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rxCOV is a quantitative metric 
for assessing immunoassay analyte 
fidelity
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Immunoassay based bioanalytical measurements are widely used in a variety of biomedical research 
and clinical settings. In these settings they are assumed to faithfully represent the experimental 
conditions being tested and the sample groups being compared. Although significant technical 
advances have been made in improving sensitivity and quality of the measurements, currently no 
metrics exist that objectively quantify the fidelity of the measured analytes with respect to noise 
associated with the specific assay. Here we introduce ratio of cross-coefficient-of-variation (rxCOV), a 
fidelity metric for objectively assessing immunoassay analyte measurement quality when comparing 
its differential expression between different sample groups or experimental conditions. We derive 
the metric from first principles and establish its feasibility and applicability using simulated and 
experimental data. We show that rxCOV assesses fidelity independent of statistical significance, 
and importantly, identifies when latter is meaningful. We also discuss its importance in the context 
of averaging experimental replicates for increasing signal to noise ratio. Finally, we demonstrate its 
application in a Lynch Syndrome case study. We conclude by discussing its applicability to multiplexed 
immunoassays, other biosensing assays, and to paired and unpaired data. We anticipate rxCOV to be 
adopted as a simple and easy-to-use fidelity metric for performing robust and reproducible biomedical 
research.

Biosensing assays such as antibody based enzyme-linked immunoabsorbent assay (ELISA) and its multiplexed 
counterpart (mELISA), are ubiquitously used methods that utilize antigen-antibody binding to determine with 
high sensitivity, concentration of analytes in a wide variety of bioanalytical  settings1. Their ease-of-use coupled 
with improvements in measurement technology and quality  control2,3 has made these immunoassays a mainstay 
in diverse biomedical research and its clinical  applications4,5. More recently, nucleic acid-based probes, such 
as aptamers have also been  developed6,7. Aptamers are short single-stranded RNA or DNA sequences that can 
replace antibodies in ELISA to bind targets of interest with improved specificity and  affinity6–8. The resulting 
enzyme-linked aptamer assay (ELAA) has the potential to provide fast, low-cost, and improved target detection 
alternatives to  ELISA8. However, measurement of target expression in these biosensing assays is fundamentally 
confounded by intrinsic biological heterogeneity, variations in preanalytical variables between different sample 
groups, variablity is user-dependent assay implementation, and imperfection of the assay itself due to varying 
degrees of target-dependent cross-reactivity and  affinity9–12. These confounding factors together combine to 
generate stochastic noise that we refer to as assay-associated noise. Despite improvements both in the quality and 
biochemistry of biosensing technologies, assay-associated noise continues to confound analyte measurements. 
This noise is especially important to account for when comparing sample groups or experimental conditions 
with analyte expression in low signal to noise regime, or when differences in expression between the comparison 
groups are small. In such scenarios comparison of analyte expression between the two groups in the background 
of assay-associated noise can falsely suggest significance, or conversely the lack of it. Therefore, it is essential to 
establish the validity of differential analyte expression with respect to assay-associated noise, which we refer to 
as analyte fidelity. Establishing analyte fidelity is necessary for subsequent analyses to be meaningful.
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Currently, protocol-level experimental techniques are used to ameliorate these assay-associated noise effects 
by carefully implementing best practices in assay  design3. Additionally, repeat measurements can be performed 
to average out noise effects and improve the analyte signal to noise ratio (SNR). However, currently no quanti-
tative metric exists to ascertain if the SNR has sufficiently improved, or how many experimental replicates are 
sufficient for each individual experiment to ensure good SNR. As a result, researchers use an ad-hoc number, 
usually justified based on logistics, cost or accepted practice. This can lead to inconsistent findings and reduced 
translational efficacy, particularly in research where reproducibility is a key criterion such as in biomarker dis-
covery and drug development. Furthermore, in mechanism-focused basic research, lack of analyte fidelity can 
validate incorrect hypotheses resulting in spurious conclusions.

To overcome these challenges, we have developed a simple and easy-to-use quantitative metric that objectively 
characterizes analyte fidelity when comparing different sample groups or treatment conditions in individual 
experiments. As a result, it is also capable of identifying spurious statistical significance. We have developed the 
metric from first principles and show that it naturally emerges as a ratio of two modified forms of coefficient-of-
variation (COV) statistic (see Eq. 2c). We, therefore, refer to it as ratio of cross-Coefficient-of-Variation (rxCOV). 
COV itself has been used as a unit-free interpretable measure of precision in assessing reliability and repeatibility 
of collected data in a range of disciplines including biology and  medicine13–15. The two modified COV terms 
together quantify the relative effect size of the differential analyte expression with respect to the assay-associated 
noise. We show that this relative effect size objectively characterizes analyte fidelity. Furthermore, we demonstrate 
that rxCOV can determine whether the number of experimental replicates is sufficient to ensure good SNR and 
prevent spurious findings. Finally, as the fidelity metric is computed separately for each analyte and for any two 
sets of sample groups or condtions, it can be easily computed in parallel for multiple individual analytes in a 
multiplexed setting. It may also be extended to measure analyte fidelity between multiple different sample groups 
or experimental conditions.

Results
Fidelity metric: rxCOV. We derive rxCOV via a two step process. We first define a function that quantifies 
relative change between the differential analyte expression and the measurement noise associated with the assay. 
We next use this function to derive the fidelity metric.

Function of relative change. Let random variables X and Y respectively represent the expressions of an analyte 
of interest in samples belonging to two different patient groups or experimental conditions being compared. 
And let X ′ and Y ′ represent their repeat measurements on aliquots drawn from the same samples. The difference 
between the two sets of measurements on the same sample, defined as, NX = |X − X ′| and NY = |Y − Y ′| rep-
resents the assay-associated variations in analyte expression. To ensure robustness, we combine NX and NY into 
a single worst-case-scenario random variable N = max(NX ,Ny) . The differential analyte expression between the 
two samples is given by Z = |X − Y | . By construction, N and Z are ratio-scale variables.

For differential expression Z to represent a valid difference in the analyte expression between the two groups—
whether statistically significant or not—its effect size should be greater than that of N. That is, the effect, or 
magnitude of variation in the differential analyte expression between the groups should be greater than the mag-
nitude of variation in assay-associated noise. We note that this formulation is distinct from common metrics of 
effect-size such as Cohen’s d16. They are typically used to quantify the effect-size of differential analyte expression 
between the sample groups, particularly in the context of power analysis. Our formulation, on the other hand, 
aims to assess the validity of the differential analyte expression computed from measurements made in pres-
ence of assay noise. It, therefore, is fundamental to all downstream statistical analyses including power analysis.

Mathematically we can express the above relation as M(Z) ≥ M(N) , where M denotes a measure of the 
effect-size. Re-expressing it as log10

M(Z)
M(N)

≥ 0 , we obtain the fidelity condition in terms of the log-based func-
tion of relative change: f (M(Z),M(N)) = log10

M(Z)
M(N)

 , which satisfies the following important  properties17, 

As a result, f defines a well-behaved general measure of fidelity that is independent of measurement units and 
increases or decreases based on whether the effect size of Z is greater or less than N. Since the log function satis-
fies the properties log(1) = 0 and log(pq) = log(p)+ log(q),∀p, q > 018, we can naturally extend f to combine 
different measures of relative change into a single log-based sum of relative changes. This extension will also 
satisfy Eq. (1) properties. We next use this extension to define rxCOV fidelity metric as a function of first- and 
second-order measures of effect-size.

(1a)f (M(Z),M(N)) = 0 ⇔ M(Z) = M(N),

(1b)f (M(Z),M(N)) > 0 ⇒ M(Z) > M(N),

(1c)f (M(Z),M(N)) < 0 ⇒ M(Z) < M(N),

(1d)f (αM(Z),αM(N)) = αf (M(Z),M(N)),∀α > 0, and

(1e)
f (M(Z),M(N)) is a continuous and monotonically increasing

function ofM(Z) whenM(N) is fixed,
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rxCOV. We consider mean ( µ ) and standard deviation ( σ ) as two measures M1(·) and M2(·) respectively of 
the effect size of Z and N. The resulting functions of relative change f (µZ ,µN ) and f (σZ , σN ) respectively quan-
tify the average and dispersion fidelity of the differential analyte expression between the two sample groups, with 
respect to the assay-associated noise. As an example, f (µZ ,µN ) = 0 and f (σZ , σN ) = 0 imply that effect-sizes 
related to mean (first-order) and dispersion (second-order) of differential analyte expression are the same as that 
of assay-associated noise. As a result, differences in analyte expression between the two groups or conditions 
cannot be separated from differences arising due to assay-associated variability. Consequently, the analyte has 
low-fidelity for this specific assay.

Utilizing the additive property of f, we combine the first- and second-order fidelity measures of effect size 
and define our joint fidelity metric rxCOV as 

Equation (2c) has an intuitive interpretation: It is a standardized measure of dispersion of differential analyte 
expression between two sample groups, relative to dispersion in assay associated noise. The standardization of 
σZ by µN , and σN by µZ , ensures that the comparison of relative dispersion is adjusted to the correct scale. It also 
motivates the name of the fidelity metric ratio of cross-Coefficient-of-Variations (rxCOV). Here, ‘cross’ refers to 
standardization of σZ by µN , and of σN by µZ . If rxCOV(Z,N) > 0 , then the range of variation in the differen-
tial analyte expression after having been adjusted by average assay-associated noise dominates the variation in 
assay-associated noise adjusted by the mean differential analyte expression. Consequently, the analyte has high 
fidelity. If, on the other hand, rxCOV(Z,N) ≤ 0 , then the analyte has low fidelity.

We emphasize that Eq. (2c) is easy to implement. As the equation shows, computation of rxCOV is straightfor-
ward. It requires computing four simple statistics: mean and standard deviation of differential analyte expression 
(Z) and assay-associated noise (N) measurements. This can be done using any rudimentary statistical software, 
thereby making rxCOV an easy-to-use metric for researchers from diverse backgrounds.

rxCOV is a smooth function of its variables. The rxCOV metric, given by Eq. (2c), is a function of four 
variables µZ ,µN , σZ , σN , defined on the open region D = (0,∞)4 ⊂ R

4 . Its partial derivative with respect to 
each of the four variables is a hyperbola, a continuous function over the domain (0,∞)19. As a result, rxCOV is 
differentiable over D , which in turn ensures that it is also a continuous function over D20. Furthermore, with 
hyperbola as the partial derivative of first-order for each of the four variables, the existence of partial derivatives 
of rxCOV of any order is guaranteed. Therefore, rxCOV is not only a continuous function over D , but it is also a 
smooth function over it. This property ensures that the small changes in µZ ,µN , σZ , σN result in small changes 
in rxCOV. Thus, rxCOV can smoothly track analyte fidelity across the whole range of differential analyte expres-
sion.

rxCOV is an objective fidelity metric. We constructed a dataset comprising simulated expression of a 
cytokine in two samples groups, denoted by sX and sY (Fig. 1A). The expressions are chosen such that the dif-
ferential expression between the two sets is significant at the 95% confidence level, with a p-value of 0.017. Two 
scenarios based on two different assay-dependent noise profiles ( nX and nY ) are considered (Fig. 1B,C). The base 
noise profiles, however, are not statistically significant at the 95% confidence level. The final dataset for the two 
scenarios is constructed as follows, 

Here γ scales the base noise profile to recapitulate a range of assay-dependent noise scenarios, without affecting 
the relative significance of the noise profiles themselves within each of the two scenarios. The resulting plots of 
rxCOV as a function of γ for the two scenarios are shown in Fig. 1D. The color coded dashed vertical lines indi-
cate where rxCOV curve reaches zero. At this zero threshold, the effect-sizes of differential cytokine expression 
between the two sample groups and that of the the assay associated noise with respect to mean and dispersion 
are the same and cannot be distinguished from each other. Above this threshold the effect size of the differential 
expression dominates the noise and the analyte has high fidelity, while below this threshold the converse is true 
and the noise dominates. Therefore, rxCOV is an experiment-specific metric that objectively assesses analyte 
fidelity via the zero-level threshold.

rxCOV identifies spurious statistical significance. In Fig. 2A, along with the plot of rxCOV as a func-
tion of γ for the two scenarios shown in Fig. 1D, we also plot the p-value corresponding to statistical significance 
of the differential expression between dX and dY as a function of γ . In this plot the solid red line indicates statisti-
cal significance at the 95% confidence level.

(2a)rxCOV(Z,N) = log10
M1(Z)

M1(N)
+ log10

M2(Z)

M2(N)
,

(2b)rxCOV(Z,N) = log10
µZ

µN
+ log10

σZ

σN
,

(2c)rxCOV(Z,N) = log10
(σZ/µN )

(σN/µZ)
.

(3a)dX = sX + γ nX ,

(3b)dY = sY + γ nY .
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Scenario 1 reflects a situation where increasing noise level gradually washes out the significance of the data. 
Here, the differential expression becomes insignificant before rxCOV reaches 0, as indicated by the purple 
dashed vertical line. This result indicates that although, the first- and second-order effect sizes of the differential 
expression between dX and dY are greater than that of assay-associated noise, they are not large enough to ensure 
statistical signficance at the 95% confidence level. Once rxCOV reaches 0, the assay-associated noise dominates 
and statistical signficance becomes spurious. rxCOV, therefore, establishes the sufficient condition for the validity 
of the p-value in assessing statistical significance of the differential analyte expression. Specifically, if rxCOV ≤ 0 
then any p-value, whether ≶ 0.05 or ≤ 0.001 is a noise related artifact and is meaningless.

Scenario 2 illustrates a situation where the differential expression between dX and dY  remains significant 
beyond the black dashed vertical line, where rxCOV reaches zero, and the first- and second-order effect size of 
assay-associated noise begin overwhelming the differential analyte signal. rxCOV identifies this significance to be 
spurious. Importantly, it exemplifies how a small stochastic change in the noise distribution from that of scenario 
1 can result in wide divergence in p-value behavior of the differential analyte expression, thereby emphasizing 
the critical importance of a fidelity metric.

rxCOV and experimental replication. A common approach for improving the fidelity of analyte expres-
sion is to average multiple independent replicates. Figure 2B demonstrates that rxCOV fidelity metric is able 
to capture the resulting increase in signal to noise ratio via the rightward shift of the purple and black dashed 
vertical lines corresponding to rxCOV = 0 . In it, the same two scenarios presented in Fig. 2A are considered, 
but instead of a single measurement, three independent replicates of dX and dY are generated and averaged. As 
expected, the rxCOV and p-value plots corresponding to the two scenarios as a function of γ converge towards 
each other. Furthermore, the values of γ at which rxCOV reaches zero increases, marked by the rightward shift 
of the dashed vertical lines, and indicates the averaging-dependent increase in noise range over which the signal 
maintains its fidelity with respect to assay-associated noise. Interestingly, despite the benefit of data averaging, 
the risk of spurious significance is not completely removed. This is evident in scenario 2, where p-value remains 
below 0.05 immediately after rxCOV reaches 0. Therefore, even though averaging ameliorates noise effect, it 

Figure 1.  Simulated example of rxCOV as an objective fidelity metric. (A) Analyte data simulating hypothetical 
cytokine expression in two sample groups sX and sY . The difference in cytokine expression is significant at the 
95% confidence level. (B) Baseline scenario 1 representing measurement noise associated with assaying each 
sample of each group. (C) Baseline scenario 2 representing a slightly different assay-associated noise distribution 
than scenario 1. Data dX and dY are generated by scaling these baseline scenarios by the scaling factor γ and 
adding them to sX and sY as formulated in Eq. (3). Assay-associated noise in both scenarios is not significant 
at the 95% confidence level and remains unaffected by the scaling factor γ . (D) rxCOV plot as a function of γ 
for Scenarios 1 and 2. When γ = 0 , dX = sX and dY = sY , no assay noise is assumed, and the two scenarios 
coincide. This is indicated by the dashed gray circle. The solid red line corresponds to rxCOV = 0 , the objective 
fidelity threshold. The purple and black dashed vertical lines correspond to the noise levels at which the rxCOV 
plots intersect the solid red line, and indicate the low-fidelity analyte threshold for the two respective scenarios.
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remains difficult to ascertain if the number of replicates are enough to overcome the noise level of the specific 
assay. In such a situation, rxCOV metric can provide the answer: if the rxCOV value resulting from using aver-
aged replicates is > 0 , the number of replicates is sufficient. If, on the other hand, it is ≤ 0 , then more replicates 
are required. Importantly, rxCOV metric can also be used to decide for which analytes data averaging is not 
needed, particularly in multiplexed scenarios where replication can be limited by cost, sample, and logistical 
constraints.

rxCOV is a fidelity metric for paired and unpaired data. Rewritng the definition of Z = |X − Y | in 
terms of the lattice identity Z = |X − Y | = max(X,Y)−min(X,Y)21 shows that this definition depends on 
pairwise max and min operations and assumes paired data. For unpaired data, we redefine Z as Zup = X − Y  , 
with its mean and standard deviation respectively given by µup

Z = µX − µY and σ up
Z =

√

σ 2
X + σ 2

Y  . The corre-
sponding measures of effect size, then are Mup

1 (Z) = |µ
up
Z | and Mup

2 (Z) = σ
up
Z  , and we can use Eq.  (2c) to 

compute analyte fidelity. We note that the first- and second-order measures of effect-size of assay-dependent 
noise are always paired because, by experimental design, assay-associated expression variability is quantified via 
repeated measurement of analyte expression of the same sample. The paired or unpaired status of the data itself 
is determinded by the study and experimental design and is not a matter of preference. Nevertheless, in order to 
develop a comprehensive understanding of the fidelity metric, we computed the deviation in rxCOV value for 
the same data under paired and unpaired assumptions. We first defined difference in the mean and standard 
deviation via the following relations, 

 with the inequalities �µZ ≤ 0 and �σZ ≥ 0 following directly from the lattice identify representation of Z. 
The relative difference in the rxCOV fidelity metric between the paired and unpaired assumption can then be 
expressed as,

Here, �µZ
µZ

 and �σZ
σZ

 respectively capture the relative difference between the paired and unpaired assumption for µ 
and σ with respect to the paired assumption. Figure 3 shows that for a broad range of deviation, from 0% through 

(4a)µ
up
Z = µZ +�µZ ,�µZ ≤ 0,

(4b)σ
up
Z = σZ +�σZ ,�σZ ≥ 0,

(5)
�rxCOV = log10

(

1+
�µZ

µZ

)

+ log10

(

1+
�σZ

σZ

)

,

with�µZ ≤ 0,�σZ ≥ 0.

Figure 2.  Simulated example of rxCOV identifying spurious statistical significance and capturing effect of 
experimental replication. (A) Fig. 1D is extended to include the relation between rxCOV and p-value as a 
function of γ for the two noise scenarios presented in Fig. 1B,C. The solid red line in the p-value plot (bottom 
panel) indicates p-value of 0.05. The dashed vertical lines corresponding to the two scenarios continue over 
from the top panel and correspond to the value of γ where rxCOV reaches zero. They establish the noise level 
beyond which p-value based computational of statistical significance becomes spurious. (B) Three replicates 
of sX and sY are generated from the same distribution used in Fig. 1A. Corresponding values of dX and dY are 
computed and averaged to increase analyte SNR. The rightward shift of the purple and black dashed vertical 
lines coupled with the convergence of the rxCOV plots for the two scenarios demonstrates the ability of rxCOV 
to capture the increased SNR due to data averaging.
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50% , �rxCOV  is bounded within the range (− 0.301, 0.2) , implying that although rxCOV is sensitive to the 
paired and unpaired assumption, it remains a relatively stable and bounded metric, for a large range of variation.

Case study: establishing the fidelity of immune signaling profile in patients with Lynch syn-
drome. Figure 4A shows a subset of multiplexed ELISA expression data collected from healthy volunteers 
(H) and patients with Lynch syndrome (LS) for six chemotactic, proinflammatory and immune suppressive 
cytokines (see “Materials and methods” section). The differential expression of the six cytokines between healthy 
volunteers and LS patients captures differences in the immune signaling microenvironment of these groups of 
patients. The figure also indicates the significance of this difference at the 95% confidence level. Figure 4B plots 
the mean and standard deviation of differential expression (Z) and assay-associated noise (N) for the same set of 
cytokines. The figure makes it evident that despite paying careful attention to experimental protocols that help 
ameliorate the effects of assay-associated noise, for some cytokines assay-associated noise still overwhelms the 
differential expression. We note that the interplay between signal and noise is sample and assay dependent. The 
importance of rxCOV is in its ability to objectively quantitate this sample and assay dependent interplay and 
establish the fidelity of each individual cytokine. Figure 4C shows that rxCOV fidelity metric is able to identify 
high and low fidelity cytokines. Interestingly, although we see that differential expression of both IL7 and TNFα 
is statistically significant, the rxCOV fidelity metric shows that for IL7 this significance is spurious ( rxCOV < 0 ) 
and is an assay-associated artifact. On the other hand, differential expression of TNFα is significant ( rxCOV > 0 ). 
Importantly, rxCOV also indicates where lack of significance might be an artifact. For example, although both 
Eotaxin and Eotaxin3 are not statistically significant, this lack of significance for Eotaxin could potentially be an 
experimental artifact ( rxCOV < 0 ), while for Eotaxin3 it is not ( rxCOV > 0 ). Thus, these results demonstrate 
the practical way in which rxCOV metric can guide experimental decisions in real-time.

Discussion
We have introduced rxCOV, a simple and easy-to-use quantitative metric for assessing the fidelity of immuno-
assay based analyte measurements comparing different treatment conditions or sample groups. As shown in 
Eq. (2c), rxCOV only requires computation of mean and standard deviation of the differential expression (Z) and 
assay-associated noise (N). Z is obtained from assay measurements of the samples under study. N is also simple 
to compute and only requires an additional measurement of an aliquot of the same set of samples, as exemplified 
by the case study. The computations can be easily performed using a low-end computer equipped with a statisti-
cal software capable of performing subtraction, and computation of mean and standard deviation of expression 
values from a sample group. Therefore, rxCOV is accessible to researchers in diverse research, translational 
and clinical settings with varying computational expertise. Importantly, unlike other common and important 
metrics of effect size such as Cohen’s d and its variations, that are used to quantify the size of the effect—that is, 
the magnitude of the differential analyte expression—between sample groups or treatment conditions, rxCOV 
assesses the validity of the differential analyte expression in presence of assay noise. Additionally, it establishes a 
sufficient condition for the validity of p-value and statistical significance associated with the differential analyte 
expression. Thus, it is fundamental to all downstream analyses and interpretation.

The strength of rxCOV is its objective threshold of zero that demarcates the boundary between experiment-
specific analyte fidelity and the lack of it. From the construction of the metric, it is evident that zero is the correct 
fidelity threshold because it identifies the point of balance between the differential analyte expression and the 
noise embedded in the measurement of analyte expression for a specific experiment. For rxCOV values > 0 , 

Figure 3.  Relative change in rxCOV under the paired vs. unpaired assumptions. Plot of �rxCOV as a function 
of relative deviation in mean and standard deviation resulting from differences due to the paired and unpaired 
assumption. The deviation in relative mean value ranges from 0% through 50%, while that in standard deviation 
ranges from − 50% through 0%. The colorbar indicates the corresponding deviation in �rxCOV.
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the differential signal is stronger than the noise, while it is the opposite for rxCOV < 0 . Using the shift in this 
threshold, we demonstrated the senstivity of rxCOV to averaging experimental replicates, an important valida-
tion of the metric being able to measure analyte fidelity. Importantly, it identifies another use of rxCOV as an 
objective criterion in determining the optimal number of replicates needed to ensure signal fidelity of an analyte.

rxCOV uses mean and standard deviation summary statistics to quantify the effect-size of properly normal-
ized differential analyte expression and its noise (Eq. 2c). However, rxCOV is not limited to the use of these 
statistics in two ways. First, if the mean and standard deviation are skewed by the nature of the study data, they 
can respectively be replaced by median and interquartile range (IQR) that could be more robust to  outliers22. 
Second, rxCOV can be naturally extended to incorporate additional summary statistics, such as entropy, based 
on the additive property of the function of relative change as shown in Eq. (2a). However, use of additional sta-
tistics should be supported by a rationale relevant for the study and the nature of its data. Typically, our use of 
first- and second-order summary statistics should be sufficient and accurate in most cases.

For computing summary statistics of assay noise within a sample group or treatment condition associated 
with measurement of analyte expression, rxCOV requires a single repeat measurement per sample. This modest 
requirement follows from the observation that variations in repeat measurements of the same sample fundamen-
tally capture stochastic and assay-associated noise, and are independent of the sample itself. Thus, single repeat 
measurement per sample, for all samples in the study, provides enough stochastic diversity to reliably compute 
noise summary statistics. The same summary statistics can also be computed using repeat measurements ( > 1 ) of 
aliquots drawn from a subset of samples. The optimal choice between these range of options is dependent upon 
sample constraint specific to the study. Computation of rxCOV can, therefore, be adapted to the constraints and 
logistics of individual research studies, thereby suggesting its wide applicability.

As rxCOV is computed per analyte, it can be easily computed for multiple analytes measured in parallel, for 
example, in the case of multiplexed immunoassays. We demonstrated this generalizability to a multiplexed setting 
in the case study presented above. There rxCOV was used to simultaneously assess the fidelity of all six analytes. 
Additionally, its pairwise computation for any two—paired or unpaired—treatment conditions or sample groups, 
can also be easily extended to multiple experimental or sample group comparisons, each implemented pairwise. 
Importantly though, given its simple formulation, increase in number of analytes and sample group comparisons 
will not unduly increase the computational complexity of rxCOV based fidelity analysis as rxCOV only requires 
computation of four values—two mean and two standard deviation values—per comparison.

Figure 4.  Case study. (A) Boxplot representation of multiplexed ELISA expression of six cytokines measured 
in Lynch Syndrome (LS) patients with healthy (H) patients acting as controls. (B) Barplots of the mean and 
standard deviation of the cytokine differential expressions (Z), and their corresponding assay-associated noise 
(N). (C) rxCOV metric computed by substituting the mean and standard deviation of the differential expression, 
shown in (B), for each of the six cytokines . Those with rxCOV > 0 are high-fidelity analytes and are shown in 
blue. Those with rxCOV ≤ 0 are low-fidelity analytes and are shown in red.
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rxCOV can also be used with other biosensing assays beyond antibody-based immunoassays. As noted in 
the Introduction, aptamer-based ELAA assays replace antibody based detection with aptamer probes. Neverthe-
less, like ELISAs, ELAA measurements are usually based on calorimetric, fluorescence, or chemiluminiscence 
principles, ensuring direct applicability of rxCOV8. Beyond aptamer-based assays, rxCOV can also be applied 
to other types of biosensing assays where the measurements are ratio scale variables, that is, analyte expression 
value of zero is well-defined and biochemically meaningful.

Conclusion
We have introduced rxCOV, a simple, quantitative metric to determine whether the differential expression of 
analytes between two sample or treatment groups is valid with respect to the assay-associated noise in individual 
experiments. rxCOV is applicable when measurements are made using antibody-based immunoassays, aptamer-
based biosensing assays, and for assays where the measured quantity is a ratio scale variable with zero-value 
analyte expression being biochemically meaningful. It is easy to use and requires computation of only mean 
and standard deviation. Its key strength is the objective threshold of zero that establishes experiment-specific 
analyte fidelity that also provides a sufficient condition for the validity of the p-value based claim of statistical 
significance. Since rxCOV is computed per analyte at a very low computational cost, it can be easily computed for 
multiple analytes measured in parallel as is the case for multiplexed assays. Additionally, it can also be extended 
to multiple sample group comparisons, each implemented pairwise. Finally, rxCOV can help determine the 
optimal number of experiment-specific replicates required to ensure analyte fidelity. We anticipate that these 
strengths will make rxCOV an attractive metric in aiding implementation of robust and reproducible biomedi-
cal research studies.

Materials and methods
Tissue collection. The data for the case study demonstrating the practical efficacy of rxCOV, was collected 
as part of a separate study of patients with Lynch Syndrome (LS), the most common cause of hereditary colo-
rectal cancer. The study (STUDY20010017) was approved by the Institutional Review Board at the University 
of Pittsburgh, Pittsburgh, PA and adhered to the University guidelines for research involving human subjects. 
All participants signed informed consent documents. Biopsies of normal-appearing colorectal mucosa were 
obtained from 16 healthy volunteers and 28 LS patients. All biopsies were obtained during routine colonoscopies 
performed at University of Pittsburgh Medical Center, Shadyside Hospital, Pittsburgh, PA, USA.

Materials: chemicals and reagents. All transport and tissue culture media ingredients were purchased 
from Thermo Fisher Scientific, (Waltham, Massachusetts), including RPMI 1640 (Cat #22400105 ) , heat inac-
tivated fetal bovine serum (HI-FBS, Cat #10082147 ) and Antibiotic-Antimycotics (Cat #15240062 ). Biomarker 
assays were performed using the Meso Scale Discovery (MSD, Rockville, MD) V-PLEX Human Cytokine 
30-Plex Kit (Cat #K15054D).

Multiplexed ELISA on explant cultures. Intact biopsies collected from healthy and LS participants were 
immediately placed into tubes containing tissue culture media comprised of RPMI 1640, 7.5% HI-FBS and 1% 
antibiotic-antimycotic. Samples were maintained on ice and transported to the laboratory in a biohazard con-
tainer. Tissues were immediately weighed and placed into prefilled individual wells of a 24-well tissue culture 
plate containing 1 mL of complete RPMI (cRPMI;RPMI 1640, 10% HI-FBS, 1% antibiotic/antimycotic) cul-
ture medium in a biosafety cabinet and incubated for 24 h at 37 ◦C with 5% CO2, as described  previously23,24. 
Soluble biomarkers released into the supernatant through 24 h of culture were aliquoted and measured using 
MSD mELISA. Measured biomarkers included a range of chemotactic, immunosuppressive and proinflamma-
tory cytokines used to profile the immune signaling microenvironment of the tissue samples. All assays were 
performed according to the manufacturer’s instructions. To remove variations due to size of tissue biopsy, we 
normalized the assayed expression by tissue weight. The mELISA assay was also repeated on a second aliquot 
from each sample. Differences between these two sets of measurements were used as a quantification of assay-
associated experimental variability.

Software. R programing language implemented within the RStudio integrated development environment 
was used to perform all analysis. We note that no specialized packages are required to implement the rxCOV 
metric itself.

Data availability
The simulated and experimental data supporting the development and findings of this work are available from 
the corresponding author upon reasonable request.
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