amount of data26. In addition, 
the ensemble model provides the prediction probability of each SVM as output, which can be compared to aid 
physicians in the decision-making process. Finally, the model requires only features extracted from audio signals 
without any demographic or anthropometric information, which allows for easy applicability when loading the 
model on digital stethoscopes.

We have tried to overcome the ‘black-box’ phenomenon, common in machine learning, by applying explain-
able AI via UMAP. With UMAP, we were able to cluster the three classes of lung sounds—normal, crackles, and 
wheezing—on a 2D-plot. The clustering pattern was slightly different between the training and internal validation 
set and the prospective validation set, which were obtained two years apart. This is plausible as the patterns of 
practice of the recording physician constantly changes with time, and the physicians who edited and labeled the 
prospective set differed from those who labeled the training and internal validation set.

There are some limitations to our study. First, our datasets were limited in size and did not allow for deep 
learning inference. In addition, our study was based on a single-center cohort and recorded from a single record-
ing device; therefore, the generalizability of our model for different devices and cohorts needs further validation. 
Third, we trained and tested our model for classification of three classes of lung sounds, when, in reality, there 
are many more types of adventitious sounds. Fourth, our SVM model uses a radial basis function kernel rather 
than a linear kernel to derive the best-performing model, making it difficult to retrospectively evaluate feature 
importance. Finally, our study showed feasibility to classify preprocessed breath cycles into different classes, but 
to apply this in practice, a preceding step to detect classifiable breath cycles from noise is essential. Nonetheless, 
we tested the generalizability of the model by performing a prospective validation. Further study with a larger 
sample would allow for more complex modeling and an improved performance.

In summary, we developed and prospectively evaluated a machine learning model for classification of elec-
tronically recorded pediatric lung sounds. The model yielded modest performance compared to pediatric pul-
monology and infection specialists, and promising results compared to other specialists. In this pandemic era, 
AI-aided auscultation may improve the efficiency of clinical practice in pediatric patients.

Methods
Data source and labeling.  Lung sounds were recorded during routine physical examinations at the Pedi-
atric Pulmonology outpatient clinic of Seoul National University Children’s Hospital by using a digital stetho-
scope (Thinklabs One Digital Stethoscope; Thinklabs Medical LLC, Centennial, CO, USA) connected to a wired 
audio recorder (PCM-A10, Sony, Tokyo, Japan), with a sampling rate of 44,100 Hz. Training and internal valida-
tion sets were recorded from July 2019 to November 2019, and prospective validation sets were recorded from 
June 2021 to July 2021. All lung sounds were recorded by a board-certified pediatric pulmonologist with 20 years 
of experience (D.I.S.). Audacity software (https://​audac​ityte​am.​org/) was used to crop recorded lung sounds 
were into short clips containing one or two breath cycles. These sounds were classified as normal, crackles, 
and wheezes by pediatric pulmonologists (training and internal validation set: D.I.S., J.S.P.; prospective valida-
tion set: Y.J.C., J.H.K.). Wheezing was defined as inspiratory or expiratory musical sounds with frequencies of 
100–1000 Hz that lasted longer than 80 ms. Crackles included both fine and coarse crackles, and were defined 
as explosive and repetitive short sounds (each 5–15 ms in length) of diffuse frequencies from 100 to 700 Hz that 
were heard during inspiration and/or expiration. Edited clips were included in the data sets if the two labeling 
physicians agreed on the label and excluded when there were heart murmurs louder than grade 2, background 
conversational noise, or contact noise that lasted for more than half of the breath cycle (Fig. 4).

The recording of electronic auscultation sounds and the machine learning analysis in this study were approved 
by the institutional review board of Seoul National University Hospital (No. H-1907-050-1047 and No. H-2201-
076-1291). Informed consent was waived by the review board of Seoul National University Hospital as the record-
ing of auscultation sounds was a routine part of the physical examinations, and no personal information other 
than lung sounds were collected. All research was performed in accordance with the Declaration of Helsinki.

Data preprocessing and feature selection.  Lung sound clips contain environmental sounds such as 
contact noise caused by friction between the stethoscope and skin or clothing, as well as ambient noise. We used 
the BayesShrink denoising method for the effective extraction of the desired lung sound27. The sound clips were 
cropped into 6-s windows: for clips longer than 6 s, only the first 6 s were used, and for clips shorter than 6 s, 
clips were duplicated until longer than 6 s, and cropped at 6 s. Our reasoning for the use of 6-s windows was as 
follows: the normal adult respiratory rate is around 12–16 breaths/min and the normal infant respiratory rate is 
30–40 breaths/min; hence, 6 s would contain 1–4 breaths for all ages.

Mel-frequency cepstral coefficients (MFCCs) were used to extract acoustic features. MFCCs represent the 
power spectra of short sound frames according to the mel scale, a frequency scale that is familiar to the human 

https://audacityteam.org/
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auditory system. MFCCs are widely used for sound processing and analysis28. We extracted 40 MFCCs by using 
a fast-Fourier-transform window length of 660 samples, hop length of 512 samples, and Hann windowing.

There are several methods in digital sound processing that are applied in using sound files in machine learn-
ing; some studies use the raw sound, others have extracted frequency domain information through Fourier 
Transform (FT), and some previous research uses the log-mel features9,29,30. Among these, we chose MFCC fea-
tures as an input to the model because our raw sound was collected in a real environment, containing numerous 
unnecessary noises. In the case of FT, temporal information is not adequately reflected in the features. Log-Mel 
spectrogram was not used in this case because the dimension would be too high compared to the number of 
samples.

Mel‑spectrogram visualization and UMAP embedding.  For pre-modeling explainability and explor-
atory data analysis, we visualized individual sound clips into mel-spectrograms. A mel-spectrogram is a visuali-
zation of the frequency spectrum of an audio signal over time, where the frequency axis is filtered into the mel 
scale. We used the same hyperparameters as those for MFCC extraction.

Uniform manifold approximation and projection (UMAP) is a dimension-reduction technique that allows the 
two-dimensional (2D) visualization of data while preserving the global structure and local relationships within 
the data31. We applied UMAP to the training and internal validation set as well as the prospective validation set, 
with the following parameters: number of neighbors = 20, minimum distance = 0.3, distance metric = ‘cosine’.

Comparison of data with existing pediatric lung sound database.  To compare the current study 
data with the available lung sound database, we used the International Conference on Biomedical and Health 
Informatics (ICBHI) 2017 Challenge Respiratory Sound Database32. This public database contains lung sounds 
from all ages including some pediatric samples. We examined the distribution of normal, wheeze, and crackle 
in the pediatric samples from the ICHBI database. Also, we visualized sound clips from the ICBHI database as 
mel-spectrograms. Finally, we applied UMAP to the pediatric samples in ICBHI.

Machine learning modeling.  With MFCCs as inputs, we created an ensemble model based on a sup-
port vector machine (SVM). The ensemble model based on SVM was chosen after comparison of simple SVM, 
random forest, Gaussian process, and ensemble of SVM models (Detailed method in Supplementary Material). 
A SVM is a lighter model compared to deep learning models that use neural networks and has the advantage 
of determining a robust decision boundary without overfitting when the sample size is small. The ensemble 
method is a machine learning methodology that combines predictions from multiple models to overcome over-
fitting and increase robustness. In this study, we designed an ensemble model by using a majority voting algo-
rithm from 1 to 10 SVM models, in which the optimal number of SVM models and the type of kernel function 
were decided empirically.

Four classification tasks were carried out: (1) normal vs. abnormal, (2) crackle vs. wheezing, (3) normal vs. 
crackle, and (4) normal vs. wheezing. We used a single SVM model for classification of normal vs. abnormal, 4 
models each for crackle vs. wheezing and normal vs. wheezing, and 10 models for normal vs. crackle. A radial 
basis function kernel was used. The overall data processing and model pipeline is illustrated in Fig. 1.

Original sound Wavelet denoising Repeat & 6-seconds slicing

Mel spectrogram 
& extract MFCCs

feature vector

Flatten

Machine Learning 
Algorithm 

(Ensemble)

Task 1 
normal vs. abnormal

ClassificationTraining

Task 2 
crackle vs. wheezing

Task 3 
normal vs. crackle

Task 4 
normal vs. wheezing

Figure 4.   Data preprocessing and machine learning algorithm framework. The original sound clip underwent 
wavelet denoising, and was duplicated and cropped into 6-s windows. MFCCs extracted from the mel-
spectrograms were used to train the ensemble models of the support vector machines. Four classification tasks 
were used for training: (1) normal vs. abnormal, (2) crackles vs. wheezing, (3) normal vs. crackles, and (4) 
normal vs. wheezing. MFCC, mel-frequency cepstral coefficient.
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Training and internal validation.  K-fold cross-validation (K = 10) was used for training and internal vali-
dation. Cross-validation is widely used in machine learning to prevent overfitting while using all available data as 
training and validation sets. The training dataset is split into K smaller sets, or ‘folds’, a model is trained by using 
K − 1 of the folds as training data, and the accuracy of the resulting model is validated on the remaining part of 
the data. The procedure is repeated K times, with each K fold being used once for validation. In our study, we 
used a stratified K-fold approach, where data is split into K folds that all contain the same proportion of labeled 
classes.

The performance of the model was evaluated by using accuracy, precision, recall, and F1-score, defined as fol-
lows: accuracy = (true positives [TP] + true negatives [TN])/(TP + false positives [FP] + false negatives [FN] + TN), 
precision = TP/(TP + FP), recall = TP/(TP + FN), and F1-score = harmonic mean of precision and recall.

Prospective validation, external validation and physician performance.  The model was evalu-
ated by using a prospectively collected validation dataset (June 2021 to July 2021). The prospective validation set 
was obtained in a consecutive manner with a target number of 29–31 samples for each class and 90 samples in 
total. Two independent researchers edited and labeled the prospectively collected auscultation sounds, and the 
first 29–31 samples for each class were included without selection. After performing the same data preprocess-
ing, the same K-fold cross-validation method was applied, which provided an ensemble model for each fold. 
For prospective validation, a nested cross-validation model was applied, where an overall ensemble model was 
created based on majority voting including all SVM models in ensembles for each of the K folds33. Model per-
formance was evaluated by using accuracy, precision, recall, and F1-score, as in the internal validation. External 
validation on the ICBHI pediatric data was also done.

Physician performance tests were conducted by using the prospective validation dataset to compare the lung 
sound classification performance of the machine learning model with that of physicians. A total of 10 physicians 
participated: 5 pediatric specialists (3 pediatric pulmonologists and 2 pediatric infectious disease specialists) 
with 6 to 8 years of clinical experience (performing auscultation daily), and 5 non-pediatric specialists who did 
not routinely perform auscultation. The average accuracies of the pediatricians and non-pediatricians in terms 
of the four classification tasks were calculated and compared to the model’s accuracy by using the chi-square test.

Software.  Continuous data are presented as the mean ± standard deviation, and categorical data are pre-
sented as frequencies (percentages). Python (ver. 3.8; www.​python.​org) was used for data preprocessing and 
machine learning. The Librosa package (ver. 0.8.1) was used, as well as the BayesShrink method with soft thresh-
olding in scikit-image (ver. 0.19.0), for data preprocessing, including denoising. The SVM classifier and Strati-
fiedKfold modules in the scikit-learn package (ver. 1.0.2) were used. For comparison of model and physician 
performance in classifying the prospective validation set, chi-square tests were performed with R statistical 
software (ver. 4.0.3; R Foundation for Statistical Computing, Vienna, Austria).

Ethics approval and consent to participate.  The recording of electronic auscultation sounds and the 
machine learning analysis in this study were approved by the institutional review board of Seoul National Uni-
versity Hospital (No. H-1907-050-1047 and No. H-2201-076-1291). Informed consent was waived by the review 
board as the recording of auscultation sounds was a routine part of the physical examinations, and no personal 
information other than lung sounds were collected.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Code availability
Codes used for the current study are available at https://​github.​com/​Medic​al-K/​pedia​tric_​lungs​ound.
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