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Combining convolutional neural 
networks and self‑attention 
for fundus diseases identification
Keya Wang 1,3, Chuanyun Xu 1,2,3*, Gang Li 1*, Yang Zhang 2, Yu Zheng 1 & Chengjie Sun 1

Early detection of lesions is of great significance for treating fundus diseases. Fundus photography 
is an effective and convenient screening technique by which common fundus diseases can be 
detected. In this study, we use color fundus images to distinguish among multiple fundus diseases. 
Existing research on fundus disease classification has achieved some success through deep learning 
techniques, but there is still much room for improvement in model evaluation metrics using only 
deep convolutional neural network (CNN) architectures with limited global modeling ability; the 
simultaneous diagnosis of multiple fundus diseases still faces great challenges. Therefore, given 
that the self‑attention (SA) model with a global receptive field may have robust global‑level feature 
modeling ability, we propose a multistage fundus image classification model MBSaNet which 
combines CNN and SA mechanism. The convolution block extracts the local information of the fundus 
image, and the SA module further captures the complex relationships between different spatial 
positions, thereby directly detecting one or more fundus diseases in retinal fundus image. In the initial 
stage of feature extraction, we propose a multiscale feature fusion stem, which uses convolutional 
kernels of different scales to extract low‑level features of the input image and fuse them to improve 
recognition accuracy. The training and testing were performed based on the ODIR‑5k dataset. 
The experimental results show that MBSaNet achieves state‑of‑the‑art performance with fewer 
parameters. The wide range of diseases and different fundus image collection conditions confirmed 
the applicability of MBSaNet.

Fundus disease can cause vision loss and, as the disease progresses, blindness. Currently, common fundus dis-
eases that affect visual function include diabetic retinopathy (DR), age-related macular degeneration (AMD), 
and glaucoma. The progression of fundus diseases to advanced stages often severely affects the visual function 
of patients, and there is no specific treatment for such diseases. A significant portion of the world’s population 
suffers from diabetes. DR is the most common complication of diabetes, with no obvious abnormal symptoms 
in the early stages but can eventually cause blindness. DR is one of the four major blindness diseases  in1. If DR 
is detected at an early stage, patients usually receive a good prognosis for treatment. Moreover, glaucoma is an 
irreversible neurodegenerative eye disease and is considered a leading cause of visual disability in the  world2. 
According to the World Health Organization, there will be up to 78 million glaucoma patients globally by  20203. 
Therefore, early detection and treatment of fundus diseases are crucial. Artificial intelligence technology can help 
ophthalmologists make accurate diagnoses based on comprehensive medical data and provide new strategies to 
improve the diagnoses and treatments of eye diseases in primary hospitals.

Recently, some proposed convolutional neural network (CNN) -based models have achieved state-of-the-
art (SOTA) performance in tasks, such as image classification and object detection, e.g.,  VGGNet4,  ResNet5, 
 GoogLeNet6, and  EfficientNet7. Some have also been applied to fundus disease identification. Meanwhile, with 
the success of self-attention (SA) models such as  Transformer8 in natural language  processing9,10, several scholars 
have attempted to introduce SA mechanisms into computer vision (CV). Recently, Vision Transformer (ViT)11 
has shown that almost only a single vanilla Transformer layer is required to achieve decent performance on 
ImageNet-1K12. Particularly, ViT achieved comparable results to SOTA CNNs when pretrained on the large-
scale private JFT-300M  dataset13, indicating that the Transformer model has higher model capacity than CNNs. 
Moreover, although Transformer architectures are becoming increasingly well-known in vision tasks and have 
shown quite competitive performance compared with CNN architectures in various vision  tasks14,15, the excellent 
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performance is implemented on the premise of having considerable training data support; Transformer archi-
tectures still lag behind CNNs under low data volume conditions. Therefore, Transformer-based models have 
not yet been applied to the field of fundus disease classification with a small sample size.

At present, the research on fundus image classification still has the following challenges. First, the classifica-
tion of multilabel fundus images is a common practical problem, because a real fundus image is likely to contain 
multiple fundus diseases. Second, under the conditions of limited fundus image data and unavoidable image 
noise, it is difficult to obtain a model with high disease detection accuracy using a pure deep CNN architecture. 
Therefore, for the first problem, we use a problem transformation-based approach that transforms the multila-
bel classification problem for each image into a two-class classification problem for each label. For the second 
problem, owing to the poor performance of a single CNN model, the current optimal solutions almost all use 
the method of integrating multiple CNN models, such  as16,17. Although a better and more comprehensive robust 
classifier can be obtained by integrating multiple weak classifiers, the inference cost will increase significantly. In 
this regard, we adopt the most remarkable strategy of this study: integrating the CNN (particularly the MBConv 
block) and the Transformer into the same network architecture.

Since the convolutional layer has a strong inductive bias prior and has a better convergence speed, and the 
self-attention layer with a global receptive field has a stronger feature modeling ability, which can compensate for 
the lack of global modeling capability of the convolutional layer. Therefore, they are considered to be integrated 
into the same multistage feature extraction backbone network. Convolution is used to extract low-level local 
features, and the Transformer captures long-term dependencies. By combining CNN architecture with stronger 
generalization performance and Transformer architecture with higher model capacity and stronger learning 
ability, the model can achieve better generalization performance and stronger learning ability, making it more 
suitable for fundus image classification tasks. In addition, because such a model is usually deployed on mobile 
devices, considering the computational efficiency, we only turn on the global receptive field when the size of the 
feature map reaches a manageable level after downsampling, which is similar to the real situation.

Networks containing Transformer architectures perform poorly on undersized datasets due to their lack 
of the inductive bias that CNN architectures  have18. In our experiments, we applied data augmentation to our 
dataset, mainly to alleviate the overfitting phenomenon of the network, and by transforming training images, 
we can obtain a network with better generalisation capability. Inspired by  CoAtNet18, we propose a multistage 
feature extraction backbone network -MBSaNet -which combines convolutional blocks and SA modules, for 
identifying multiple fundus diseases.

Related Work
Fundus disease identification method. Fundus photography is a common method for fundus disease 
examination; Compared with other examination methods such as fundus fluorescein angiography (FFA) and 
fundus Optical Coherence Tomography (OCT), it has the advantages of low cost, fast detection speed, and 
simple image acquisition. In recent years, with the continuous advancement of CV and image processing tech-
nology, disease screening and identification methods based on fundus images have emerged. Considering the 
characteristics of image datasets, a shallow  CNN19 was designed for automatic detection of age-related macular 
degeneration (AMD), the average accuracy of ten-fold cross validation was 95.45% , and the average accuracy 
of blindfold was 91.17%.20 employed the Inception-v3 structure to diagnose diabetic retinopathy, trained on 
128,175 fundus images, and then demonstrated good results on two validation datasets, demonstrating that deep 
learning technology can be applied to ophthalmic illness diagnoses. Based on EfficientNet, a model integration 
strategy was  proposed16, inputting the color and gray versions of the same fundus image into two EfficientNets 
with the same architecture for training, and finally integrating the output results of the two models to obtain the 
final output. Considering the possible correlation between the fundus images of both eyes of the same patient, 
a dense correlation network (DCNet)21 was devised to aggregate related characteristics based on the dense spa-
tial correlation between paired fundus pictures. Several alternative backbone feature extraction networks are 
employed for trials on the ODIR-5K dataset, indicating that the fusion has been completed. The DCNet module 
effectively improved the recognition accuracy of fundus illnesses, according to the trial data. To extract the 
depth features of the fundus images,22 used the R-CNN+LSTM architecture. The classification accuracy was 
enhanced by 4.28% and 1.61% , respectively, by using the residual method and adding the LSTM model to the 
RCNN+LSTM model. In terms of feature selection, the 350 deep features are subjected to a multi-level feature 
selection approach known as NCAR, which improved accuracy and reduced the support vector machine (SVM) 
classifier’s computation time. For the detection of glaucoma, diabetic retinopathy and cataracts from fundus 
images, three  pipelines23 were built in which twelve deep learning models and eight support vector machine 
(SVM) classifiers were trained, using different pretrained models such as Inception-v3, Alexnet, VGGNet and 
ResNet. The experimental results show that the inception-v3 model had the best performance with an accuracy 
of 99.30% and an f1-score of 99.39%.24 employed transfer learning to classify diabetic retinopathy fundus images. 
Experiments on the DR1 and MESSIDOR public datasets indicated that knowledge learned in other large data-
sets (source domain) could be better classified in small datasets (target domain) via transfer learning.25 devel-
oped an enhanced residual dense block CNN, which could effectively classify fundus images into “good quality” 
and “low quality” to avoid delaying patient treatment and solve the problem of quality classification of fundus 
images.26 offered a six-level cataract grading method that focuses on multifeature fusion and extracted features 
from the residual network (ResNet-18) and gray-level cooccurrence matrix (GLCM), with promising results.

Transformer architecture. Transformer8 is an attention-based encoder-decoder architecture that has 
revolutionized the field of natural language processing. Recently, inspired by this major achievement, several 
pioneering studies have been carried out in the computer vision (CV) field, demonstrating their effectiveness in 
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various CV tasks. With competitive modeling capabilities, VITs achieve impressive results on multiple bench-
marks such as ImageNet, COCO, and ADE20k, compared with existing CNNs. As the spearheading work of 
Transformer within the CV field, the visual Transformer (ViT)11 structure can accomplish fabulous performance 
on ImageNet. Be that as it may, an impediment of ViT is the requirement for large-scale datasets, such as Ima-
geNet-21k12 and JFT-300M12 (which may be a private dataset), to obtain pretrained models. In spite of the fact 
that SA modules are able to improve recognition accuracy, they more often than not bring about extra computa-
tion and are hence frequently seen as add-ons to CNNs, similar to the squeeze-and-excitation (SE)27 modules. 
By contrast, following the success of ViT, a novel research direction has emerged, designed from the Transformer 
backbone, to incorporate explicit convolutions or other desirable convolutional properties. For example, a layer-
by-layer Tokens-To-Token (T2T)  transformation28 was developed to gradually convert photos into tokens and 
produce local structural information. Further, they provided a T2T-ViT backbone with a deep-narrow architec-
ture, which somewhat alleviated ViT’s reliance on large-scale datasets.15 proposed the Swin Transformer, which 
enables state-of-the-art methodologies in various CV tasks, such as image classification, object identification, 
and semantic segmentation, in addition to employing Transformers for image classification. Based on the Swin 
Transformer and to overcome the intrinsic locality limitations of convolutional operations, recently,29 proposed 
SwinE-Net, which effectively improved the robustness and accuracy of polyp segmentation by combining Effi-
cientNet and Swin Transformer to maintain global semantics without sacrificing the low-level features of CNN.

Some researchers have proposed hybrid approaches that combine convolutional and SA modules in the 
same architecture instead of utilizing pure attention models. For example, the Convolutional Enhanced Image 
Transformer (CeiT)30 was introduced, which uses CNN to extract low-level characteristics before using the 
Transformer to construct long-range dependencies.31’s BoTNet combines the SA module into ResNet, allowing 
it to outperform ResNet in image classification and object identification tasks. Similarly,18 presented CoAtNet, a 
basic yet effective network structure made up primarily of MBConv  blocks32 and Transformer blocks. Contrary 
to BoTNet, CoAtNet uses the MBConv block as the major component rather than the residual block, and the 
Transformer block is located in the last two stages rather than the final stage. CoAtNet can accomplish good 
generalization like CNN and superior model capacity like Transformer by employing this design. In addition,33 
introduced the CNNs Meet Transformers (CMT) block,  and34 proposed the convolutional ViT (CvT) architec-
ture, which integrates convolutional layers with Transformers into a single block. The CMT and CvT designs, 
like  ResNet5, contain multiple stages for generating feature maps of various sizes, each of which is made up of 
CMT/CvT blocks.

Results
This section presents the experimental results obtained on the ODIR-5K dataset, comparing the proposed 
MBSaNet against diferent baselines.

Implementation details. All experiments were performed on a dedicated server, the CPU is Intel Xeon 
Gold 6226R, 16 cores and 32 threads, the GPU is NVIDIA RTX5000, the memory is 32gb, and the GPU memory 
is 16 gb. To verify the effectiveness of the proposed model, we designed multiple sets of comparative experi-
ments. We use the data-augmented original dataset for training, an off-site test set of 1,000 images, an on-site 
test set of 2,000 images, and a balanced test set of 400 images for testing. The hyperparameter settings are shown 
in Table 1.

Comparison experiment with CNNs and other hybrid models. Owing to the robust feature learning 
ability of CNNs, which avoids the tedious steps of manually designing features in traditional methods, CNNs 
have been the main model architecture for CV since the great breakthrough of  AlexNet39. Recently some pro-
posed CNN architectures have enabled models to attain state-of-the-art performance in tasks such as image 
classification and object detection in recent years. For performance testing, We compared MBSaNet with main-
stream CNN backbone models on three independent test sets. The results showed that in the off-site test set, 
MBSaNet can achieve an AUC value of 0.891, a Kappa value of 0.438, an F1-score of 0.881, and a final score of 

Table 1.  Hyperparameter settings.

Configuration Value

Optimizer Adam

Max epoch 30

BatchSize 32

Learning rate 1.00E-03,decay=1.00E-06

Batch normalization True

Activation function ReLu

Drop out 5.00E-01

EarlyStopping Monitor=val loss,patience=5

ModelCheckpoint Monitor=final score,mode=Max,

restore best weights=True
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0.737; the CNN with the best performance in each indicator can achieve an AUC value of 0.870, a Kappa value 
of 0.369, an F1-score of 0.862, and a final score of 0.701. In the on-site test set, MBSaNet achieved an AUC value 
of 0.878, a Kappa value of 0.411, an F1-score of 0.884, and a final score of 0.724; meanwhile, the best performing 
CNN achieved an AUC value of 0.861, a Kappa value of 0.353, an F1-score of 0.863, and a final score of 0.692.

On the balanced test set containing 400 images, MBSaNet achieved a precision of 0.50 and a recall of 0.64 
for normal fundus, 0.64 and 0.76 for DR, 0.87 and 0.82 for glaucoma, 1.0 and 0.90 for cataract, 0.89 and 0.88 for 
AMD, 0.82 and 1.0 for hypertension, and 1.0 and 0.98 for myopia. The classification results of MBSaNet and the 
two best performing CNNs are shown in Figure 1.

Hybrid models based on CNN and Transformer have achieved state-of-the-art performance on large-scale 
datasets such as ImageNet, but they have not yet been applied in the field of fundus disease recognition with 
low image data quantity. To evaluate their performance and compare with MBSaNet, we conduct experiments 
with two  Coat38 models, two different configuration models in the CoAtNet  family18, and  BotNet5031. To ensure 
fairness, we apply the parameter settings in Table 1 to all models and use the same data-augmented training set. 
The experimental results are shown in Tables 2, 3 and  4.

Comparison with previous work. In this subsection, the advanced nature of MBSaNet is verified by com-
paring it with several previous studies. Among them,16 proposed a model integration strategy, inputting the 
color and gray versions of the same fundus image into two EfficientNets with the same architecture for training, 
and integrating the output results of the two models to obtain the final output.40 used the Inception-v335 model, 
replacing the network’s randomly generated weight parameters at the start of training with weight parameters 

Table 2.  Comparison with some CNN networks and hybrid models on the off-site test set. Significant values 
are in bold.

Model Params Accuracy AUC Kappa F1 Score Final score

Vgg164 134M 0.877 0.803 0.331 0.877 0.671

Vgg194 139M 0.865 0.812 0.347 0.879 0.679

Inception-v335 23.9M 0.878 0.873 0.323 0.877 0.691

ResNet505 25.6M 0.875 0.836 0.387 0.875 0.699

MobileNetV232 6.9M 0.882 0.781 0.302 0.869 0.651

Xception36 33M 0.890 0.860 0.344 0.874 0.693

EfficientNetB07 5.9M 0.862 0.870 0.369 0.862 0.701

DenseNet37 27M 0.874 0.832 0.386 0.866 0.695

CoAtNet-018 23M 0.869 0.689 0.102 0.862 0.551

CoAtNet-118 40M 0.864 0.739 0.115 0.864 0.573

BotNet5031 20M 0.873 0.742 0.132 0.866 0.580

CoaT-Tiny38 7.7M 0.885 0.818 0.288 0.851 0.652

CoaT-Mini38 14.8M 0.872 0.806 0.266 0.853 0.642

MBSaNet (Ours) 9.4M 0.881 0.891 0.438 0.881 0.737

Table 3.  Comparison with some CNN networks and hybrid models on the on-site test set. Significant values 
are in bold.

Model Params Accuracy AUC Kappa F1 Score Final score

Vgg164 134M 0.874 0.799 0.334 0.859 0.664

Vgg194 139M 0.872 0.791 0.328 0.865 0.661

Inception-v335 23.9M 0.877 0.870 0.318 0.866 0.684

ResNet505 25.6M 0.883 0.829 0.369 0.868 0.688

MobileNetV232 6.9M 0.882 0.789 0.296 0.864 0.649

Xception36 33M 0.887 0.852 0.334 0.865 0.683

EfficientNetB07 5.9M 0.859 0.861 0.353 0.863 0.692

DenseNet37 27M 0.865 0.842 0.350 0.862 0.684

CoAtNet-018 23M 0.862 0.674 0.158 0.859 0.563

CoAtNet-118 40M 0.857 0.701 0.166 0.861 0.576

BotNet5031 20M 0.863 0.734 0.138 0.863 0.578

CoaT-Tiny38 7.7M 0.879 0.810 0.284 0.833 0.642

CoaT-Mini38 14.8M 0.868 0.801 0.269 0.837 0.635

MBSaNet (Ours) 9.4M 0.879 0.878 0.411 0.884 0.724
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that had been previously trained on ImageNet, and used the data-augmented image dataset for training. The 
experimental results on the off-site test set containing 1,000 fundus images are shown in Table 5.

Ablation study. In this section, we investigate the effects of using various stacking schemes in the stem 
stage, and the performance impact of using global SA in the final stage of our multistage feature extraction net-
work. The same settings as in Table 1 are used for a fair comparison.

We compare the performance of six different schemes of vertically stacked convolutions and horizontally 
stacked convolutions on the off-site test set. The specific combinations of the schemes are described in Table 6. 
The experimental results are shown in Figure 2, we demonstrating that stacking convolutions horizontally to 
widen the stem structure is more efficient than stacking convolutions vertically. Meanwhile, we observe the 
drop in metrics from replacing multiscale feature fusion stem (MFFS) with a single-scale feature fusion stem, 
and that using convolution kernels of different scales is more conducive to extracting high-quality features. By 
introducing an MBSaNet -variant, MBNet a network that uses only improved MBConv blocks, we verify the 
effectiveness of the global SA module. Based on the feature maps extracted in the convolution stage, a two-layer 
SA module is utilized in the final stage to further capture long-term dependencies, which significantly improves 
the feature modeling ability.

Discussion
We introduced MBSaNet, a novel model based on the SA mechanism for fundus image classification, which is 
the first application of Transformer architecture in the field of fundus multidisease recognition, and hence pro-
vides a new idea for the research of SA models in the field of medical image processing. The experimental results 
showed that compared with many popular backbone networks, MBSaNet has higher accuracy in the recognition 
task of multiple fundus diseases. The wide range of image sources and the huge intra-category discriminations 
brought about by different camera acquisitions demonstrate the robust feature extraction capabilities of MBSaNet, 
indicating its great potential in assisting ophthalmologists in clinical diagnosis, especially in the identification of 
glaucoma, cataract, AMD, hypertensive retinopathy and myopic retinopathy. Figure 3 shows MBSaNet prediction 
results on some sample images from the test set.

By explicitly combining convolutional layers and SA layers in a multistage network, the model achieves a 
good balance between generalization performance and global feature modeling ability; while generalizing well on 
smaller datasets, high-quality semantic features can also be extracted from fundus images for decision-making by 
fully connected layers. From the experimental results, we can see that compared with the convolutional networks, 
MBSaNet achieved better performance with fewer parameters, in which the Kappa value was 5 percentage points 
higher than the best performing CNN model, indicating that MBSaNet’s prediction results are more consistent 

Table 4.  Comparison with some CNN networks and hybrid models on the balanced test set. Significant values 
are in bold.

Model Normal DR Glaucoma Cataract AMD Hypertension Myopia

Vgg164

Precision 0.31 0.31 0.83 0.78 0.56 0.55 0.89

Recall 0.30 0.34 0.40 0.94 0.76 0.82 0.96

Vgg194

Precision 0.24 0.32 0.84 0.88 0.72 0.49 0.89

Recall 0.32 0.36 0.52 0.94 0.52 0.88 0.94

Inception-v335

Precision 0.28 0.68 0.96 0.97 0.95 0.97 1.0

Recall 0.78 0.28 0.48 0.64 0.78 0.88 0.7

ResNet505

Precision 0.26 0.59 0.97 0.98 0.85 0.88 1.0

Recall 0.76 0.58 0.60 0.86 0.80 0.42 0.92

Xception36

Precision 0.29 0.68 0.90 0.98 0.88 0.89 0.98

Recall 0.74 0.34 0.52 0.67 0.75 0.84 0.80

DenseNet37

Precision 0.43 0.34 0.80 1.0 0.78 0.69 0.94

Recall 0.58 0.52 0.66 0.82 0.82 0.88 0.90

CoaT-Tiny38

Precision 0.22 0.27 0.85 0.86 0.87 0.79 1.0

Recall 0.26 0.38 0.34 0.96 0.56 0.92 0.96

MBSaNet (Ours)

Precision 0.50 0.64 0.87 1.0 0.89 0.82 1.0

Recall 0.64 0.76 0.82 0.90 0.88 1.0 0.98
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Figure 1.  Classification results on the balanced test set.
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with the actual classification results, and the model is less biased toward categories , which makes sense on 
imbalanced datasets. In contrast, the accuracy metric is less relevant because there is a huge imbalance in the 
sample size of each category, and the model can obtain high accuracy by directly classifying the test sample into 
a category with large sample size.

We also compared MBSaNet with other hybrid models, and MBSaNet shows obvious advantages over other 
models. The poor performance of the other hybrid models on the fundus dataset can mainly be attributed to the 
fact that their generalization performance is not sufficient for the ODIR-5K dataset, although we have employed 
data augmentation techniques. Among them, although MBSaNet has a certain similarity with the CoAtNet mod-
els, there is a huge gap in the final score. We believe that this is mainly related to the use of SA modules in the last 
two stages of feature extraction in CoAtNet, no matter which configuration of CoAtNet, the stacking number 
of modules in the penultimate stage is the largest, and the amount of calculation is also the largest, choosing to 
use the SA module that lacks inductive bias, which will reduce the generalization performance of the model on 
smaller datasets. In addition, the number of hidden dimensions at each stage also affects the performance. In the 
experimental comparison with previous studies, on the three important metrics, AUC, Kappa, and F1-score, our 
MBSaNet only has a lower Kappa value than the model  of16. Notably, the AUC value of MBSaNet far exceeds those 
of other models, considering that ODIR is an unbalanced dataset, and AUC is not sensitive to whether the sample 
size is balanced, it indicates that MBSaNet is a more ideal model for classification of multiple fundus diseases.

According to the prediction results of several models for balanced test set, the recognition accuracy for images 
with label O is generally poor, mainly because the label contains too many images of different categories, resulting 
in too large intra-class gap, making it difficult for the model to effectively partition them.

Table 5.  Comparison with previous works.

Study Model AUC Kappa F1 score Final score

jordi et al.40 Inception-v3 0.84 0.44 0.85 0.716

Wang et al.16 EfficientNetB3 0.73 0.50 0.88 0.703

Wang et al.16 EfficientNetB3 0.74 0.52 0.89 0.717

Gour and  Khanna41 Two I/P VGG16 0.85 N/A 0.86 N/A

Our method MBSaNet 0.89 0.44 0.88 0.737

Table 6.  Various schemes in the proposed MFFS for different stacking strategy.

Stacking strategy S1 S2 S3 S4 S5 S6

Vertically 3,3 5,5 7,7 3,5 3,5,7 3,5,7,9

Horizontally 3,3 5,5 7,7 3,5 3,5,7 3,5,7,9

Figure 2.  Performance of MBSaNet and its variant MBNet when using different convolution stacking strategies 
in the feature extraction stem stage.
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In ablation experiments, the networks with horizontally widened stems have better performance, and the 
network with MFFS achieves the best performance, which shows that this simple structure is effective, extracting 
image features at different scales and fusing them at the initial stage can help improve the classification perfor-
mance. In addition, compared with the variant-MBNet, MBSaNet has better performance on all classification 
indicators, which indicates that by introducing the global receptive field and enhancing the global modeling 
ability of the model, the pathological features of different lesions in the fundus image can be extracted more 
effectively.

Due to the use of different camera equipment under different environmental conditions, the fundus images 
used in this study have high diversity. Hence, we adopted certain image preprocessing methods to Enhance 
contrast of the images features and expand the training dataset, on the premise of preserving the original image 
features as much as possible. Both raw and processed images are fed into the model for training, which can 
provide useful features for the identification of multiple fundus diseases. Some limitations of this study are as 
follows: (1) limited number of images in some categories may affect the performance of the model, although 
high diversity fundus images are used. (2) The distributions of categories in the on-site and off-site test datasets 
are unbalanced, and it is difficult to assess the classification accuracy of the model for a specific disease. (3) We 
eliminated a few images that were marked as low image quality, however, these images are unavoidable in practi-
cal situations. (4) It was found out that the effect of increasing the number of fully-connected layers of a neural 
networks depends on the type of data set being  used42, in our experiments, we found that in the convolution 
stage, the number of hidden dimensions also has a great impact on the recognition accuracy of fundus diseases, 
which is worth further study.

Methods
MBSaNet is proposed to improve the performance of classification models on the task of automatic recognition 
of multilabel fundus diseases. The main idea of MBSaNet is based on the explicit combination of convolutional 
layers and SA layers, which enables the model to have both the generalization ability of CNN and the global 
feature modeling ability of  Transformer18,43. Previous studies have demonstrated that the local prior of the con-
volutional layer makes it good for extracting local features from fundus images; however, we believe that long-
term dependences and the global receptive field are also essential for fundus disease identification, because even 
an experienced ophthalmologist is unable to make an accurate diagnosis from a small part of a fundus image 
(e.g., using only a macula). Considering that the SA layer with global modeling ability can capture long-term 
dependencies, MBSaNet is implemented by adopting a building strategy similar to the  CoAtNet18 architecture 
with vertically stacked convolutional blocks and self-attention modules. The overall framework of MBSaNet is 
shown in Figure 4, and Table 7 shows the size of the input and output feature maps at each stage of the model. The 
framework comprises two parts. The first of which is a feature extractor with five stages: Stage0–Stage4, where 
Stage0 is our proposed multiscale feature fusion stem (MFFS), Stage1–Stage3 are all convolutional layers, and 

Figure 3.  Some images evaluated by our model.
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Stage 4 is an SA layer with relative position representations. The second part is a multilabel classifier that predicts 
the sample category based on the features extracted from the above structure. We use the MBConv block that 
includes residual connections and an SE  block27 as basic building blocks in all convolutional stages due to the 
same reverse bottleneck design as the Feedforward Network (FFN) block of Transformers. Unlike the regular 
MBConv block, MBSaNet replaces the max-pooling layers in the shortcut branch with convolutional layers 
having stride 2 in the downsampling strategy. This is a custom neural network that needs to be implemented by 
training it from scratch.

Dataset. The dataset obtained from the “International Competition on Ocular Disease Intelligent Recogni-
tion” sponsored by Peking University. This dataset contains “real” patient data collected from different hospitals 
and medical centers in China, which were jointly launched by the Nankai University School of Computer Sci-
ence-Beijing Shanggong Medical Information Technology Co., Ltd. joint laboratory. The training set is a struc-
tured ophthalmology database that includes the ages of 3,500 patients, color fundus images of their left and right 
eyes, and diagnostic keywords from clinicians. The test set includes off-site test set and on-site test set, but as 
with the training set, the number of samples under each category is unbalanced. Therefore, we also constructed 
a balanced test set with 50 images per class by randomly sampling a total of 400 images from the training set. The 
specific details of the dataset can be found in Table 8. Fundus images were recorded by various cameras, includ-
ing Canon, Zeiss, and Kowa, with variable image resolutions. As illustrated in Figure 5(a), these data categorize 
patients into eight categories: normal (N), DR (D), glaucoma (G), cataract (C), AMD (A), hypertension (H), 
Myopia (M), and other diseases/abnormalities (O). There are two points to note. First, a patient may contain 
one or more labels, as shown in Figure 5(b), that is, the task is a multidisease multilabel image classification task. 
Second, as shown in Figure 5(c), the class labeled Other Diseases/Abnormalities (O) contains images related to 
more than 10 different diseases, and low quality images due to factors such as lens blemishes, and invisible optic 
discs, variability is largely expanded in. All the methods developed and experiments were carried out in accord-
ance with the relevant guidelines and regulations associated to this publicly available dataset.

Evaluation metrics. Accuracy is the proportion of correctly classified samples to the total samples, which 
is the most basic evaluation indicator in classification problems. Precision refers to the probability that the true 
label of a sample is positive among all samples predicted to be positive. Recall refers to the probability of being 

Figure 4.  The overall architecture of MBSaNet.

Table 7.  The input and output feature map size of each stage.

Stage Type Input size Output size

Stage0 Conv stem 224*224*3 112*112*64

Stage1 Conv block 112*112*64 56*56*128

Stage2 Conv block 56*56*128 28*28*256

Stage3 Conv block 28*28*256 14*14*512

Stage4 Attention block 14*14*512 7*7*512

Pooling Global pool 7*7*512 1*1*512

Classifier Full connection 512 8
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Figure 5.  Sample images.

Table 8.  Dataset summary.

dataset
No. of 
images

No. of 
individuals Age Mean

Female 
no./total 
individuals(%
)

Normal 
(left/right)

DR (left/
right)

Glaucoma 
(left/right)

Cataract 
(left/right)

AMD (left/
right)

H (left/
right)

M (left/
right) O

Dataset for 
training 7,000 3,500 57.8 1615(0.461) 1533/1467 887/912 177/149 159/154 136/144 96/97 126/142 821

Off-site 
testing 1,000 500 58.2 231(0.462) 224/206 123/133 24/21 23/24 22/22 15/15 18/21 109

On-site 
testing 2,000 1,000 57.8 463(0.463) 416/403 241/245 42/41 45/50 37/40 25/29 33/35 318

Balanced 
test set 400 50 50 50 50 50 50 50 50
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predicted by the model to be a positive sample among all the samples with positive labels, and given the speci-
ficity of the task, we use a micro-average of precision and recall for each category in our experiments. AUC is 
the area under the ROC curve, and the closer the value is to 1, the better the classification performance of the 
model. AUC is often used to measure model stability. The Kappa coefficient is another index calculated based on 
the confusion matrix, which is used to measure the classification accuracy of the model and can also be used for 
consistency testing, where p0 denotes the sum of the diagonal elements divided by the sum of the entire matrix 
elements, i.e., accuracy. pe denotes the sum of the products of the actual and predicted numbers corresponding 
to all categories, divided by the square of the total number of samples. F1_score, also known as BalancedScore, 
is the harmonic (weighted) average of precision and recall, and given the category imbalance in the dataset, we 
use micro-averaging to calculate metrics globally by counting the total true positives,false negatives and false 
positives. The closer the value is to 1, the better the classification performance of the model. Final_score is the 
average of F1_score, Kappa, and AUC.

Data preprocessing. The fundus image dataset contains some low-quality images, which are removed 
since it would not be helpful for training. In order to minimize the unnecessary interference to the feature 
extraction process due to the extra noise brought by the black area of the fundus images, the redundant black 
area is cropped. We use the OpenCV library to load the image as a pixel vector and use the edge position coordi-
nates of the retinal region of the fundus image to remove the black edges. The fundus images are further resized 
to a 224×224 image size after being cropped as shown in Figure 6. Data augmentation is the artificial generation 
of different versions of a real dataset to increase its data size; the images after data augmentation are shown in 
Figure 7. Because it is necessary to expand the size of the dataset based on retaining the main features of the 
original image, we use operations such as random rotation by 90◦ , adjustment of contrast, and center cropping. 
Finally, the global histogram equalization operation is performed on the original and enhanced images, so that 
the contrast of the images is higher and the gray value distribution is more uniform.

Multiscale feature fusion stem. The predictive ability of a classifier is closely related to its ability to 
extract high-quality features. In the field of fundus multidisease identification, owing to the different charac-
teristics of the lesions reflected in the fundus images of several common eye diseases, the lesion areas have the 
characteristics of different sizes and distributions. We propose a feature fusion module with convolution kernels 
of different sizes to extract multiscale primary features of images in the input stage of the network and fuse 

(1)Accuracy =
TP + TN

TP + FP + TN + FN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1_score =
2Precision ∗ Recall

Precision+ Recall

(5)Kappa =
p0 − pe

1− pe

(6)Final_score =
F1_score + Kappa+ AUC

3

Figure 6.  Processing of original training image.
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them in the channel dimension. Feature extractors with convolution kernel sizes of 3 × 3, 5 × 5, 7 × 7, and 9 × 9 are 
used, since the convolution stride is set to 2, we padding the input image before performing each convolution 
operation to ensure that the output feature maps are the same size. By employing convolution kernels with dif-
ferent receptive fields in the horizontal direction to broaden the stem structure, more locally or globally biased 
features are extracted from the original images. The batch normalization operation and ReLU activation are then 
performed separately and the resulting feature maps are concatenated. The experimental results show that by 
widening the stem structure in the horizontal direction, higher quality low-level image features can be obtained 
at the primary stage.

Multistage feature extractor. CNNs have been the dominant structure for many CV tasks. Traditionally, 
regular convolutional blocks, such as ResNet  blocks5, are well-known in large-scale convolutional networks; 
meanwhile, depthwise  convolutions44 can be expressed as Formula 7 and are popular on mobile platforms due 
to their lower computation cost and smaller parameter size. Recent studies have shown that an improved inverse 
residual bottleneck block (MBConv)32,45 which is built on depthwise separable convolutions can achieve both 
high accuracy and  efficiency7. Inspired by the  CoAtNet18 framework, we consider the connection between the 
MBConv block and FFN module in the Transformer (both adopt the inverted bottleneck design: first expand the 
feature map to 4 × the size of the input channel, and after the depth separable convolutions operation, project the 
4 × wide feature map back to the original channel size to satisfy the residual connection), and mainly adopt the 
improved MBConv block including the residual connection and  SE27 block as the convolution building block. 
The convolution operation with a convolution kernel size of 2 × 2 and a stride of 2, implements the output feature 
map size on the shortcut branch to match the output size of the residual branch. The experimental results show 
that this slightly improves the performance. The convolutional building blocks we use are shown in Figure 8, and 
the downsampling implementation can be expressed as Formula 8.

where xi , yi ∈ RD denote the input and output at position i, respectively, and L(i) denotes a local neighborhood 
of i, e.g., a 3 × 3 grid centered at i in image processing.

In natural language processing and speech understanding, the Transformer design, which includes a crucial 
component of the SA module, has been widely used. SA extends the receptive field to all spatial places and com-
putes weights based on the re-normalized pairwise similarity between the pair (xi , xj) , as shown in Formula 9, 
where G indicates the global spatial space. Stand-alone SA  networks33 have shown that diverse CV tasks may be 
performed satisfactorily using SA modules alone, albeit with some practical limitations, in early research. After 
pretraining on the large-scale JFT dataset,  ViT11 applied the vanilla Transformer to ImageNet classification and 
produced outstanding results. However, with insufficient training data, ViT still trails well behind SOTA CNNs. 
This is mainly because typical Transformer architectures lack the translation  equivalence18 of CNNs, which 
increases the generalization on small  datasets46. Therefore, we decided to adopt a method similar to CoAtNet; 
the global static convolution kernel is summed with the adaptive attention matrix before softmax normalization, 
which can be expressed as Formula 10, where (i, j) denotes any position pair and wi−j denotes the corresponding 
convolution weights, improve the generalization ability of the network based on the Transformer architecture 
by introducing the inductive bias of the CNNs.

(7)yi =
∑

j∈L(i)

wi−j ⊙ xj (depthwise convolution)

(8)x ←− Norm(Conv(x, stride = 2))+ Conv(DepthConv(Conv(Norm(x), stride = 2)))

(9)
yi =

∑

j∈G

exp
(
x⊤i xj

)

∑

k∈G exp
(
x⊤i xk

)

︸ ︷︷ ︸

Ai,j

xj

Figure 7.  Data augmentation.
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The receptive field size is one of the most critical differences between SA and convolutional modules. In 
general, a larger receptive field provides more contextual information, but this usually results in higher model 
capacity. The global receptive field has been a key motivation for employing SA mechanisms in vision. However, 
a larger receptive field requires more computation. For global attention, the complexity is quadratic w.r.t. spatial 
size. Therefore, in the process of designing the feature extraction backbone, considering the huge computational 
overhead brought by the Transformer structure and the small amount of training data for practical tasks, we 
use more convolution blocks, and only set up two layers of SA modules in Stage4 in the feature extraction stage. 
Experimental results show that this achieves a good balance between generalization performance and feature 
modeling ability.

Multilabel loss function. The fundus disease recognition task is a multilabel classification problem, so it 
is unsuitable for training models with traditional loss functions. We refer to the loss function used in  work16,40, 
all classified images can be represented as X ={x1, x2...xi ...xN } , where xi is related to the ground truth label yi , 
and i = 1...N , N represents the number of samples. We wish to find a classification function F : X −→ Y  that 
minimizes the loss function L, we use N sets of labeled training data (xi , yi) , and apply a one-hot method to each 
yi is encoded, yi = [y1i , y

2
i ...y

8
i ] , each y contains 8 values, corresponding to the 8 categories in the dataset. We 

draw on the traditional multilabel classification method based on problem transformation, and transformed the 
multilabel classification problem into a two-class classification problem for each label. The final loss is the aver-
age of the loss values of the samples corresponding to each label. After studying weighted loss functions, such as 
sample balance and class balance, we decided to use weighted binary cross-entropy from Formula 11 as the loss 
function, where W = (1,1.2,1.5,1.5,1.5,1.5,1.5,1.2) denotes the loss weight. The positive class is 1, and the negative 
class is 0. p(yi) is the probability that sample i is predicted to be positive.

After obtaining the loss function, we need to choose an appropriate optimization function to optimize the 
learning parameters. Different optimizers have different effects on parameter training, so we mainly consider 

(10)y
pre
i =

∑

j∈G

exp
(
x⊤i xj + wi−j

)

∑

k∈G exp
(
x⊤i xk + wi−k

)xj

(11)L = −
1

N

N∑

i=1

W
(
yi log

(
p
(
yi
))

+
(
1− yi

)
log

(
1− p

(
yi
)))

Figure 8.  Convolutional building blocks.
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the effects of SGD and Adam on model performance. We performed multiple comparison experiments under 
the same conditions. The results showed that Adam significantly outperformed SGD in terms of convergence 
and shortened training time, possibly because when we chose SGD as the optimizer, the gradients of the samples 
were updated at every epoch, which brings additional noise. Each iteration is not in the direction of the global 
optimum, so it can only converge to the local optimum, decreasing accuracy.

Data availability
The datasets used to train our models and run experiments is available, upon registration from the ODIR-2019 
Challenge https:// odir2 019. grand- chall enge. org/. And for further research in this area we have made the code 
available at https:// github. com/ ironc helsea/ MBSaN et.
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