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Modelling parametric uncertainty 
in large‑scale stratigraphic 
simulations
A. Mahmudova 1, A. Civa 2, V. Caronni 2, S. E. Patani 1, P. Bozzoni 2, L. Bazzana 2 & G. M. Porta 1*

We combine forward stratigraphic models with a suite of uncertainty quantification and stochastic 
model calibration algorithms for the characterization of sedimentary successions in large scale 
systems. The analysis focuses on the information value provided by a probabilistic approach in 
the modelling of large‑scale sedimentary basins. Stratigraphic forward models (SFMs) require a 
large number of input parameters usually affected by uncertainty. Thus, model calibration requires 
considerable time both in terms of human and computational resources, an issue currently limiting 
the applications of SFMs. Our work tackles this issue through the combination of sensitivity analysis, 
model reduction techniques and machine learning‑based optimization algorithms. We first employ 
a two‑step parameter screening procedure to identify relevant parameters and their assumed 
probability distributions. After selecting a restricted set of important parameters these are calibrated 
against available information, i.e., the depth of interpreted stratigraphic surfaces. Because of the 
large costs associated with SFM simulations, probability distributions of model parameters and 
outputs are obtained through a data driven reduced complexity model. Our study demonstrates the 
numerical approaches by considering a portion of the Porcupine Basin, Ireland. Results of the analysis 
are postprocessed to assess (i) the uncertainty and practical identifiability of model parameters given 
a set of observations, (ii) spatial distribution of lithologies. We analyse here the occurrences of sand 
bodies pinching against the continental slope, these systems likely resulting from gravity driven 
processes in deep sea environment.

Sedimentary basins are formed over hundreds of millions of years by the joint contribution of a number of physi-
cal, chemical and biological processes, such as erosion and sediment transport from source  areas1, deposition 
over subsiding areas, differential subsidence due to tectonic  activity2, deformations caused by the fluctuation of 
the relative sea level, compaction and  lithification3. The evolution of sedimentary systems can be studied quan-
titatively by means of mathematical tools generally termed as stratigraphic forward models (SFMs). The first 
SFM, developed by Pitman in 1978, involves a synthetic stratigraphy and simulations included sea level variations 
as input  parameters1. More recently, the capabilities of these models have been largely expanded and in recent 
studies SFMs have been used to characterize the evolution of complex sedimentary systems by predicting facies 
occurrence and distribution. The use of such numerical tools to simulate real systems proved useful to analyse 
multiple hypotheses and evaluate the role of contributing factors in controlling basin stratigraphy observed at 
present  day4–6.

The key advantage of SFMs is that they address geological processes through a dedicated physically-based 
quantitative model, i.e. mathematical expressions which can be explicitly tied to the physical, chemical and 
biological drivers affecting the  systems7 (e.g., sediment discharges, sediment transport coefficients, carbonate 
production rates). The output of a SFM is a simulated basin-filling sedimentary succession and a set of paleoen-
vironmental conditions, such as paleo-bathymetry and sediment properties distribution, over the spatial domain 
and simulation time  interval8. This in turn leads to process understanding related to real sedimentary scenarios, 
e.g., to assess the impact of sedimentary  sources6 location or tectonic  scenarios9. However, recent SFMs com-
monly involve a considerable number of coupled physical and chemical processes, such that the number of input 
parameters to be specified can be in the order of 100–200. Some of these parameters can be constrained a priori 
through literature information, yet most of these quantities remain affected by a considerable uncertainty. This 
means that exploring the impact of each individual process by trial-and-error approaches becomes unfeasible. 
Similarly, highly parameterized models hinder the possibility to calibrate all the unknown parameters SFM model 
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with the available proprietary data. In this context a trial-and-error manual calibration is extremely time consum-
ing and leads to a single (deterministic) solution. Probabilistic approaches have been proposed to address these 
 issues10,11. Recently a few  studies8,12 presented automatic calibration procedures for the general purpose SFM 
 Dionisos13. These studies typically analyse a restricted set number of uncertain input parameters when show-
ing the results of sensitivity analysis and parameter calibration procedures. However, the selection of the set of 
calibration parameters and the joint consideration of their uncertainty is a crucial step in the application of SFMs 
in real cases. In this context a key element which is often not addressed is the assessment whether the available 
data allow a reliable estimation of model parameters, a procedure recently termed as identifiability  analysis14,15.

The goal of this work is to demonstrate how a probabilistic approach can further enhance the capability of 
Stratigraphic Forward Models (SFMs) to allow efficient risk-assessment  analysis3,16 while fully acknowledging 
the uncertainty which is inherent to process-based parameter values. We address these issues upon leveraging 
the method proposed by Patani et al.7, previously validated in a synthetic scenario and here applied and extended 
for the first time to handle a field case scenario.

The modelling strategy is applied and adapted to a real case scenario in the Porcupine Basin, located off the 
West coast of Ireland on the North-Atlantic  shelf17,18. The selected test case presents uncertainties related to vari-
ous processes contributing to sediment production and displacement, i.e., sediment source locations and dimen-
sions, local baselevel, in situ carbonate production, transport and accommodation of sediments. Calibration data 
refer to the depth of interpreted seismic horizons, i.e., the depth of given geological surfaces (of given ages) with 
respect to the current sea level. On the contrary, the distribution of facies in the sedimentary space is unknown. 
A mapping of amplitude anomalies was performed on a set of 2D seismic lines crossing the basin with different 
orientations, showing a possible identification of sand bodies with reservoir-like properties. The obtained 3D 
forward modelling aims to verify the presence and identify the location of sand bodies pinching out against the 
continental slope. The main goal is to understand the geological settings of the selected area, to assess the spatial 
distribution of base-of-slope sands and of their suitability for exploration as a result of a process-driven, non-
constrained forward simulation. Our method leads to predict locations of the expected reservoir-like sandstone 
bodies. The results are compared with qualitative indications obtained by seismic interpretations suggesting the 
possible locations of sand bodies.

From a methodological standpoint the key objective of this paper is then to show to how the proposed method 
can address these crucial points: (i) assess the fidelity of the model to the available data used for calibration, (ii) 
provide a probabilistic prediction for the location of sand bodies, (iii) explicitly quantify uncertainty in selected 
process-based model parameters, (iv) define the identifiability of the selected uncertain model parameters with 
the available data. The objectives are here pursued by starting from a full parameterization of the Porcupine 
basin test case where uncertainty is considered across whole set of potentially relevant sedimentary processes.

The paper is organized as follows. Section "Geological setup" includes a brief literature survey of the Porcupine 
basin sedimentary setting, while Section "Methods" illustrates the methodology employed. Section "Results" 
presents the results of the model calibration by discussing the statistical characterization of estimated input 
parameters and output quantities of interest. Concluding remarks end the work.

Geological setup
The Porcupine Basin is a large N-S oriented, sediment underfilled, offshore basin, located approximately 150 km 
to the west of Ireland. It is bordered to the north and west by the Porcupine High, to the east by the Irish western 
shelf, to the south by the Goban Spur, and to the west it opens to the Atlantic (Fig. 1a). The basin is approximately 
300 km long and widens southwards up to a width of 200 km and it is considered an aborted early attempt of the 
northern Atlantic Ocean to open. Present-day water depths range from several hundred meters on the flanking 
shelves to more than 3000 m in the central and southern parts of the  basin19. There is no evidence of oceanic 
crust at the basin floor except for the southern  extremity20,21. The basin infilling history started during Jurassic 
and it is still  developing22,23. The present-day basin configuration is the result of a geologic evolution started in 
Middle to Late Jurassic with a major rifting  phase25, possibly continuing into the Early Cretaceous in a so-called 
“transition phase”17,26,27 (Fig. 1b). A transition to thermally-controlled subsidence accommodated a 4–6 km thick 
Cretaceous succession of largely deep-water  sediments24,28,29 that draped and onlapped the earlier fault-controlled 
depocenters. Although the Early Cretaceous is generally considered a post-rift thermal subsidence phase during 
which deep-water conditions prevailed, the Lower Cretaceous succession contains numerous unconformities, 
some of which are associated with periods of increased clastic  input28. Following the rifting phase, during which 
the basin is characterized by a dissected and rapidly evolving topography, in the Early Cretaceous subsidence 
became more uniform across the whole Porcupine, this evolutionary step being usually termed “sag”  phase21.

Our study simulates the basin evolution from the Base Cretaceous Unconformity (BCU) to present day. A 
key objective is to characterize sediment distributions spanning from the BCU, which marks the end of the main 
Middle/Late Jurassic rifting phase, to the top of a regional scale chalk unit which dates lower Paleocene (Fig. 1b,c). 
The occurrence of possible clastic stratigraphic traps pinching against the southern border of the basin can be 
assumed from available seismic interpretations (Fig. 1c), but their location remains uncertain. Our aim is to 
better constrain the possible spatial location of such sandstone bodies (Fig. S1).

Methods
Overview and general workflow. Our numerical procedure is based on a series of four steps (see Fig. 2):

1. Definition of an initial geological model featuring a given model structure together with an initial guess of the 
model parameter variability ranges. Our model setup is here based on the Dionisos modelling  framework9,13.
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2. The screening step features a global sensitivity analysis whose aim is to diagnose the response of model 
outputs to uncertain input parameters based on the elementary effects  method31,32. Then, a Principal Com-
ponent Analysis (PCA) is performed to rank parameters  importance7,33. As a result we discard parameters 
displaying a negligible influence on model outputs and we revise the initially defined parameters ranges.

3. Model reduction techniques are implemented to reduce the computational cost required to predict the 
key outputs of the problem. Surrogate models are typically constructed using data-driven approach via the 
response of the full simulator to selected locations in the parameter  space34,35. Here, the surrogate model is 
built on the Polynomial Chaos Expansion (PCE) technique with a reduced number of parameters selected 
through the screening  step36–38.

4. Stochastic inverse modelling is performed to estimate input parameters with available data. Here a Particle 
Swarm Optimization (PSO) technique is leveraged in a probabilistic  framework39–41. Millions of parameter 
realizations are tested to select a sample of optimal parameters combinations, so the use of the surrogate 
model is important for computational efficiency.

Figure 1.  (a) Location of the Porcupine Basin (yellow) in the context of the Irish Atlantic margin. (b) 
Generalized stratigraphy of the Porcupine Basin (modified from Shannon,  199230), with indication of the main 
tectono-sedimentary events. Names and ages of the eight calibrated depth surfaces deriving from 2D seismic 
interpretation are also shown (TNU stands for Top Neocomian Unconformity). (c) Qualitative idealized cross 
section across the eastern margin of the Porcupine Basin, derived from original seismic interpretations. The 
inferred position of updip-pinching base-of-slope turbiditic sandstones is shown. This kind of sandstones are 
the key object of the present study.
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The outcome of the procedure is a sample of model realizations, which, in turn, yields empirical probability 
distributions for both input parameter values considered optimal to fit the available data and output quantities 
of interest. The final results can then be compared with available geological interpretations and other soft data, 
similar to the ones presented in Fig. 1c. With respect to the method presented by Patani et al.7, we present a 
significant difference in the parameters screening step which is completed and reinforced by additional criteria 
and analysis (Section "Range analysis"), together with the probabilistic interpretation of model results in the con-
text of risk-assessment analysis (see Section "Identification of geological features across the calibrated sample").

Dionisos model. Dionisos is a process-based modelling tool designed to perform three-dimensional 
numerical simulations of basin-scale stratigraphic  reconstructions13. Full model forward simulations were here 
performed with Dionisos, version 4.93. Dionisos requires specifying parameters related to physical, biological 
and geochemical processes including accommodation, production, erosion and transport of sediments. The 
simulations are performed in a user-defined time interval in a sequence of time steps. At each time step, three 
main tasks are performed:

• Definition of accommodation space for the sedimentation and its variation with time as a consequence of 
basin deformation due to eustasy, compaction or flexure;

• Definition of sediment supply which may correspond to a source or an in-situ marine carbonate production;
• Simulation of sediment transport using deterministic laws and the mass balance principle combined with 

the diffusion equation.

Transport of sediments is modelled by hillslope creeping and fluvial  transport9. A planar two-dimensional 
sediment flux Qsed,i  [km2/ky] ( i = X,Y  , being the two directions of space, see Fig. 2) is evaluated by these two 
mechanisms Qsed,i = QHC,i + QFT ,i , where

are sediment discharges generated by hillslope creeping and fluvial transport, respectively, Ks and Kw are 
constant slope- and water-driven diffusion coefficients  [km2/ky], Si is the local topographical gradient along 
the i-direction, Qw is a dimensionless water flux, and Nq and Ns are fixed coefficients. Equations (1) and (2) are 
coupled with mass conservation to model the transport  process13

where Z [m] is the depth with respect to a fixed refence plane.
For the study case presented here the outputs of Dionisos are the depth maps associated with a given age 

and volume fraction of various types of sediments (sand, silt, shale, carbonate mud and carbonate grains) in the 
considered geological area, as described in Section "Dionisos model".

The considered geological domain consists of Ncells = 56 × 70 = 3920 cells where the grid size is 2 km, thus 
covering 15,680  km2. The simulation considers the interval 146–0 Ma with a time step equal to 1 My. Two lateral 
sources of sediment supply are imposed in a stationary position and width located in the southern and in the 
eastern boundaries of the model. Figure 3 depicts the planar geometry together with the bathymetry map at 
146 Ma (measured with respect to the current sea level) and the two sediment supply sources locations. Paleo-
bathymetries are obtained from regional stratigraphic and sedimentological studies based on the seismic data 
interpretation.

(1)QHC,i = KsSi

(2)QFT ,i = Kw(Qw)
Nq (Si)

Ns

(3)
∂Z

∂t
= −

(
∂Qsed,X

∂X
+
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∂Y

)
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Figure 2.  General scheme of the procedure.
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Uncertain inputs and output quantities of interest. We consider uncertainty in a set of 139 param-
eters grouped into four main categories, each corresponding to a specific process contributing to the strati-
graphic simulation, i.e., (i) siliciclastic supply (68 parameters), (ii) carbonate production (3), (iii) transport and 
erosion (44), and (iv) eustasy and compaction (24). Siliciclastic supply from two sources (34 parameters in 
each) includes sediment and boundary fluvial discharges together with the volumetric fractions of sand, silt and 
shale. Carbonate mud production started at 90 Ma and was active until 66 Ma according to the expected basin 
stratigraphy (see Fig. 1b,c). Transport and erosion parameters are related to high and low energy events respec-
tively i.e., for each type of sedimentary process, continental and marine coefficients associated with sediment 
lithologies (sand, shale, silt, carbonate grains and carbonate mud) have to be defined. Eustatic curve parameters 
represent the sea level at 11 specific ages (146, 145, 141, 140, 66, 65, 38, 37, 26, 25, 0 Ma) measured with respect 
to the current sea level. Finally, compaction parameters represent initial porosity, compaction law and residual 
porosity for the 5 sediment lithologies. For each of these quantities a reference interval of variability is defined 
based on expert knowledge and literature information. Parameters are then assumed to be stochastic variables 
described by a uniform probability distribution within the defined intervals. All the details related to the selected 
parameters ranges are provided as supplementary information.

Key model outputs are represented by the volumetric fractions of sediments (i.e., sand, shale, silt, car-
bonate grains and carbonate mud) and the vertical coordinate Z [m] of the cells, measured with respect to 
the present-day sea level at each simulated age. Observations related to the depth maps are available and are 
collected in the vector Z∗ [m]. This vector includes a vertical coordinate for each cell of the domain and for 
each selected age in the ages vector a = [146, 130, 129, 113, 89, 66, 47, 0] Ma, which correspond to the main 
evolutionary phase of the basin (see Fig. 1b). Our objective is to calibrate the Dionisos model using the data 
Z∗ = Z∗

n

(
aj
)
, n = 1 : Ncells , j = 1 : Nages . This calibration is the used to infer distribution of sand bodies in the 

selected domain. Therefore, a key quantity that we will consider is the spatial distribution of the sand volumet-
ric fraction within the computational domain. For a given cell n we define the average sand fraction during the 
interval �aj = [aj , aj+1] as Vsand = Vsand,n

(
�aj

)
, n = 1 : Ncells , j = 1 : Nages − 1. This quantity describes the 

average sand fraction for each cell and during each one of the seven time intervals �aj . There is no available 
direct measurement of the variable Vsand , but only qualitative information of possible accumulation areas in the 
domain (see Fig. 1c). Therefore, the spatial distribution of Vsand is not used to calibrate model parameters but is 
computed as a predicted quantity of interest.

Screening. Parameter screening is performed with a twofold aim: (i) identifying relevant parameters con-
tributing to the selected goal (see Sections "Sensitivity analysis"-"Parameters selection") and (ii) evaluate the 
consistency between the assumed parameters intervals and the available data (see Section "Range analysis"). 
Both these steps are taken with a view to the parameter calibration step, to achieve a better identifiability of the 
calibrated parameters and at the same time to help maintaining a reasonable computational cost.

Sensitivity analysis. Sensitivity analysis is employed to rank parameters by quantifying their contribution to 
quantities of interest. We start here by considering a total number of parameters equal to N , where we set 
N = 139 in the Porcupine test case, as described in Section "Dionisos model". To this end the Morris indices are 
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Figure 3.  Planar geometry, bathymetry map at 146 Ma and location of the two sediment supply sources.
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 employed31. These indicators are based on the evaluation of the elementary effect, EEi , of the i-th parameter on 
a given output called y in the following. Outputs of our model are spatial variables Z(aj) and Vsand(�aj) . The 
elementary effects are computed as

where EEi is the elementary effect associated with the variation of the i-th parameter, � is a given increment in 
the parameter space, pN is the parameter vector and y represents a scalar output corresponding either to Zn(aj) 
or Vsand,n(�aj) in a given cell of the domain. Elementary effects thus represent a discretization of the gradient 
of an output y with respect to one parameter at a time, while other parameters are fixed.

We design M trajectories across the parameter space where an appropriate value of M can be chosen depend-
ing on the number of  parameters32. The trajectories are built upon subdividing each selected parameter range in 
Nlevels which are equally spaced between the predefined minimum and maximum value of each parameter. The 
sampling is performed by changing a single parameter value between two subsequent points along a trajectory. 
Each node of the trajectory corresponds to a parameter realization for which a Dionisos simulation is performed 
thus providing the outputs of interest. Every trajectory allows then to evaluate an elementary effect for each 
parameter. After evaluation of the elementary effect EEi,k for each trajectory k = 1 : M and for each parameter  
pi , i = 1 : N , we consider the following indices:

These indices represent the mean (Eq. (5)), the standard deviation (Eq. (6)) and the mean of the absolute 
values of EE s (Eq. (7)). These indices are calculated at each cell of the domain at every age in a for variables Z 
and Vsand . The total number of simulations required by the procedure is Nreal = M · (N + 1).

Parameters selection. The screening procedure consists of two steps leading to successive reduction of the 
number of parameters. In the first step, we aim to discard the parameters that have negligible influence on the 
model outputs. To this end, for each age and output variable, we average the indices µ∗ and σ over the cells of 
the domain

where yn refers to the output Z
(
aj
)
 or Vsand

(
�aj

)
 in cell n . Quantity σavg is calculated according to the law of 

total variance and Var represents the variance of µ(pi , yn) over the cells of the domain.
We then define a reasonable threshold thrZ and thrS for Z and Vsand , respectively. Then at every age in a we 

select the parameters for which µ∗
avg or σavg is greater than these thresholds. We thus obtain two pZj  and pSj  vectors 

containing the parameters having an impact for the simulation of Z(aj) and Vsand(�aj).
After selecting the important parameters for every model output, the first phase is finalized by taking the 

union of the sets of the important parameters for each output and for each age:

The first step of the screening aims to neglect the parameters whose contribution is negligible on the whole 
set of outputs of interest, thus considering all the parameters contributing to the outputs in the next steps of the 
procedure. Vector psel will then be a vector of dimension Nsel < N.

The second step is performed with the reduced set of parameters psel . Using this reduced parameter vector we 
repeat the sampling procedure introduced in Section "Sensitivity analysis" and thus obtain a new set of parameters 
realizations and the corresponding outputs evaluated via simulation through the Dionisos model. We then apply 
a Principal Component Analysis (PCA)33 to a matrix J whose components are the Morris indices µ defined in 
Eq. (5). More in detail we define the matrix J as

(4)EEi
(
pN , y

)
=

�y
(
pN

)

�
=

y
(
p1, . . . , pi +�, . . . , pN

)
− y

(
pN

)

�

(5)µ
(
pi , y

)
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1

M
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(6)σ
(
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)
=

√
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∑
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))2
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(
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which gathers all the sensitivity indices for each parameter, cell locations and ages, and where R is the number 
of individual output variable evaluations in each model output (for instance, for output Z , we consider a value 
for each cell for each simulated age, i.e., R = Nages × Ncells ). Matrix J can be considered as an approximation of 
the Jacobian matrix reporting the average value of the derivative of outputs with respect to input parameters. 
The contribution of each parameter to Z and Vsand is then evaluated based on the eigenvalues of the matrix JTJ 
(for more details  see7)

where �j are the eigenvalues of the matrix JTJ . The first Nrdc parameters according to this ranking are selected 
for Z and Vsand , and we then consider the union of these two parameters set.

Range analysis. Parameter ranges are initially fixed a priori from the literature, geological proprietary measure-
ments and expert opinion. To fix the range the values pi,min, pi,max are given. Considering the large number of 
parameters this task can be very challenging especially for complex geological domains. To assist the modelling, 
we propose here a quantitative method to assess the consistency between the selected parameter intervals and 
available observations.

To this end each parameter realization employed in the screening process is ranked according to the follow-
ing objective function Jk

where Zn
(
pk , aj

)
 is the depth calculated by Dionisos simulation at cell n , age aj and for the k th realization of the 

parameters pk . Smaller values of Jk imply a smaller difference between data and model results. Thus, we perform 
the following steps:

1. Rank each parameter realization according to the value of Jk.
2. Select the realizations rk which lie in the n th percentile according to such ranking, thus obtaining the subset 

Sn.
3. Compute the probability distributions of a given realization being in the set Sn for each selected level and for 

each parameter,

Quantity Fn defines an empirical probability of finding a realization in the set Sn conditional to a given 
parameter level, normalized by the absolute sample probability Pr(rk ∈ Sn) (this latter being equal to n/100 by 
definition). The distribution of Fn(i, l) across the levels is used to validate or revise the range for every parameter 
pi . Notably, if the values attained by Fn become large close to the interval boundaries this is interpreted as an 
indication that the fitness of the model may be increasing when the parameter approaches the value pi,min or 
pi,max . These bounds are then revised to increase or reduce the width of the considered range. Specifically, in 
this study we have employed Nlevels = 8 , thus we have analysed cumulative values of Fn(i, l) at levels l = 1, 2 and 
l = 7, 8 to revise the lower and upper bound of the range of each parameter, respectively (see Section "Parameter 
screening results" for a numerical example). Note that different choices are possible for quantity Nlevels . Increasing 
Nlevels is providing a finer discretization of the parameter range, but at the same time decreases the sample size of 
realizations available for a given level, thus increasing statistical noise in evaluating Eq. (14). In our preliminary 
test we found Nlevels = 8 is a reasonable compromise between resolution and computational cost. The outlined 
procedure aims at identifying macroscopic trends indicating that some specific values of a model parameter may 
lead to a clear departure from the observed data, while other values indicate a behaviour closer to the data. We 
recall that in this step of the procedure the sampling is not meant at optimizing the objective function reported 
in Eq. (13), therefore we cannot draw any conclusion about final calibrated parameters values and the idea is 
to merely correct any range that shows an important misalignment with the data and to help modelers to deal 
with large number of input parameters. Range analysis is performed in both steps of the screening procedure 
presented in Section "Parameters selection".

Model reduction. Application of SFMs in the industrial context is hampered by the computational cost 
required for numerical simulations. Here, a surrogate model is employed to mimic the selected outputs of Dion-
isos model. The surrogate model is formulated through the generalized Polynomial Chaos Expansion (gPCE) 
technique which estimates the model outputs through a multi-dimensional polynomial formulation in terms of 
input  parameters42. A given model output Z

(
p
)
 (at every cell and age) is approximated  as37

(11)J =




µ
�
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�
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with i = 1 : Nsel; k = 1 : Nreal; l = 1 : Nlevels
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where p is the vector of Nrdc uniformly distributed random input parameters, ψj are orthonormal multivariate 
Legendre polynomials, and the number of polynomials terms Op is defined as

where D indicates the maximum degree of polynomial approximation with respect to a single parameter.
Evaluation of the gPCE coefficients, αj , entails solving the complete model to compute Z

(
p
)
 for several com-

binations of the uncertain parameters. Coefficients αj are computed through a least square minimization of the 
truncation error at sampling points. These latter are here assigned according to quasi-Monte Carlo  selection43.

Stochastic inverse modelling. Stochastic inverse modelling approach is based on the minimization of 
the objective function defined in Eq. (13), where the value of the depth is approximated upon employing the 
surrogate model approximation ZPC(p) . The objective function J is minimized through Particle Swarm Optimi-
zation (PSO)  technique39 by changing the value of the parameters and thus obtaining multiple evaluations of the 
function ZPC(p) . At the initial step of the procedure, t = t0 , Nx number of particles xj are sampled randomly in 
the parameter space together with a random value of speed vj , j = 1 : Nx . These particles are then displaced in 
the parameter space to minimize the objective function. At each step, t  , the objective function (Eq. (13)) is cal-
culated for parameter combination corresponding to each particle xj . Particle positions and speeds are updated 
according to the following  expressions39,44.

where ω is the inertia weight, ϕ is called cognitive coefficient and rt is a random coefficient updated at each step 
t  . The vector xtbest,j identifies the parameter combination providing the lowest objective function value among 
those experienced by particle j , while gtbest is the location of maximum fitness (minimum distance to data) ever 
discovered by all particles of the swarm. Both these locations are updated at each iteration t  . Convergence of 
the algorithm is obtained when an optimum of the objective function is attained or a predefined number of 
displacements is reached. In this analysis convergence criterion is set as a number of displacements which is 
equal to T = 1000 which does not ensure the global minimum is attained but is a good compromise between the 
accuracy and the computational cost. At the final iteration we identify the best fit parameter value as p̂ = gt=T

best  . 
This procedure is repeated for different random initial parameters combinations, thus yielding a sample of Ncalib 
of parameter values p̂1, . . . , p̂Ncalib

 , each corresponding to the solution obtained minimizing the distance between 
the surrogate model and the data. This parameter sample is then used to simulate a sample of Ncalib realizations of 
the full stratigraphic model through Dionisos, thus obtaining the probabilistic characterization of all the outputs 
of interest for the selected parameter values.

Results
Parameter screening results. For the first step of the screening 50 trajectories are generated with 139 
parameters resulting in 7000 Dionisos forward simulations. Sensitivity indices are calculated for Zn(aj) depth 
and Vsand,n(�aj) volume fraction at every age aj or interval �aj and cell n using Eqs. (8) and (9). Thresholds are 
defined for Z and Vsand as thrZ = 5m and thrS = 1% . These thresholds are considerably smaller than the range 
of variability of the model outputs and are below the accepted uncertainty in the outputs. Hence, at this step of 
the screening only the uninfluential parameters will be discarded.

To exemplify the results obtained, Fig. 4 shows µ∗ versus σ at 89 Ma for Z (a) and in the interval 89–66 Ma 
for Vsand (b). Red lines represent the selected thresholds, while solid blue points represent the computed µ∗

avg 
and σavg values. The parameters with  µ∗

avg and σavg falling in the lower-left quarter of the plots are deemed to 
be negligible for these specific outputs. For the outputs considered in Fig. 4, 105 and 103 parameters would be 
eliminated by considering separately Z and Vsand , respectively. The error bars reported in Fig. 4 represent the vari-
ability of µ∗ in the spatial domain by indicating range of values comprised between the 5th and 95th percentile.

We exemplify the type of information that can be obtained from this analysis by studying the sensitivity of 
model outputs with respect to a single parameter related to carbonate production. The black point represents 
parameter #71. Figure 5 shows the spatial distribution of µ∗ for this parameter at 89 Ma for Z (a) and in the 
interval 89–66 Ma for Vsand (b). Parameter #71 is carbonate mud production that is activated at 90 Ma in the 
chalk deposition phase (see Fig. 1b). Since parameter #71 activates carbonate muds accumulations at 90 Ma, 
it has negligible influence on Vsand in the previous ages. However, this parameter can induce variations of the 
observed depth at 89 Ma up to 250 m on average in certain spatial locations, notably, in the southern region of 
the domain where carbonate deposits may accumulate in shallow marine environment (see Fig. 5a). Note also 
that the same parameter has a definite influence on Vsand in the interval between 90 and 89 Ma. However, the 
spatial extent of the region where the parameter is important varies between the two outputs (compare Fig. 5a 

(15)Z
(
p
)
≈ ZPC

(
p
)
=

Op∑

j=1

αjψj

(
p
)

(16)Op =

(
Nrdc + D

D

)
=

(Nrdc + D)!

Nrdc!D!

(17)xt+1
j = xtj + vtj , ∀j = 1 : Nx

(18)vt+1
j = ωvtj + ϕrt

(
xtbest,j − xtj

)
+ ϕrt

(
gtbest − xtj

)
, ∀j = 1 : Nx



9

Vol.:(0123456789)

Scientific Reports |          (2023) 13:817  | https://doi.org/10.1038/s41598-022-27360-y

www.nature.com/scientificreports/

with Fig. 5b). In particular, the impact of carbonate production extends to a large portion of the domain when 
Vsand is considered, with an important effect observed in the south-western corner of the domain.

The final parameters set psel  selected at this first screening step consists of 97 parameters neglecting 42 
parameters out of 139. Figure 6 shows the distribution of the 97 selected parameters (solid bars) over all initial 
set (transparent bars) expressing different processes contributing to the overall sedimentological output. We 
observe that parameters associated with supply location and width and carbonate production are all considered 
important. On the other hand, slope failure parameters are always negligible, thus indicating such process is not 
contributing significantly to the selected outputs. Information like the one gathered here can assist modellers 
in identifying which processes and parameters are worth further investigation (for example through dedicated 
analyses of literature and proprietary data) and which can be conversely neglected.

Following the procedure outlined in Section "Range analysis" we analyse the investigated parameters intervals. 
Figure 7 exemplifies two results of this procedure. Each bar in the plot represents the probability Fn(i, l) to find a 
realization in the set Sn at the considered level where n = 5 . Red crossed lines indicate the preliminary intervals 
while the green crossed lines correspond to the new intervals bounds. In Fig. 7a we observe that the distribution 
of parameter #71 ( Fn(i = 71, l) , associated with maximum carbonate mud production at 90 Ma [m/My] is con-
centrated close to the right boundary. Hence, the parameter range is enlarged from the interval [5, 25] to [5, 35]. 
Figure 7b depicts the distribution Fn(i = 107, l) , for parameter #107 which is slope driven marine silt transport 
coefficient  [km2/Ky]. The total frequency Fn is 2% in the two levels associated with the top 25% of the interval 
(corresponding with the last two levels). As a result, the procedure proposes a reduction of the upper bound 
of the interval from 1 to 0.75. It is important to note that range modification should be performed according 
to the physical and geological meaning of the parameters, therefore parameter modifications are finalized only 
after human intervention, i.e., after checking that the new proposed boundaries are not exceeding physical or 
geological meaning associated with given quantities (e.g., transport coefficients cannot assume negative values).

Figure 4.  Sensitivity indices µ∗ versus σ at 89 Ma for Z (a) and in the age interval 89–66 Ma for Vsand (b). 
Red lines indicate the selected thresholds. Solid points are the spatial average values of µ∗ and σ for each of 
the model parameters, error bars indicate the 5th and 95th percentile of the index µ∗ evaluated in the spatial 
domain. Results related to parameter #71 are highlighted in black. Parameters whose average indices are below 
the thresholds are shown half-transparent.

a) b)

[m] [%]

Figure 5.  Spatial variability of µ∗ for parameter #71 at 89 Ma for Z (a) and in the age interval 89–66 Ma for 
Vsand (b).
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For the second screening step a new set of Dionisos forward simulations is performed with 97 parameters 
and new ranges. A total number of 4900 realizations are generated along 50 trajectories.

Figure 8 shows the contribution defined in Eq. (12) of each selected parameter to the quantities of interest. 
We observe that the some of the selected parameters (#19, 20, 53, 54, 55, 58, 59) have negligible influence on Z , 
but are retained in the parameters list since they show a relevant impact on Vsand . Cumulative contribution of 
these 20 parameters to the Z and Vsand variability is 92.47% and 76.79%, respectively. This result is considered a 
good compromise in the model reduction process. The parameters selected at the end of the complete screening 
procedure are displayed in Table 1 together with their units and the final ranges of variability, obtained investi-
gating parameter intervals as in the first screening step.

Identifiability of model parameters. We present here the results of model calibration, performed fol-
lowing the procedure outlined in Section "Stochastic inverse modelling". The calibration phase involves approxi-
mately 50 million evaluations. To perform the stochastic calibration the surrogate model is used as explained 
in Section "Model reduction". This enables the procedure to be computationally affordable compared to the 
Dionisos model, considering that a full model run requires more than one hour while the surrogate model is 
associated with a computational cost of about 1 s. The accuracy of the surrogate model in mimicking the full 
Dionisos simulations is discussed in supplementary materials.

siliciclas�c supply
carbonate produc�on

eustasy and compac�on
transport and erosion

Figure 6.  Distribution of the parameters selected in the first step of screening. Semi-transparent bars indicate 
initial number of parameters, solid bars indicate the number of parameters selected after the first screening step. 
For more details of the individual parameters found in each group see Supplementary information.

a) b)

x x x  new bounds

x x x  old bounds

Figure 7.  Distribution of the parameters #71(a) and #107 (b) delimited by red crosses together with the new 
intervals (green crosses) in the first step of the screening.
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Figure 9 depicts the marginal probability distributions of p̂i obtained from 500 calibrations. We can subdivide 
the parameters according to three groups according to the results:

• Identifiable parameters: this subset includes parameters whose marginal distributions are fully contained 
within the investigated ranges and display a single clear peak (such as parameters #2, 6, 37, 39, 42, 71, 97, 
107, 126). For these parameters the procedure provides well identified best estimates and an approximation 
of their uncertainty. Estimates of parameters 6 and 107 are close to the interval boundaries, however they 
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Figure 8.  Parameter contributions estimated through Eq. (14) associated with the 20 selected parameters for Z 
(a) and Vsand (b). Numbers on the x-axis label indicate the parameter number, for their definition see Table 1.

Table 1.  Parameters used to build the surrogate model together with their units and final intervals.

Nr Description Unit Final range

2 Sediment position source 1 km 40–85

6 Sediment supply source 1 at 113 Ma km3/My 0–160

9 Sediment supply source 1 at 47 Ma km3/My 0–150

19 Sand supply percentage source 1 at 146 Ma – 5–20

20 Sand supply percentage source 1 at 130 Ma – 5–20

37 Sediment supply source 2 at 146 Ma km3/My 300–1050

39 Sediment supply source 2 at 129 Ma km3/My 550–1300

42 Sediment supply source 2 at 66 Ma km3/My 200–450

43 Sediment supply source 2 at 47 Ma km3/My 400–550

53 Sand supply percentage source 2 at 146 Ma – 5–15

54 Sand supply percentage source 2 at 130 Ma – 5–12.5

55 Sand supply percentage source 2 at 129 Ma – 5–15

58 Sand supply percentage source 2 at 66 Ma – 5–15

59 Sand supply percentage source 2 at 47 Ma – 5–15

71 Max compact carbonate production at 90 Ma m/My 5–35

83 Initial silt porosity – 33–37

97 High energy marine silt coefficient km2/Ky 0.2–1.5

107 Slope driven marine silt coefficient km2/Ky 0–0.5644

126 High-low water discharge ratio – 0–30

139 Erosion basement thickness m 0–30
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can also be considered identifiable, because the estimates are close to a physical limit for these parameters. 
For example, parameter 6 is estimated close to 0. This parameter physically corresponds to a solid discharge 
that cannot attain negative values, thus indicating that the parameter best estimate can be identified and is 
close to zero.

• Non-identifiable parameters: these parameters show approximately uniform distributions across the inves-
tigated range (see parameters #20, 53, 54, 83, 139 in Fig. 9). The procedure thus indicates that the estimation 
process is essentially insensitive to these quantities. It is important to note that these parameters are those 
exhibiting negligible contribution to Z , which is the quantity employed for calibration (see results in Fig. 8) 
and these results confirm the expected negligible influence on depth quantities. These results indicate that 
additional information is needed to identify these parameters, e.g., well data reporting an estimate of the 
volume fractions associated with various lithologies.

• Parameters requiring further investigation: some of the marginal distributions reported in Fig. 9 appear to 
concentrate near the boundary of the parameter intervals (# 9, 19, 43, 55, 58, 59). In general, such a result 
indicates that these parameters require further investigation, as their optimal range may be found outside 
the one initially selected for the estimation.

Close observation of the results given by the parameter estimation can yield interesting indications to inter-
pret the geological setting in the Porcupine area. Generally, sediment inputs are predominantly entering the 
domain through the eastern source (source 2). However, a possible southern source (source 1) is included in 
the model. Estimates of the solid discharge of source 1 at 113 Ma (parameter 6) concentrate around 0, while the 
solid discharge at the same source is estimated close to the maximum allowed value of 150  km3/My at 47 Ma 
(parameter 9). This indicates the sediment delivery from the southern source (source 1, see Fig. 3) may have 
increased in recent ages while being relatively negligible at older ages. Note that the interval bounds originally 
assigned to parameters 6 and 9 favoured an opposite behaviour (larger values were allowed for parameter 6 if 
compared to parameter 9 in the initial ranges). Information gained from the parameter calibration process can 
then be used in relation to existing paleoclimatic, and paleogeographic models from which sediment supplies are 
usually assumed. Results could also be used in the context of so-called source-to-sink analysis to assess possible 
location and extent of past sediment sources and fairways. These parameters are typically plagued by consider-
able uncertainty and are related to larger spatial scales than the one considered to model a single sedimentary 
environment. Therefore, quantitative information like the one provided are relevant to future efforts aimed at 
improving the geological characterization of basin fills, such as the Porcupine basin’s one.

Figure 9 also reports updates of the parameter ranges resulting from the adopted criteria. These corrections 
mostly proved to be useful, although they did not avoid the occurrence of marginal distributions concentrating 
on the boundary of the intervals (see for example the distribution obtained for parameter 6). In most cases the 
reduction of the range led to the desired result, allowing to neglect portions of parameter intervals which are 
far from the optimal ones (see, e.g., parameter #37,39,107 in Fig. 9). Yet, in some cases reducing the parameter 
range appears unjustified in light of the results presented in Fig. 9. Neglecting portions of the parameter space 

6 [km3/My] 9 [km3/My]2 [km] 19 [-] 20 [-]

37 [km3/My] 39 [km3/My] 42 [km3/My] 43 [km3/My] 53 [-]

54 [-] 55 [-] 58 [-] 59 [-] 71[m/My]

83 [-] 97 [km2/Ky] 107 [km2/Ky] 126 [-] 139 [m]

Figure 9.  Histogram of the marginal probability distributions of input parameters obtained from the sample 
of 500 calibrations. Vertical red lines indicate the initial parameter range, green lines indicate the revised ranges 
obtained by following the procedure in Section "Range analysis".
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may lead to an incomplete assessment of the parametric uncertainty, see e.g., the marginal distributions of 
parameters 2 and 43. This result suggests that modifications and particularly reduction of the considered ranges 
should be performed with care.

Identification of geological features across the calibrated sample. The analysis of the seismic data 
collected from Porcupine basin shows the possible occurrence of sand bodies lying between the horizons corre-
sponding at 129 and 113 Ma, i.e. the sag phase (see Fig. 1b,c). These sands are interpreted as being deposited in a 
submarine fan environment by subaqueous sediment gravity  flows45–47. They could have been triggered by slope 
failures or by huge riverine floods entering sea water and funnelled along the slope as hyperpycnal  flows48,49. 
Based on qualitative interpretations (see Fig. 1c) these deposits may show a pinch-out geometry towards the 
base of the continental slope, which is indicative of a possible stratigraphic trap that may hold  hydrocarbons50. 
Pinch-outs are formed where the slope angle considerably decreases, allowing for sediment deposition. At seis-
mic scale, vertical and lateral stacking of several depositional events generate large scale pinch-out geometries. 
During the assessment of the stratigraphic traps through forward modelling, it can be very challenging to locate 
the feeding channel, determine the accumulation potential of the sediments and detect the geometry of reservoir 
 traps49.

Our aim is here to demonstrate how these features can be identified upon relying on our probabilistic 
approach. First, we consider the probability of observing sand accumulations, which can be expressed by the 
exceedance probability to observe a volumetric fraction of sand larger than a given threshold. Figure 10a depicts 
the exceedance probabilities Pr(Vsand > 0.2) , which is based on the relative frequency of Vsand predicted using 
the Ncalib realization of the full model. Figure 10b shows a diagonal cross section of the domain together with the 
seismic data Z∗ surfaces drawn as white layers. Black layers represent the surfaces corresponding to the horizons 
corresponding at 129 and 113 Ma. The pinch-out is detected at the region where these two surfaces are close to 
each other. Figure 10b shows that the probability to find Vsand > 20% in the pinch-out region is close to 20% 
over the 500 simulations.

To provide a more quantitative assessment of the sand accumulation downstream the pinch-out we have per-
formed the analysis in two steps: (i) we identify a pinch-out location, by considering locations where the sediment 
thickness accumulated in the sag phase (between 129 and 113 Ma, �Z129

113 ) becomes smaller than 50 m, (ii) we 
calculate the total volume of the sand in the region downstream (i.e., north-west with respect to the pinch-out 
line) for 500 simulations, the region of interest being indicated by black dots in Fig. 11a. Figure 11b shows that 
the accumulation of sand in this area is predicted only by 123 out of 500 simulations.

With the aim of characterizing the geometry of these possible sand accumulations, we present the spatial 
distribution of the exceedance probability Pr(Vsand > 0.2) between 129 and 113 Ma in the restricted sample of 
the 123 realizations where sand accumulation is observed. Figure 12 identifies two sand bodies in the domain 
which can be interpreted as fan lobes. The probability map suggests that these two bodies can coexist as separate 
fans or together as one fan system. These results are significant in the context of exploration activities related 
to energy resources, e.g., exploration well placement, and to identify likely locations of stratigraphic traps for 
hydrocarbon accumulations. Our probabilistic approach can be used to propagate uncertainty to subsequent 
modelling steps such as petroleum system modelling. These latter typically require incorporating source loca-
tions and migration pathways and therefore need to consider an even larger scale than the one considered by 
stratigraphic models. Therefore, results such as the ones presented in Fig. 12 can be extremely useful to inform 
migration models on the local features of the system. In this context, our approach can provide probabilistic 
inputs for subsequent modelling analyses.
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Figure 10.  Three-dimensional representation of the exceedance probability Pr(Vsand > 20%) evaluated over 
the sample of 500 calibrated solutions (a) and diagonal cross section of the same quantity together with the Z∗ 
surfaces associated with available data in black and white (b).
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Discussion and conclusions
We apply a probabilistic methodology to support quantitative geological interpretation through stratigraphic 
models in a real sedimentary setting. The Porcupine basin is considered as a test case for the application. The 
results obtained allow drawing general conclusions regarding the information value that can be gained from the 
application of the proposed method to a real scenario. Our study leads to the following conclusions:

1. Our procedure seamlessly integrates expert knowledge with reproducible quantitative indicators to reduce 
parameterization complexity of stratigraphic forward models. For the Porcupine basin case the uncertain 
parameter space is reduced from 139 to 20 dimensions, based on sensitivity metrics. The approach informs 
about the relevant contribution of individual processes and parameters to key targets of interests (e.g., 
horizon depths or sand accumulation). This screening step is complemented with a preliminary evaluation 
of the suitability of the selected parameter ranges in mimicking available observations. This information is 
then used to revise or corroborate expert opinion on the selected variability intervals for model parameters.

2. The probability distribution of calibrated parameters is obtained via an iterative procedure leveraging reduced 
order numerical model and a particle swarm optimization algorithm. We obtain an assessment of the practi-
cal identifiability of model parameters, this concept being associated with the possibility to reliably estimate 
parameters given a set of observations. Identifiability is assessed through a statistical postprocessing of the 
probability distributions associated with estimated parameters.

3. Our results lead to further insight on local sediment source dynamics. Sediment supplies in the Porcupine 
area are dominated by the eastern source whose discharge values are well identified by the proposed proce-
dure. Our results indicate sediment inputs from southern sources are likely to be negligible at older times 
(113 Ma) while increasing to values exceeding the initial range at more recent ages (from 47 Ma).

Figure 11.  Spatial distribution of the sediment thickness �Z
129
113 together with the pinch-out location (black 

line), black dots identify the region of interest (a); marginal distribution of the cumulative volume of sand 
fraction in the region of interest (b).

Figure 12.  Spatial distribution of probability of observing Vsand>20% between 129 and 113 Ma in the selected 
123 realizations.
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4. Postprocessing of the results allows for identification of upcurrent pinching fan lobes in the so-called sag 
phase comprised between 129 and 113 Ma. We identify the location of sand accumulations, indicative of the 
occurrence of possible stratigraphic traps. This analysis provides a quantitative counterpart to qualitative 
interpretations (such as the one presented in Fig. 1). This analysis is conducted in a probabilistic framework 
where we identify and delineate volumes associated with sand fraction exceeding a given threshold. Proba-
bilistic results can be readily used in the context of risk assessment procedures for subsurface resources 
exploration.

Data availability
The data used to generate the results of this study are available upon reasonable request to the corresponding 
author.
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