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Automatic segmentation 
of trabecular and cortical 
compartments in HR‑pQCT images 
using an embedding‑predicting 
U‑Net and morphological 
post‑processing
Nathan J. Neeteson , Bryce A. Besler , Danielle E. Whittier  & Steven K. Boyd *

High-resolution peripheral quantitative computed tomography (HR-pQCT) is an emerging in vivo 
imaging modality for quantification of bone microarchitecture. However, extraction of quantitative 
microarchitectural parameters from HR-pQCT images requires an accurate segmentation of the 
image. The current standard protocol using semi-automated contouring for HR-pQCT image 
segmentation is laborious, introduces inter-operator biases into research data, and poses a barrier 
to streamlined clinical implementation. In this work, we propose and validate a fully automated 
algorithm for segmentation of HR-pQCT radius and tibia images. A multi-slice 2D U-Net produces 
initial segmentation predictions, which are post-processed via a sequence of traditional morphological 
image filters. The U-Net was trained on a large dataset containing 1822 images from 896 unique 
participants. Predicted segmentations were compared to reference segmentations on a disjoint 
dataset containing 386 images from 190 unique participants, and 156 pairs of repeated images were 
used to compare the precision of the novel and current protocols. The agreement of morphological 
parameters obtained using the predicted segmentation relative to the reference standard was 
excellent (R2 between 0.938 and > 0.999). Precision was significantly improved for several outputs, 
most notably cortical porosity. This novel and robust algorithm for automated segmentation will 
increase the feasibility of using HR-pQCT in research and clinical settings.

High-resolution peripheral quantitative computed tomography (HR-pQCT) is an in vivo medical imaging tool 
that provides an isotropic voxel size of 60.7 µm, allowing for precise and direct quantification of cortical and 
trabecular microarchitectural parameters via morphometric analysis1. HR-pQCT is an emerging technology 
and has the potential to transition from a being research-only tool to become the future of advanced clinical 
bone densitometry. In combination with micro-finite element modelling (µFEM)2,3, HR-pQCT has provided 
insight into how trabecular microarchitecture at the distal radius and tibia is affected by a wide variety of factors, 
including age, sex, physical activity, disease, and nutrition4–9. HR-pQCT shows particular promise for fracture 
screening, as several studies have shown that bone morphology and phenotypes at peripheral skeletal sites are 
independently and significantly predictive of fracture risk10–12.

A limitation of HR-pQCT is that standard quantitative morphometric analysis of radius and tibia images 
requires an accurate semantic segmentation of the trabecular and cortical bone compartments (Fig. 1). The cur-
rent gold-standard segmentation protocol requires human operators to manually inspect and correct automati-
cally generated segmentations13. Manual correction is time-consuming and introduces potential for inter- and 
intra-operator biases, particularly with untrained or inexperienced operators. This has been recently demon-
strated in a study performed in our lab that found systematic biases exceeding the least significant change (LSC) 
when uncorrected segmentations were used, and a significant influence of operator experience level on precision 
errors even with corrected segmentations14. With the current segmentation protocol, the skill and experience level 
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of the operator has a large effect on both the accuracy and precision of the analysis, and thus on the reliability of 
study outcomes. The requirement for manual inspection and correction, and the potential biases these processes 
incur, poses a significant barrier to wider adoption of this technology in both clinical and research settings.

Development of robust segmentation protocols for distal radius and tibia images has been an active area of 
research since HR-pQCT became available. Originally, segmentations were produced manually, slice-by-slice, 
assisted by the Snakes edge-finding algorithm15,16. This method was later supplanted in common practice by 
an automatic dual-thresholding algorithm17, and a modified version of this method remains the current gold 
standard for generating preliminary segmentations18. However, the dual-threshold technique was developed 
using assumptions based on typical bone characteristics. It can fail to distinguish cortical from trabecular bone in 
atypical cases, such as professional athletes (high bone quality) and osteoporotic patients (low bone quality). Con-
sequently, the segmentations must be manually inspected for deviations and corrected13, and the specific types 
and prevalence of errors that must be corrected have been documented in prior studies14. There have been several 
automatic segmentation approaches developed recently, including the combination of image texture analysis with 
machine learning19, multiple dual-active contours approaches20,21, and a deep learning-based computer vision 
approach22. However, there has yet to be a segmentation technique developed for standard HR-pQCT images 
at distal sites that sufficiently matches or exceeds performance of the current semi-automated gold standard.

Convolutional neural networks (CNNs) were first introduced nearly three decades ago for computer vision23. 
Since the breakthrough development of AlexNet in 201224, development and application of CNNs has greatly 
accelerated for several tasks and domains25–27. In particular, the development of the fully connected network 
(FCN)28 and the U-Net29,30 were critical developments for the advancement of biomedical image segmentation. 
U-Nets have been shown to accurately automate semantic segmentation across a broad range of biomedical 
imaging modalities and applications31. Recently, standard 2D and 3D U-Nets have been successfully applied to 
the task of segmenting HR-pQCT hand images22, although the aim was whole bone segmentation for estimation 
of total volumetric bone mineral density, rather than defining cortical and trabecular compartments separately 
for full morphometric analysis of bone microarchitecture.

The objective of this study is to develop and evaluate a fully automated, end-to-end algorithm to replace the 
current standard semi-automated method for segmenting HR-pQCT distal tibia and radius images. The proposed 
protocol combines a modified U-Net segmentation model with a morphological post-processing algorithm that is 
specifically designed for the task of segmenting HR-pQCT radius and tibia images in preparation of quantitative 
morphological analysis. Robust automation of HR-pQCT image analysis will incent wider adoption of HR-pQCT 
technology in the bone densitometry research community and make feasible clinical adoption of HR-pQCT.

Results
After stratified splitting of the dataset, there were 896, 190, and 190 unique participants in the training, valida‑
tion, and test subsets, respectively. There were 326 men and 570 women in the training dataset, 67 men and 123 
women in the validation dataset, and 64 men and 126 women in the test dataset. The training dataset contained 
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Figure 1.   Axial 2D slice of HR-pQCT radius image cropped close to the bone. The cortical, trabecular, and 
background compartments are labelled, as are the periosteal and endosteal surface contours. The periosteal 
surface is the interface between the background and the cortical region, while the endosteal surface is the 
interface between the cortical and trabecular regions.
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885 radii and 937 tibiae, the validation dataset contained 187 radii and 203 tibiae, and the test dataset contained 
185 radii and 201 tibiae.

Using the trained segmentation model and post-processing algorithm, the mean time to produce a post-
processed 3D predicted segmentation for a full radius or tibia image in the test subset was 140 s (SD 56 s) on 
a research computing cluster node with an NVIDIA Tesla V100 and an Intel Xeon Gold 6148. Inference and 
post-processing times scale with the size of the image, which depends on the size of the radius or tibia and how 
close the image has been cropped to the bone.

Held‑out test subset.  The comparative analysis of predicted and reference segmentations on the test sub-
set are shown in Tables 1 and 2 and in Fig. 2. Dice similarity coefficient (DSC) and Jaccard similarity coefficient 
(JSC) are reported separately for each compartment while Hausdorff distance and average symmetric surface 
distance (ASSD) are reported separately for each surface. For both the radius and the tibia, the mean DSC of the 
predicted cortical and trabecular segmentations are ≥ 0.97 and ≥ 0.99, indicating extremely close segmentation 
overlap across the test subset. The mean ASSD is no greater than 0.08 mm (less than one and a half times the 
width of a 0.0607 mm voxel) for both surfaces in both scan sites in the test subset and the mean Hausdorff dis-
tances are less than 0.91 mm (approximately 15 voxels) for both surfaces in both scan sites across the test subset.

Figure 2 compares results of a quantitative morphometric analysis via linear regression and Bland–Altman 
plots for cortical thickness (Ct.Th), cortical porosity (Ct.Po), trabecular bone volume fraction (Tb.BV/TV), and 
trabecular separation (Tb.Sp), while Table 2 tabulates summary statistics of Bland–Altman and linear regres-
sion analysis for all standard analysis outputs, separated by scan site, each evaluated using the full test subset. 
All parameters at both scan sites have limits of agreement that overlap with zero mean bias error. Nearly all 
parameters have coefficients of determination that are ≥ 0.97, where the lone exception is Ct.Po in the radius 
(R2 = 0.938). There were no substantial differences (95% confidence interval for slope estimate contained the 
unit slope) between the fitted slopes and the null hypothesis unit slope for 13 of the total 24 parameters. While 
there are substantial differences between the linear fit and the null zero-intercept, unit-slope linear model for 
11 parameters, all but one of these deviating parameters have estimated slopes between 0.944 and 1.004. The 
outlying parameter is again Ct.Po in the radius, with a fitted slope of 0.847 ± 0.031. This discrepancy is reflected 
visually in the second row, left column of Fig. 2, where both the linear correlation and Bland–Altman plots for 
Ct.Po in the radius shows several extreme over-estimates of predicted Ct.Po where the mean value is low (< 1%) 
and several extreme under-estimates of predicted Ct.Po where the mean value is high (> 2%).

The linear correlation and Bland–Altman sub-analyses on the “low cortical thickness” and “high cortical 
porosity” sub-groups are tabulated in Tables S.1 and S.2 in the Supplementary Data. Referring to Table S.1 for 
the “low cortical thickness” sub-group: Coefficients of determination were > 0.93 for all parameters, where the 
two lowest values were for Ct.Th in the radius and tibia. Zero mean bias was observed for all parameters, and 
the quality of the linear fits were not substantially different from those in the main group (Table 2). Referring 
to Table S.2 for the “high cortical porosity” sub-group: Coefficients of determination were > 0.94 for all but 
two parameters, these being Ct.Po in the radius and tibia, where the coefficients of determination were 0.810 
and 0.816, respectively. Zero mean bias was observed for all parameters. The quality of the linear fits were not 

Table 1.   Results of direct comparison of predicted and reference masks on held-out test dataset. DSC Dice 
similarity coefficient, JSC Jaccard similarity coefficient, Hausdorff maximum symmetric surface distance, ASSD 
average symmetric surface distance.

Mean (SD) (Min, Max)

Radius (n = 185)

Cortical Mask
DSC 0.98 (0.02) (0.90, 0.99)

JSC 0.94 (0.03) (0.82, 0.98)

Trabecular Mask
DSC 0.99 (< 0.01) (0.97, > 0.99)

JSC 0.99 (0.01) (0.94, 0.99)

Endosteal Surface
Hausdorff (mm) 0.6 (0.3) (0.2, 1.9)

ASSD (mm) 0.05 (0.02) (0.02, 0.18)

Periosteal Surface
Hausdorff (mm) 0.3 (0.2) (0.1, 1.0)

ASSD (mm) 0.02 (0.01) (0.01, 0.06)

Tibia (n = 201)

Cortical Mask
DSC 0.97 (0.02) (0.90, 0.98)

JSC 0.93 (0.03) (0.81, 0.97)

Trabecular Mask
DSC 0.99 (< 0.01) (0.98, > 0.99)

JSC 0.99 (0.01) (0.96, > 0.99)

Endosteal Surface
Hausdorff (mm) 0.9 (0.4) (0.3, 3.5)

ASSD (mm) 0.08 (0.03) (0.04, 0.21)

Periosteal Surface
Hausdorff (mm) 0.4 (0.3) (0.2, 2.7)

ASSD (mm) 0.02 (0.01) (0.01, 0.09)



4

Vol:.(1234567890)

Scientific Reports |          (2023) 13:252  | https://doi.org/10.1038/s41598-022-27350-0

www.nature.com/scientificreports/

substantially different from those in the main group (Table 2) for all parameters except Ct.Po in the radius and 
tibia, where the fitted slopes were 0.813 ± 0.116 and 0.893 ± 0.101, respectively. This indicates both a tendency 
to under-estimate Ct.Po and a greater variance in predicted Ct.Po values relative to reference values, for images 
with larger reference Ct.Po values.

Sample visual results.  While the discrepancy in Ct.Po between the predicted and reference segmentations 
is less than 0.5% for > 93% of the images in the test subset, we visually explore specific cases of extreme disa-
greement to gain insight into how they arise. Accordingly, Fig. 3 shows sample visualizations of predicted and 
reference masks, and disagreement, for three axial slices from the two images in the test subset with the largest 
over- and under-estimates in Ct.Po. Disagreements arise primarily along the endosteal surface in regions where, 
when looking at a single slice, it is ambiguous whether a specific structure corresponds to porous cortical zones 
or thickened near-endosteal trabeculae. Figure 3 also includes volumetric surface renderings of the reference 
and predicted cortical compartment for these two images, to qualitatively demonstrate the overall similarity in 
shape and surface smoothness.

Held‑out precision subset.  Table 3 shows the root-mean-square percentage coefficient of variance (RMS 
%CV) and least significant change (LSC) values, in parameter-specific units, for all standard quantitative analysis 
outputs, evaluated with the full precision subset. RMS %CV and LSC are reported separately for scan site and 
for each of the current semi-automated gold standard and proposed segmentation protocols. Root-mean-square 
standard deviation (RMS SD) values are provided in Table S.3 in the Supplementary Data. D’Agostino and Pear-
son’s test for normality indicated that the individual standard deviations were not normally distributed for most 
parameters. Therefore, for consistency, the significance of the differences in the coefficients of variation were 
assessed using independent Wilcoxon signed-rank tests for all parameters.

The novel automated segmentation algorithm produced equivalent or significantly better precision for all 
morphometric parameters except for total area (Tt.Ar) and trabecular area (Tb.Ar) in the tibia (Tt.Ar: RMS 
CV% was 0.27% and 0.13% for the novel and standard protocols, respectively; Tb.Ar: RMS CV% was 0.29% and 

Table 2.   Results of linear regression and Bland–Altman analysis on the held-out test dataset, comparing the 
predicted morphometric outputs, obtained using predicted segmentations, and the reference morphometric 
outputs, obtained using reference segmentations. a 95% limits of agreement (LOA) are the mean error plus or 
minus 1.96 times the standard deviation of the errors. b 95% confidence interval (C.I.) are the estimated slope 
or intercept plus or minus 1.96 times the estimated standard error of the estimate, as reported by statsmodels’ 
ordinary least squares linear regressor after being fit to the data.

Bland–Altman Linear Regression

 Mean Error (95% LOAa) Slope (95% C.I.b) Intercept (95% C.I.b) R2

Radius (n = 185)

Tt.BMD mg HA/cm3 0.6 (− 3.3, 4.6) 0.995 (0.991, 1.000) 2.0 (0.6, 3.4) 0.999

Ct.BMD mg HA/cm3 − 0.9 (− 21.4, 19.7) 1.013 (0.990, 1.037) − 12.7 (− 33.6, 8.3) 0.975

Tb.BMD mg HA/cm3 0.2 (− 6.2, 6.6) 0.990 (0.980, 1.000) 1.8 (0.1, 3.4) 0.995

Ct.Th mm − 0.01 (− 0.06, 0.04) 0.963 (0.946, 0.980) 0.030 (0.012, 0.048) 0.986

Ct.Po % − 0.08 (− 0.43, 0.27) 0.847 (0.816, 0.878) 0.050 (0.016, 0.083) 0.938

Tb.BV/TV % 0.047 (− 0.943, 1.037) 0.991 (0.980, 1.001) 0.253 (0.004, 0.502) 0.994

Tb.N mm−1 0.000 (− 0.004, 0.004) 1.000 (0.999, 1.001) 0.000 (− 0.001,0.002)  > 0.999

Tb.Th mm 0.000 (− 0.007, 0.007) 0.964 (0.939, 0.988) 0.009 (0.003, 0.014) 0.970

Tb.Sp mm − 0.001 (− 0.006, 0.004) 0.999 (0.997, 1.000) 0.000 (− 0.001, 0.001)  > 0.999

Tt.Ar mm2 0.6 (− 0.8, 1.9) 1.001 (1.000, 1.003) 0.2 (− 0.2, 0.7)  > 0.999

Ct.Ar mm2 0.1 (− 3.1, 3.2) 0.957 (0.944, 0.971) 2.7 (1.9, 3.6) 0.991

Tb.Ar mm2 0.5 (− 2.6, 3.5) 1.004 (1.000, 1.008) − 0.5 (− 1.3, 0.4) 0.999

Tibia (n = 201)

Tt.BMD mg HA/cm3 0.1 (− 2.5, 0.4) 0.999 (0.999, 1.000) 0.3 (0.2, 0.4)  > 0.999

Ct.BMD mgHA/cm3 3.8 (− 14.3, 21.9) 0.975 (0.962, 0.988) 25.2 (14.4, 36.1) 0.991

Tb.BMD mgHA/cm3 0.3 (− 4.4, 4.9) 0.990 (0.982, 0.998) 1.9 (0.6, 3.2)† 0.997

Ct.Th mm − 0.01 (− 0.11, 0.08) 0.944 (0.924, 0.963) 0.072 (0.042, 0.101) 0.979

Ct.Po % − 0.13 (− 0.75, 0.49) 0.957 (0.935, 0.979) − 0.008 (− 0.083, 0.068) 0.973

Tb.BV/TV % 0.044 (− 0.547, 0.634) 0.991 (0.984, 0.998) 0.263 (0.085, 0.441) 0.997

Tb.N mm−1 0.000 (− 0.004, 0.005) 1.000 (0.998, 1.001) 0.001 (− 0.001, 0.003)  > 0.999

Tb.Th mm 0.000 (− 0.006, 0.007) 0.985 (0.969, 1.001) 0.004 (> 0.000, 0.008) 0.987

Tb.Sp mm − 0.001 (− 0.004, 0.002) 0.998 (0.997, 0.999) 0.001 (> 0.000, 0.002)  > 0.999

Tt.Ar mm2 0.3 (− 0.9, 1.4) 1.000 (1.000, 1.001) − 0.1 (− 0.5, 0.3)  > 0.999

Ct.Ar mm2 − 1.2 (− 8.7, 6.3) 0.956 (0.940, 0.972) 4.6 (2.5, 6.8) 0.986

Tb.Ar mm2 1.3 (− 6.1, 8.8) 1.002 (0.998, 1.006) 0.0 (− 2.3, 2.5) 0.999
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0.16% for the novel and standard protocols, respectively). For most of these parameters, the magnitudes of the 
significant differences were small, ranging between -0.13% and 0.52% (negative indicating worse precision and 
positive indicating improved precision). The exception is the Ct.Po in both the radius and tibia. In the radius, the 
RMS %CV of the novel and standard protocols were 7.92% and 9.55%, respectively. In the tibia, the RMS %CV of 
the novel and standard protocols were 9.07% and 11.67%, respectively. These statistically significant differences 
indicate an absolute reduction in variation, and thus improvement in precision, of 1.63% and 2.60% in the radius 
and tibia, respectively, for cortical porosity measurements with the novel, automated segmentation protocol.

Precision analysis results for “low cortical thickness” and “high cortical porosity” sub-groups are tabulated 
in Table S.4 in the Supplementary Data. With the “low cortical thickness” sub-group, the proposed algorithm 
produces outputs with equivalent or better precision for all morphometric parameters with the exception of Tt.Ar 
in the tibia. Precision was statistically significantly better with the proposed algorithm than with the standard 
protocol for Ct.Th in the radius, Ct.Po in the radius, and Tb.N in the radius and tibia. RMS %CV values for 

Figure 2.   Linear regression and Bland–Altman plots for select parameters comparing results of morphometric 
analysis on the held-out test set using predicted and reference segmentations. Linear regression: the dashed 
black line is the line of unity, while the dashed red line is the linear fit between the predicted and reference 
outputs. Bland–Altman: the solid black line is the line of zero error, the dashed red line indicates the mean bias 
error, and the dashed black lines indicate the 95% limits of agreement (n = 185 for radius; n = 201 for tibia).



6

Vol:.(1234567890)

Scientific Reports |          (2023) 13:252  | https://doi.org/10.1038/s41598-022-27350-0

www.nature.com/scientificreports/

Figure 3.   Sample visualization of the two images in the test dataset with the most extreme over- and under-
estimates of Ct.Po (predicted value less reference value). Both are distal tibia images. The largest over-estimate 
of Ct.Po was + 1.48% (left column: a,b,e,f) while the largest under-estimate of Ct.Po was -1.48% (right column: 
c,d,g,h). (a–d) 3D surface renderings are shown of reference (a,c) and predicted (b,d) cortical compartment 
segmentations. (e–h) The image is shown in all panes in grayscale, overlaid with colored masks corresponding to 
the reference (e,g—green), the prediction (f,h—blue), and the voxels for which there is disagreement (f,h—red).
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Ct.Th and Ct.Po in the tibia were lower with our algorithm than with the standard protocol, but the differences 
were not statistically significant.

With the “high cortical porosity” sub-group, the proposed segmentation algorithm produces outputs with 
equivalent or better precision for all morphometric parameters. Precision was statistically significantly better 
with our algorithm than with the standard protocol for Ct.BMD in the radius, Tb.N in the tibia, and Ct.Ar in the 
tibia. RMS %CV values for Ct.Th in the tibia and radius and Ct.Po in the radius were lower with the proposed 
algorithm than with the standard protocol, while the RMS %CV values for Ct.Po in the tibia were higher with 
the proposed algorithm than with the standard protocol; however, none of these differences were statistically 
significant.

Discussion
This study proposes a segmentation algorithm that utilizes a 2D U-Net applied to stacks of five axial slices at a 
time to obtain preliminary 3D segmentations. These segmentations are then morphologically post-processed 
to ensure physiological validity. The combination of machine learning with traditional image processing is a 
truly novel approach for HR-pQCT image segmentation. The fully automated algorithm was able to segment 
trabecular and cortical compartments at least ten times faster than the current gold-standard protocol (2–3 min 
versus up to 30 min), with superior precision, while requiring no human intervention or oversight. The predicted 
segmentations were found to be accurate when compared to reference segmentations based on both traditional 
medical image segmentation metrics and by comparing predicted and reference morphological analysis outputs, 
using a large test dataset comprised of 386 total images from 190 participants. Predicted segmentations were also 
found to be as precise or more precise when compared to reference segmentations from 156 same-day, repeat-
scan image pairs from 90 participants.

Table 3.   Root-mean-square percentage coefficient of variation (RMS %CV) and least significant change (LSC) 
compared between the proposed algorithm (U-Net) and the current semi-automated gold standard (Standard) 
segmentation protocols on the held-out precision dataset. a U-Net: automated segmentation algorithm using 
a U-Net and morphological post-processing. b Standard: Current standard semi-automated segmentation 
protocol. c Wilcoxon signed-rank test indicates significantly lower individual standard deviations with 
automated segmentation algorithm as compared to the standard semi-automated protocol. d Wilcoxon signed-
rank test indicates significantly higher individual standard deviations with automated segmentation algorithm 
as compared to the standard semi-automated protocol.

RMS %CV LSC Wilcoxon
p ValueU-Neta Standardb U-Net Standard

Radius (n = 71)

Tt.BMD mg HA/cm3 0.29 0.70 2.51 5.60 0.796

Ct.BMD mg HA/cm3 0.27 0.79 6.67 19.12 0.010c

Tb.BMD mg HA/cm3 0.51 0.61 1.87 2.37 0.055

Ct.Th mm 0.69 0.80 0.022 0.025 0.781

Ct.Po % 7.92 9.55 0.23 0.25 0.001c

Tb.BV/TV % 1.00 1.06 0.51 0.54 0.030c

Tb.N mm−1 1.40 1.41 0.057 0.057 0.030c

Tb.Th mm 0.63 0.72 0.004 0.005 0.005c

Tb.Sp mm 1.06 1.07 0.021 0.022 0.036c

Tt.Ar mm2 0.71 0.77 6.20 5.01 0.000c

Ct.Ar mm2 0.76 1.17 1.46 1.78 0.000c

Tb.Ar mm2 0.79 1.27 5.35 6.29 0.284

Tibia (n = 85)

Tt.BMD mg HA/cm3 0.47 0.48 3.72 3.74 0.639

Ct.BMD mg HA/cm3 0.36 0.45 8.37 10.47 0.000c

Tb.BMD mg HA/cm3 0.61 0.69 2.79 3.06 0.016c

Ct.Th mm 0.61 0.74 0.026 0.032 0.333

Ct.Po % 9.07 11.67 0.76 0.82 0.045c

Tb.BV/TV % 0.83 0.82 0.50 0.52 0.560

Tb.N mm−1 2.97 2.98 0.11 0.11 0.246

Tb.Th mm 0.56 0.67 0.004 0.005 0.460

Tb.Sp mm 2.21 2.21 0.045 0.045 0.497

Tt.Ar mm2 0.27 0.13 5.63 2.74 0.000d

Ct.Ar mm2 0.37 0.66 1.41 2.42 0.991

Tb.Ar mm2 0.29 0.16 4.92 2.68 0.000d
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To the authors’ knowledge, this is the first study to present a fully automated algorithm for segmentation 
of HR-pQCT radius and tibia images that requires no manual correction and demonstrates greater or equal 
precision when compared to the current standard segmentation protocol. While a previous study successfully 
explored the use of 2D and 3D U-Nets for segmentation of HR-pQCT hand images22, the U-Nets in that study 
were designed to extract the entire bone for estimation of Tt.BMD—a simpler task than semantic segmentation 
of the cortical and trabecular compartments for a complete morphometric analysis of distal bone microarchi-
tecture. There have been several recent attempts to automate segmentation of radius and/or tibia HR-pQCT 
images using dual active contours and texture analysis combined with machine learning. However, none of these 
techniques have supplanted the current semi-automated protocol in standard practice, due to varying limitations. 
These techniques were either exclusively focused on obtaining only the periosteal contour21, did not quantify the 
accuracy of subsequent morphometric analysis20, or had insufficient agreement between reference and generated 
segmentations (DSC = 0.90 ± 0.05). Further, no prior work presenting a new automated pipeline for HR-pQCT 
segmentation has quantified the precision of the proposed protocol.

The proposed algorithm requires no human intervention or correction, in contrast to the current standard 
protocol, where correction of individual images may occupy a human operator for as much as 30 min for chal-
lenging images14. With the proposed algorithm, standard analysis-compatible cortical and trabecular masks are 
ready in approximately 2 min and 20 s. Further, processing can be batched while researchers attend to other tasks 
or parallelized on a computing cluster if a large dataset needs to be processed quickly. However, the elimination 
of human intervention would not only save time. Automation prevents inter-operator error since the algorithm 
is deterministic and will always create the same segmentation from the same input image. Inter-operator error 
can materially impact precision and LSC in both multi-center and longitudinal studies, where it can often be 
infeasible to have a single expert operator correct all segmentations consistently.

While the predicted segmentations are highly accurate for > 93% of images, disagreements between reference 
and predicted segmentations can still occur; however, we have shown visually that the most extreme of these 
disagreements occur in places where a human operator may experience the same challenge in defining compart-
ments. This observation is further reinforced by the tendency for the Hausdorff distance and ASSD to be much 
lower at the periosteal surface than the endosteal surface, by at least a factor of two. The correct label or classifica-
tion for voxels in these low-density regions can be unclear even for the human observer, as the structures could 
be interpreted as either porous cortical zones or thickened trabecular zones. The semi-automated segmentation 
correction protocol does not provide rigorous criteria for how to differentiate between these cases, so human 
operators must make inherently subjective real-time decisions when correcting segmentations. Whether the 
proposed algorithm or standard semi-automated protocol more often achieve the objectively correct endosteal 
surface, or whether such a thing even exists, is unclear. However, it is apparent from analysis of the precision 
data that this surface is selected with greater consistency and reproducibility with the proposed algorithm than 
it is with the semi-automated protocol. This is evinced by the statistically significant decreases of RMS %CV for 
Ct.Po from 9.55 to 7.92% in the radius and from 11.67 to 9.07% in the tibia (Table 3). The inherent difficulty of 
correctly placing the endosteal surface in the presence of low-density cortical bone also explains the relatively 
worse linear fit for cortical porosity in the radius and the larger scatter observed in the linear regression plots 
for this parameter in both scan sites in the analysis of the test data.

There are important limitations in this study that should be considered. First, all the image data used for 
training and evaluation were produced using the same scanning parameters at two specific standard distal 
scan sites. The distal radius and tibia are the standard HR-pQCT scan sites, and the vast majority of the usage 
of HR-pQCT for basic and translational research focuses on these sites32. However, there is growing interest in 
applying HR-pQCT to study in vivo bone microarchitecture at other sites, including the knee33 and the elbow34. 
Extension of the proposed algorithm to other scan sites may be achievable using domain adaptation techniques, 
such as transfer learning35, and would undoubtedly require adjustments to the post-processing procedure. It 
is not currently clear how difficult this adaptation process would be, or if the proposed algorithm would be as 
successful for segmentation of these alternate scan sites as it has been shown to be for the distal radius and tibia.

Second, all the segmentations used for training and evaluation in this study were produced, or reviewed, by 
an experienced operator at a single research centre using data from participants from a single region in Canada. 
Generated segmentations and morphometric outputs were also compared only to reference segmentations created 
by that same experienced operator, albeit on unseen data. Comparing segmentations generated by the proposed 
algorithm to segmentations created by additional operators would undoubtedly result in increased variance in 
the comparison results14, but the benefit of a fully automated approach is the consistency of the output, which 
could be shared across all sites and at all timepoints when this approach is used. At the same time, by training on 
data with segmentations produced by a single expert operator, specific inferential bias has been encoded into the 
model that informs how the periosteal and endosteal surfaces are placed. While this will not affect the precision 
of the resulting segmentations or corresponding analysis outputs, it could influence the accuracy when compared 
to segmentations generated using standard protocols employed at other research centres. An alternative approach 
for training and developing this algorithm could be to involve a multi-national, multi-center collaboration that 
produces a large dataset of images and reference segmentations. This approach would both incorporate input 
from different centres and include study participants representing different geographic areas and ethnicities. In 
the interim, potential users who are concerned about the agreement between segmentations generated by the 
proposed algorithm and the segmentations created by their own operators with the standard protocol could 
perform comparative studies using new unseen data or, if necessary, retrain the 2D U-Net on their own datasets.

In a fully automated system, it would be beneficial to establish robust error detection. However, to capture 
errors, one must define a ‘failed segmentation’ in the absence of a reference segmentation to compare to. A simple 
definition would be a segmentation that either misses large portions of the structures of interest or that errone-
ously includes portions of the background or secondary bone. We did not observe any failed segmentations of 
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this kind in the combined 1088 images in the validation, test, and precision data subsets; however, this is not 
conclusive evidence that the algorithm will always succeed. A reasonable protocol using the proposed automated 
protocol will likely still require a human operator to quickly inspect output segmentations to screen for these 
types of obvious failures.

Development of an automated error screening algorithm is a subject for future work but could include: 
monitoring axial slice-to-slice variations in the segmentations, monitoring simple morphological metrics of the 
segmentations (such as the number of connected components in each compartment in the final segmentation), 
flagging segmentations where the difference between the raw U-Net output and post-processing output exceeds 
some threshold, or using unsupervised or supervised machine learning methods for outlier detection36 with the 
morphometric analysis outputs and/or the segmentations directly.

Methods
Datasets.  All images used in this study were obtained using HR-pQCT (XtremeCT II, Scanco Medical AG, 
Brütisellen, Switzerland) with the standard in vivo protocol1,13, at standard scan sites for the distal radius and 
tibia37. In each image, 168 slices were collected with a nominal isotropic voxel size of 60.7 µm. Images were 
excluded if the motion score was recorded as a four or higher on a one-to-five scale38. All participants provided 
written informed consent prior to data collection, which was approved by the Conjoint Health Research Ethics 
Board at the University of Calgary (REB16-1606, REB15-0858), and all methods were carried out in accordance 
with relevant guidelines and regulations. All images used in this study have corresponding reference segmenta-
tions, produced by an expert following the standard semi-automated protocol. There were four distinct sets of 
data used in this study, referred to as the training, validation, test, and precision subsets.

Train, validate, test subsets.  The training, validation, and test subsets were produced by pooling together all 
second-generation HR-pQCT images from two cross-sectional studies: a normative study (n = 1236)8 and a 
hip fracture study (n = 108)12. Participants in the combined dataset were stratified by study then split into four 
equally sized groups based on total volumetric bone mineral density (Tt.BMD), obtained using reference seg-
mentations. There are multiple images, and therefore multiple Tt.BMD values, for each participant. The mini-
mum Tt.BMD across all images corresponding to each participant was used for the purposes of stratification. 
Finally, participants in each stratified group were randomly assigned to the training, validation, or test subsets 
with 70% of participants assigned to the training subset, and 15% to each of the validation and test subsets. In 
total, there were 1257 radius and 1343 tibia images from 1278 participants used in the training, validation, and 
test subsets combined.

The training dataset was used to train the U-Net’s internal parameters. The validation dataset was used to 
evaluate the U-Net’s performance after training, to inform selection of U-Net architecture and training hyper-
parameters, and to develop the post-processing algorithm. The test dataset was set aside immediately following 
subset splitting to prevent data leakage. It was accessed only once to evaluate the performance of the overall 
pipeline on unseen data, after satisfactory performance was achieved on the validation dataset.

Precision subset.  The precision dataset is fully disjoint from the training, validation, and test datasets and was 
derived from two separate previous studies37,39. The precision dataset served as a second held-out dataset, but 
with repeated same-day scans of the same sites in the same participants. There were 85 tibia and 71 radius images 
from 90 participants in the precision dataset, with a duplicate, same-day scan with repositioning for each image. 
In the precision dataset there were 46 men and 44 women with a combined mean age of 64 years (SD 8 years). 
The repeated scans allow for an unbiased, quantitative comparison of the precision error and LSC40,41 between 
the proposed and current standard segmentation protocols.

Pre‑processing.  During training, HR-pQCT images are imported and converted from native units to den-
sities in milligrams hydroxyapatite per cubic centimeter (mg HA/cm3), and reference cortical and trabecular 
masks are imported and converted to binary images. A padding transform aligns the image and masks and 
pads the coronal and sagittal extents to the same multiple of eight voxels. A standardization transform performs 
a truncated linear mapping on the image densities from the interval [− 400, 1400] mg HA/cm3 to the unitless 
interval [− 1, 1] using the following equations:

where ρ is the image densities, ρ′ is the truncated image densities, and ρ  is the truncated and rescaled image 
densities on the interval [− 1, 1], which are then used as inputs to the U-Net.

Embedding‑predicting U‑Net.  Architecture.  The U-Net used in this work, shown schematically in 
Fig. 4, is based on the original 2D biomedical U-Net architecture29 and implemented using Python v3.7.1242 
and PyTorch v1.8.043. The U-Net takes five adjacent axial slices, stacked on the channel dimension, as input to 
produce predictions for only the center slice, using reflection padding to fill in the missing adjacent slices when 
necessary at the proximal and distal ends of the image. A 3D prediction is constructed by sweeping over the im-
age axially, creating an independent prediction for each axial slice.
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The double convolutional filters used in each layer of the U-Net are the same as in the original configuration 
with the modification of ‘same’-style padding in the convolutions and the addition of group normalization44 and 
dropout layers45. Finally, the U-Net does not directly produce a prediction of the cortical and trabecular segmen-
tations as output. Instead, the outputs are of predicted level-set embedding fields46 for the endosteal and periosteal 
surfaces (see Fig. 1), where the sign of the field indicates whether a voxel is inside or outside of the embedded 
surface, and the magnitude of the field indicates the distance between a voxel and the embedded surface.

Loss functions.  Classification accuracy.  The primary loss function is based on the voxel-wise classification 
accuracy in the output slice. While the semantic segmentation of the image will consist of three non-overlapping 
binary masks (indicating trabecular, cortical, and background regions), the output of the network consists of 
two scalar fields: φendo and φperi , the embedding fields for the endosteal and periosteal surfaces, respectively. The 
embedding fields are first converted to predicted probabilistic segmentations, pcort , ptrab , and pback , as follows:

where Hǫ(·) is an approximate and differentiable Heaviside function47 of the following form:
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Figure 4.   Schematic of modified U-Net architecture. Each box represents a PyTorch tensor containing an 
input, latent, or output image. All tensors in the same row have the same height and width, but depth (number 
of channels) varies and is labelled for all tensors. Block arrows represent transitions between tensors and are 
described in a legend, where ‘s’ refers to stride and ‘p’ refers to padding. Pre-processing refers to padding, 
scaling, and conversion to PyTorch tensor format, while in this context post-processing refers to converting 
output surface embeddings to binary masks (cortical and trabecular compartments and background).
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The predicted segmentation probabilities are normalized to sum to one in each voxel:

where i and j are indices over the three classes (background, cortical, trabecular). A cross-entropy loss func-
tion is used to compute the mean of the negative log-likelihood of the output, LCE , across all voxels in the slice:

where N is the number of voxels, k is an index over all voxels, j is an index over the classes, and sj are the cor-
responding binary values of the reference masks for each class at a voxel.

Curvature regularization.  The curvature, κ , of a surface defined by an embedding in 2D can be calculated as 
the divergence of the surface normals46:

where ∇ is the vector differential operator, ∇φ is the gradient of the embedding field, and |∇φ| is the magnitude 
of the gradient of the embedding field. An accurate semantic segmentation of the cortical and trabecular com-
partments will have a characteristic smoothness, with the distribution of local curvatures falling within a specific 
band. Extreme curvatures in an output embedding field therefore would be non-physical and may indicate either 
overfitting or an incorrect model for the shape of the endosteal or periosteal surface. To penalize this, a regular-
izing loss function based on zero-level set local curvatures in embedding field i , Lκ ,i , is defined as:

where δ(φi) is a binary mask that is activated where the embedding field crosses zero or is equal to zero, ReLU(·) 
is the rectified linear unit function48 and κthresh is a curvature threshold below which the local value of Lκ ,i will 
be zero. Based on preliminary investigation of surface curvatures in a subset of the training dataset, κthresh was 
set at 0.005 μm−1 for both the endosteal and periosteal embedding fields.

Magnitude gradient regularization.  When an embedding is a signed distance function, the magnitude of the 
gradient of the embedding field should be equal to one at all points not on the embedded surface49:

This property motivates the construction of a second regularization loss function that penalizes the model 
for producing output embeddings that are not proper signed distance transforms of an embedded surface, 
formulated as such:

The form of this loss function penalizes output embedding fields where the magnitude of the gradient is 
below or above one for voxels not directly on the embedded surface. There are two primary benefits: (1) extreme 
local variations in the output embedding fields could be indicative of overfitting, and (2) as the model outputs 
become more like a proper signed distance function, the curvature calculations for the loss function described 
in the preceding sub-section become more accurate.

Combined loss function.  The combined loss function is a linear combination of the classification error, cur-
vature regularization, and magnitude gradient regularization functions applied to each of the endosteal and 
periosteal embedding fields:

where �κ and �|∇φ| are regularization coefficients for the curvature and magnitude gradient regularization loss 
functions, respectively. Typically, optimal regularization coefficients would be determined using grid or random 
search in tandem with cross-validation50. However, this was infeasible due to computational resource constraints 
and so in this work each of these coefficients were set to 10−4 . This value was selected empirically so that the 
classification accuracy-based loss would dominate at the start of training and that all losses would be of the same 
order of magnitude at convergence.

Training.  The U-Net was trained on a research computing cluster node with two NVIDIA Tesla V100 GPUs for 
25 epochs using the AdamW optimizer51 and the super-convergence one-cycle scheduling policy for optimizer 
hyper-parameters52. There were 10 epochs in a half-cycle and 5 convergence epochs, resulting in 25 total epochs 
and approximately 1.9 million iterations (25 epochs, 1822 images in the training set, and 42 batches per image). 
The minimum and maximum learning rates were 10–4 and 10–3, selected via learning rate range plot analysis, and 
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the maximum and minimum momentums were 0.95 and 0.85. All other optimizer hyperparameters were left as 
default values. During each training epoch, the images in the training subset were shuffled then loaded sequen-
tially. For each image, the axial slices were shuffled, then full slices were used sequentially for training with a 
batch size of 4. One inferential pass is performed on the full validation subset at the end of each training epoch.

Morphological post‑processing.  Post-processing of output segmentations is necessary to ensure opti-
mal morphometric analysis accuracy and precision. The specific post-processing approach used in this work is 
motivated by qualitative observations of the topology of the structures of interest: the cortical and trabecular 
compartments at the distal radius and tibia. First, there is only one simply connected region for each of the corti-
cal and trabecular compartments. Second, there should be no background gaps between these compartments: 
there is only a single endosteal surface. Finally, the trabecular compartment should be fully separated from 
the background by a continuous cortical shell with a defined, and configurable, minimum physical thickness. 
Accordingly, a post-processing procedure was designed to ensure that these topological properties of the physi-
ological structures are shared by the final predicted segmentations. In the following sub-sections, components of 
the post-processing procedure are described, followed by a high-level description of the overall procedure. The 
morphological image processing operations in the post-processing procedure were implemented using NumPy 
v1.16.653, scikit-image v0.18.154, and VTK55.

Iterative binary segmentation filter.  The iterative binary segmentation filter is a modified version of the canoni-
cal alternating sequential filter56, in which open-close operations are applied to an image repeatedly with gradu-
ally increasing structural elements. A canonical ‘open’ is an erosion followed by a dilation, while a canonical 
‘close’ is a dilation followed by an erosion. The first modification is to add a connectivity filter step to keep only 
the largest connected component of the foreground between the erosion and dilation of the open and keep only 
the largest connected component of the background between the dilation and erosion of the close. The second 
modification is to use different maximum structural element sizes for the open and close operations, which were 
radii of 5 voxels and 15 voxels, respectively. The purpose of this filter is to remove both union and subtractive 
noise and to ensure that the secondary bone (ulna, fibula) is not inadvertently included in the primary bone 
(radius, tibia) segmentation.

Minimum cortical shell filter.  The minimum cortical shell filter takes a binary segmentation of the trabecular 
compartment as input and produces a binary segmentation of a cortical shell around this trabecular compart-
ment as output. First, the trabecular binary segmentation is dilated by 8 voxels, or approximately 0.5 mm. Then 
the original trabecular segmentation is subtracted from the dilated segmentation, producing a cortical shell with 
a width of 8 voxels.

Morphological bone mask filter.  The morphological bone mask filter is based on the first step of the gold-stand-
ard dual-thresholding algorithm17. The rescaled image is binarized using − 0.25 as a threshold in the normalized 
image intensity space, equivalent to a density-based threshold of 275 mg HA/cm3. A median filter is applied with 
a 3 × 3 × 1 (sagittal, coronal, axial) kernel, followed by the iterative binary segmentation filter (with maximum 
structural sizes of radius 3 voxels and radius 15 voxels for the open and close operations, respectively). The 
result is a purely morphologically derived binary image containing a rough mask of the entire primary bone. 
The purpose of generating this mask and combining it with the bone mask generated by the U-Net is to reduce 
the likelihood of a catastrophic error—i.e., the bone mask missing a portion of the primary bone—at the cost of 
potentially reducing the accuracy of the periosteal contour.

Post‑processing procedure.  The U-Net-output embeddings for the endosteal and periosteal surfaces are con-
verted to two binary images, or masks: the cortical mask is defined as the region between the endosteal and 
periosteal surfaces ( φendo > 0 and φperi < 0 ), and the trabecular mask is defined as the region inside of the 
endosteal surface ( φendo < 0 ). This conversion procedure is like what is done during training for calculation of 
the classification accuracy, except here binary segmentations are computed by checking if the embedding fields 
are greater than or less than zero, rather than using differentiable approximations to generate fuzzy segmenta-
tions. Figure 5 shows a flow-chart of the complete morphological post-processing procedure that follows, along 
with incremental visualizations of the outputs of the major steps and the corresponding operations explained 
in detail in the figure caption. The final post-processing outputs are the filtered cortical and trabecular masks. 
During inference or testing, these can be automatically saved in a manufacturer-specific image format for further 
processing, such as morphometric analysis.

Evaluation and metrics.  After the U-Net was trained using the training subset and the post-processing 
procedure was developed using the validation subset, the parameters of the U-Net and post-processing proce-
dure were frozen and used in sequence to obtain predicted segmentations on the test and precision subsets. These 
predicted segmentations were compared to the corresponding reference segmentations to evaluate the accuracy 
and reproducibility of the proposed segmentation algorithm. All statistical analysis was performed using Python 
v3.7.1242, statsmodels v0.11.157, and SciPy v.1.6.158 with a significance threshold of 5% for all statistical testing.

Predicted and reference segmentations were compared on the test subset both by using standard segmentation 
quality metrics and by comparing the quantitative outputs of the standard HR-pQCT extended cortical analysis 
using the standard manufacturer-provided procedure13,59. The standard segmentation quality metrics used were 
the Dice similarity coefficient (DSC), the Jaccard similarity coefficient (JSC), and the average and maximum 
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of the symmetric surface distances (SSD)60, hereafter referred to as ASSD and Hausdorff distance, respectively 
(implemented using SimpleITK v2.0.261). The quantitative analysis outputs used for comparison were: total bone 
mineral density (Tt.BMD) and area (Tt.Ar), cortical bone mineral density (Ct.BMD), thickness (Ct.Th), poros-
ity (Ct.Po), and area (Ct.Ar), and trabecular volumetric bone mineral density (Tb.BMD), bone volume fraction 
(Tb.BV/TV), number (Tb.N), thickness (Tb.Th), separation (Tb.Sp), and area (Tb.Ar)13. For each parameter at 
each scan site, the paired prediction and reference outputs were compared using both direct linear correlation 
analysis and by the difference and mean values in Bland–Altman (or Tukey mean difference) plots.

To investigate the performance of the proposed protocol in particularly adverse situations where a human 
operator would find the most difficulty in correcting the endosteal contour, two sub-groups were also analyzed 
separately for each scan site: The “low cortical thickness” sub-groups, which were composed of the radius and 
tibia images in the bottom quartile for Ct.Th for each scan site, and the “high cortical porosity” sub-groups, which 
were composed of the radius and tibia images in the top quartile for Ct.Po for each scan site.

Finally, the precision of the proposed algorithm was compared to the gold-standard protocol by calculating 
the least significant change (LSC) and the root-mean-squared percentage coefficient of variation (RMS %CV) 
on the pairs of same-day repeat scans in the precision subset41. The pairs of repeat-scan images were registered, 
and the common volume shared between the two was computed. Then, morphometric analysis was applied only 
to the common volume using the predicted and reference masks for each image62. The LSC and RMS %CV were 
calculated for each of the standard quantitative analysis outputs. Normality of the individual standard deviations 
from the paired precision data were assessed separately for the predicted and reference analysis outputs using 
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Figure 5.   Schematic of post-processing procedure visualised using a distal tibia image. The top row shows 
the inputs while the bottom row shows the outputs. Block arrows correspond to composite morphological 
filtering operations: grey—the mask is simply copied, red—iterative binary segmentation filter, pink—minimum 
cortical shell filter, blue—morphological bone mask filter, and yellow—subtraction (the filtered trabecular mask 
is subtracted from the filtered bone mask). When multiple arrows converge on the same output mask, this 
indicates the outputs were combined (union).
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D’Agostino and Pearson’s method63, and the significance of the differences in precision outputs were assessed using 
independent Wilcoxon signed-rank tests64. As with the test subset, this analysis procedure was then repeated for 
“low cortical thickness” and “high cortical porosity” sub-groups formed separately for each scan site.

Visualizations.  Plots were generated using pandas v1.2.465, Matplotlib v3.4.366, and seaborn v0.11.267. Vol-
umetric renderings were created using vtkbone (https://​github.​com/​Numer​ics88/​vtkbo​ne), VTK v8.2.055, and 
PyVista v0.33.268.

Conclusion
We have presented and validated a novel, fully automated algorithm for the semantic segmentation of HR-pQCT 
distal radius and tibia images. The proposed algorithm requires no human input or oversight and is faster, as 
accurate, and as precise or more precise when compared to the current gold-standard semi-automated approach. 
In its current form, it can be seamlessly integrated into standard workflows for HR-pQCT morphometric analysis 
with radius and tibia images. Future work will focus on translating this approach to additional scan sites.

Data availability
The datasets used in the current study are not publicly available to protect confidentiality and privacy of partici-
pants. They can be made available to other researchers for non-commercial use, upon reasonable request, from 
Steven K. Boyd at skboyd@ucalgary.ca.

Code availability
All code used for model development, training, inference, post-processing, visualization, and statistical analysis 
is publicly available in the following GitHub repository: https://​github.​com/​Bonel​ab/​HR-​pQCT-​Segme​ntati​on. 
The trained model weights used for segmentation of the test and precision data in this work are available upon 
reasonable request.
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