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Identification of a particle 
collision as a finite‑time blowup 
in turbulence
Seulgi Lee 1 & Changhoon Lee 2*

We propose an Eulerian approach to investigate the motion of particles in turbulence under the 
assumption that the motion of particles remains smooth in space and time until a collision between 
particles occurs. When the first collision happens, particle velocity loses C1 continuity, resulting in 
a finite‑time blowup. The corresponding singularities in particle velocity gradient, particle number 
density, and particle vorticity for various Stokes numbers and gravity factors are numerically 
investigated for the first time in a simple two‑dimensional Taylor‑Green vortex flow, two‑dimensional 
decaying turbulence, and three‑dimensional isotropic turbulence. In addition to the critical Stokes 
number above which a collision begins to occur, the flow condition leading to collision is revealed; 
particles tend to collide in very thin shear layer constructed by two parallel same‑signed vortical 
structures when Stokes number is above the critical one.

Particle-laden turbulence is frequently observed in daily life and industrial applications such as droplets settling 
in clouds and precipitation processes, particles sedimenting in river, aerosol pollutants in the air, fuel droplets 
in a diesel engine, and particles in a chemical reactor. Often, collisions between particles play a critical role in 
the determination of particle behavior. A good example is rain formation in which the collision rate between 
settling droplets is critically affected by background  turbulence1–10.

For decades, the preferential concentration or clustering of inertial particles, which has been identified to 
be responsible for enhanced collision between particles, has been actively investigated using direct numerical 
simulation (DNS)11–19. The primary mechanism of the preferential concentration in the absence of gravity is 
the centrifuge effect of the inertial particles around rotating structures of turbulence. It is well characterized by 
the ratio of the particle response time scale τp to the fluid time scale τf  , known as the Stokes number St = τp/τf  . 
Especially when St ∼ 1 , preferential concentration is most pronounced in regions where fluid rotation is weak, 
but straining motion is not. The interaction between laden particles and turbulent coherent structures prefer-
entially determines the accumulation  pattern20,21. Moreover, when the settling motion of inertial particles due 
to gravity is dominant, a new type of preferential accumulation in columnar structures was  observed10,19,22,23. 
Such a clustering naturally leads to more collision between particles. Although numerous studies on particle 
clustering revealed the physical mechanism and provided clues on how collision modeling can be improved, a 
full understanding of physical mechanism of collision lacks.  Reference24 attempted to investigate the collision 
mechanism tracking colliding finite-sized particles in direct numerical simulation of particle-laden isotropic 
turbulence. They showed that depending on Stokes number colliding pattern varies. However, an investigation of 
a collision event in the Lagrangian simulation of particles has limitation since it requires a luck to have a collision 
and thus it needs a large number of particles to be tracked to increase the chance of collision.

Equations of particle motion considered in this study are given by

where r and v are the position and velocity of a particle, respectively. u is fluid velocity at the particle’s position, 
which is a solution of Navier–Stokes equation and g is the gravitational acceleration vector. τp is called the relaxa-
tion time of a small spherical particle defined by τp = 2ρpa

2/9ρν with ρp , ρ , ν and a denoting particle density, 
fluid density, fluid viscosity, and the particle radius. Equation (1) is valid under the point-particle approximation 
that the particle size is much smaller than the smallest flow length scale such as the Kolmogorov length scale 
when the density ratio of a particle relative to fluid is much larger than 1 so that all other forces such as the Basset 

(1)
dr

dt
= v,

dv

dt
=

u(r, t)− v

τp
+ g ,

OPEN

1Department of Mechanical Engineering, Yonsei University, Seoul 03722, South Korea. 2Department of Mechanical 
Engineering & School of Mathematics and Computing, Yonsei University, Seoul 03722, South Korea. *email: 
clee@yonsei.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-27305-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |          (2023) 13:181  | https://doi.org/10.1038/s41598-022-27305-5

www.nature.com/scientificreports/

history forces, the added mass and the fluid acceleration are negligible. It should be noted that when the density 
ratio is very large such as an order of 1000 (water droplet in the air), a small particle of order of 10 microns in 
cloud environment easily results in Stokes number of order one or larger.

An inspiring characterization of particle collision was proposed by ref.1 some time ago, who derived a formula 
for the collision rate of small inertial particles in turbulence using a form that traces random  trajectories25,26. 
They introduced a particle velocity field v(x, t) from a solution for small Stokes number of equations of par-
ticle motion. Particle velocity field v(x, t) defining the velocity of a particle located at x at time t satisfies the 
equation ∂tv + (v · ∇)v = (u− v)/τp + g  , which is equivalent to Eq. (1) under the assumption that the par-
ticle velocity field is a smooth function of space. Taking gradient of this equation yields, in a qualitative form, 
∂tσ + (v · ∇)σ + σ 2 = (s − σ)/τp where σ = ∇v and s = ∇u . (This is made more precise in the next section.) 
When |σ | ≪ τ−1

p  , it has a smooth evolution determined by σ(t) =
∫ t

dt′ exp[(t′ − t)/τp]s(t
′)/τp . If |σ | > τ−1

p  , 
however, σ 2 dominates and it may lead to an explosive evolution σ(t) ∝ (t0 − t)−1 that produces singularity in 
v(x, t) in finite time. Although this estimate is based on the order-of-magnitude analysis, the singularity of the 
velocity gradient of a particle implies that the particle velocity develops blowup and becomes multivalued; in 
other word, a particle can have two different velocities at the same position, implying collision between two par-
ticles. Although compressibility of particle velocity or particle number density has been numerically investigated 
in turbulence using the Lagrangian  method6,27–29 and the Eulerian  model30, a clear identification of collision has 
not been carried out. Therefore, we propose a more rigorous Eulerian approach in which the particle velocity 
field v(x, t) is directly handled for an investigation of collision process of particles.

Results
Eulerian simulation of particle motion. We introduce a direct Eulerian simulation of particle motion 
within finite time. Equation (1) allows the following solution for the particle velocity,

where w = gτp is the settling velocity of a particle in still fluid. The particle velocity is determined by accumu-
lated information of fluid velocity along a particle trajectory, which prevents further explicit expression. When 
τp is small, i.e., a particle is small or light, however, the following approximation can be derived using the Taylor 
expansion of u(r(t′), t ′) for small t ′ − t,

Given that terms on the right-hand side of Eq. (3) are smooth functions of space, the particle velocity is 
uniquely determined by the position. Hence, the so-called flow of particle v(x, t)  exists10. However, when τp is 
not small, such an approximation is not possible because of the nonlocal nature of the solution, Eq. (2). As far 
as the particle velocity v(x, t) remains smooth, Eq. (1) can be written in the Eulerian form as

Even when τp is not small, Eq. (4) is valid under the condition that the particle velocity remains smooth 
because the left hand side of Eq. (4) corresponds simply to the Taylor expansion of the smooth particle velocity 
along a particle path. As will be shown later, the particle velocity remains smooth for a while when it was initially 
smooth until a blowup occurs. Then, the asymptotic behavior of the particle velocity leading to a blowup can 
be investigated using Eq. (4).

Taking the gradient of Eq. (4) yields an equation for σij(= ∂vi/∂xj),

where D/Dt(= ∂/∂t + v · ∇) denotes the material derivative along a particle path and sij = ∂ui/∂xj . In the 
order-of-magnitude  sense10, Eq. (5) reduces to

where σ and s denote scalar variables representing σij and sij , respectively. When τp is small such that σ/τp ≫ σ 2 , 
the quadratic term is small, yielding

which remains finite since s is finite.
When τp is large such that σ/τp ≪ σ 2 , however, the right-hand side of Eq. (6) is much smaller than the left-

hand side, yielding a solution that might blow up in finite time,
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This kind of behavior leading to a blowup of the gradient of a solution is found in a solution to the inviscid 
Burgers equation when a shock  develops31.

Reference10 extended this analysis to further show that even when τp is large, the finite-time blowup can 
be suppressed when gravity is strong or a nondimensional parameter called the Froude number defined by 
Fr ≡ η/(gτ 2η ) is much smaller than one. Here, η and τη are the Kolmogorov length and time scales. This implies 
that when gravity is sufficiently strong, the particle velocity may remain smooth. However, all these estimates 
are qualitative based on the order-of-magnitude analysis.

For a more rigorous investigation, Eq. (5), which is the tensorial form of Eq. (6), should be considered for 
analysis, indicating that the behavior of a solution cannot be simply estimated since the evolution of σij depends 
on the self-interaction between components of σij in a highly complex manner. It is also possible that quadratic 
nonlinearity does not always lead to a blowup, owing to the depletion of nonlinearity observed in the solution 
of the Euler  equation32–34. Only a full numerical investigation of Eq. (4) can reveal the accurate behavior of a 
solution including the possibility of a blowup.

Three kinds of background flow considered. To study a complete description of finite-time blowup 
of particle motion, we propose a direct simulation of Eulerian equation of particle velocity field, Eq. (4) for the 
given solution to the Navier–Stokes equation u(x, t) . In this study, we consider three types of the background 
flow in a cubic domain as described below.

2D Taylor–Green vortex flow. A two-dimensional exact solution to the Navier–Stokes equation in a periodic 
domain, [0, 2π]2 is given by

indicating a slowly decaying vortex flow for small ν.

2D decaying turbulence. Two-dimensional velocity field is given by u(x1, x2, t) = −k×∇ψ with k denoting 
a unit vector in x3−direction. The stream function ψ satisfies ∇2ψ = −ω , where the vorticity ω(x1, x2, t) is 
obtained from solving

in  a  p er io d ic  domain ,  [0, 2π]2  .  The  in i t i a l  ens t rophy  sp e c t r um i s  sp e c i f i e d  by 

Eω(κ , 0) =
am
2

u20
κp

(

κ
κp

)2m+1
exp

[

−
(

m+ 1
2

)

(

κ
κp

)2
]

 , where κ = |κ | with κ denoting the wavenumber vector. m 

and am = (2m+ 1)m+1/2mm! are the shape parameter and the normalization constant, respectively. We set 
u0 = 10,m = 3, κp = 10 and the detailed description is found in ref.35.

3D isotropic turbulence. In a periodic cubic domain [0, 2π]3 , the three-dimensional velocity field u(x, t) is 
obtained from solving the continuity and Navier-Stokes equations,

where p is the pressure, and f  is a large-scale random force required to maintain stationary  turbulence15,36. 
Parameters of f  are chosen such that the Reynolds number based on the Taylor-scale, Re� , is maintained at 14, 
which is intentionally set to be low to capture the blowup behavior well within the limited resolution. See “Meth-
ods” section for details of simulation methods and the definitions of the relevant nondimensional parameters.

Particle velocity fields near a collision. To study the collision process of particles, we introduce a direct 
Eulerian simulation of particle motion within finite time (Eq. 4). Figure 1 shows the results of flow fields just 
before a blowup in the three background flows to provide the overall idea of a blowup visually. The region 
denoted by negatively large value of the divergence of particle velocity (Fig. 1a–c) or locally large value of the 
particle number density (Fig.  1d–f) corresponds to the place where a blowup is going to occur. As is well-
known10,21,23, particles with inertia tend to cluster in the region with weak fluid rotation but with strong straining 
motion. A blowup seems to occur in the region with strong compressive and weak stretching motion marked 
by a thin long region (Fig. 1), commonly for all three kinds of flow. Indeed, a blowup is easily identified in the 
Eulerian simulation of particle motion through an investigation of particle velocity field and particle number 
density distribution, although the simulation is valid only until the first blowup occurs since the simulation 
blows up numerically as well. In our investigation, we did not consider the size of a particle although the finite 
size shortens the collision time a little.

(8)σ(t) ≃
1

t − tc
.

(9)u1 = e−2νt cos x1 sin x2, u2 = −e−2νt sin x1 cos x2,

(10)
∂ω

∂t
+ (u · ∇)ω = ν∇2ω

(11)∇ · u =0,

(12)
∂u

∂t
+ (u · ∇)u =−

1

ρ
∇p+ ν∇2u+ f
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Behavior of particle velocity divergence. A blowup can be identified in the behavior of the divergence 
of particle velocity (Fig. 1a–c). The evolution equation for the divergence of particle velocity is obtained through 
taking the trace of the evolution equation of particle velocity gradient (Eq. 5),

since sii = 0 due to incompressibility of fluid flow. The solution to Eq. (13) with the initial condition 
σii(0) = sii = 0 can be expressed by

indicating that the behavior of the quadratic nonlinear term along a particle path is playing an important role 
in the blowup process of σii . For small τp , the integral can be approximated to yield

where σA
ik is the skew-symmetric part of σik called the rotation rate tensor and σ S

ik is the symmetric part of σik 
called the strain rate tensor. Given that σA

ik ≃ sAik and σ S
ik ≃ sSik for small τp , Eq. (15) suggests that an accumulation 

of particles quantified by negative divergence would occur in the place where the straining motion dominates 
the rotational motion, but this does not lead to a blowup.

When τp is large, however, the exponential function decays very slowly in the integral of Eq. (14), allowing

clearly indicating that a blowup could indeed occur through the quadratic nonlinearity of σ S
ik since σii = tr(σ S) 

in the particle accumulation process. Furthermore, σii =
∑D

j=1 �j , where D is the dimension of space, and �j is 
the eigenvalues of σ S

ik with �1 > · · · > �D . Therefore, the most negative eigenvalue �D would blow up when a 
blowup of divergence occurs.

For an identification of a blowup, the temporal behavior of the L∞ norm of |�D| was numerically investigated 
for the three kinds of flow (Fig. 2a–f). When a blowup (see solid lines in Fig. 2a–f) occurs, �D exhibits the fol-
lowing behavior commonly for all three kinds of flow,

(13)
Dσii

Dt
+ σikσki = −

σii

τp
,

(14)σii(t) = −

∫ t

0
exp

(

t ′ − t

τp

)

σikσki(r(t
′), t ′) dt′,

(15)σii(t) ≃ −τpσik(t)σki(t) = τp(σ
A
ikσ

A
ik − σ S

ikσ
S
ik),

(16)σii(t) ≃ −

∫ t

σikσki(t
′) dt′ = −

∫ t

σ S
ikσ

S
ik − σA

ikσ
A
ik dt

′,

(17)|�D| =
C�

tc − t
,

Figure 1.  Flow field just before a particle collision. (a, d) 2D Taylor–Green vortex flow. (b, e) 2D decaying 
turbulence. (c, f) 3D isotropic turbulence. Top panels (a–c) present the divergence of particle velocity (solid 
contour), color contours of fluid vorticity ω and particle velocity vectors. Bottom panels (d–f) present particle 
number density normalized by initial particle number density, n/n0 . St = 0.8 and W = 0 for all cases.
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where the critical time tc is estimated through an extrapolation of 1/|�D(t)| . Figure 2a–f clearly confirms that 
there exists the critical Stokes number Stc , above which a blowup occurs, and that the blowup occurs earlier for 
a larger St. When St > Stc , implying that the first term on the right-hand side of Eq. (4) is small, a singularity 
similar to the Burger’s shock naturally forms. When St < Stc , however, the first term on the right-hand side of 
Eq. (4) obviously regularizes the solution by suppressing the divergence of the particle velocity since for small τ 
the particle velocity field tends to approach the fluid velocity which is divergence-free.

When gravity is considered and thus particles settle, the blowup is delayed for the same St, and even a blowup 
which occurred in the absence of gravity is not observed (see cases with St = 0.4 for all three flows in Fig. 2a–f). 
This is consistent with the theoretical estimation  by10 in that as gravity becomes stronger, the flow of particles is 
observed in the wider range of St.

The critical time tc estimated from the behavior of 1/|�D| as a function of St for various range of W (Fig. 2g–i). 
For the estimation of Stc , a fitting function of tc/tf = a/ sinh(St − Stc)+ b was adopted. Obtained fitting param-
eters, Stc , a and b, are listed in Table 1. It is noteworthy that Stc = 0.194 for W = 0 in 3D isotropic turbulence, 
while Stc = 0.425 and 0.511 for W = 20 and 40, respectively, implying that the first collision between particles 
could happen at this critical Stokes number, although it might be rare.

Behavior of particle number density. When the divergence of particle velocity blows up, the particle 
number density also blows up (Fig. 1d–f). The conservation equation for particle number density n(x, t) reads

which can be rewritten as

(18)
∂n

∂t
+∇ · (vn) = 0,

Figure 2.  Identification of a particle collision in Eulerian simulation. Eulerian simulation of particle motion 
used three kinds of background flows such as 2D Taylor–Green vortex flow (a, d, g), 2D decaying turbulence 
(b, e, h) and 3D isotropic turbulence (c, f, i). (a–f) Time evolution of maximum absolute negative eigenvalue for 
various Stokes numbers with gravity. The solid lines denote blowup, and the dashed lines indicate no blowup. 
Top panels (a–c) display the results in the absence of gravity, and bottom panels (d–f) shows the results in the 
presence of gravity. (g–i) Critical time as a function of Stokes number St according to the gravity parameter W. 
Fitting lines are tc/tf = a/ sinh(St − Stc)+ b.
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Therefore, the solution for the uniformly distributed initial density n0 can be expressed as

If ∇ · v blows up as ∇ · v ∼ 1/(t − tc) , the solution of Eq. (20) can be obtained,

or

displaying the behavior similar to that of divergence or �D . Numerical confirmation of this behavior will be 
given below.

Behavior of particle vorticity. If particle velocity is smooth, particle vorticity can be defined by 
ωp ≡ ∇ × v . From now on we discuss the evolution of ωp near a blowup. Figure 3 shows the fluid and particle 
vorticity fields just before a blowup for 2D turbulence and 3D isotropic turbulence. Near the position of a blowup 
marked by a black dot, fluid vorticity does not show any pronouncing behavior, while particle vorticity appears 
to be intensified for both 2D turbulence and 3D isotropic turbulence since ωp(x, 0) = ω(x, 0) with ω denot-
ing fluid vorticity. Furthermore, a blowup seems to occur in a thin shear layer formed by two parallel vortices, 
commonly in 2D turbulence and 3D isotropic turbulence. In 2D Taylor–Green vortex flow, however, no such 
intensification of particle vorticity was observed since near the blowup, the flow field is irrotational due to the 
symmetric distribution (Fig. 1).

To understand this growing behavior of particle vorticity, we consider the evolution equation of ωp obtained 
by taking the curl of Eq. (4),

The first and second terms on the right side imply the vortex stretching by straining motion and the vortex 
intensification by compression, which is usually absent in incompressible fields. Blowup happens in a thin vortex 
layer (Fig. 3), where converging motion is dominant over stretching motion. Therefore, the vortex stretching 
term can be neglected near the blowup. Then, multiplying ωp to both sides of Eq. (23) yields

Near a blowup |∇ · v| ≫ τ−1
p  and thus the last term on the right side of Eq. (24) is negligible. Then, for 

∇ · v ∼ 1/(t − tc) , the solution to Eq. (24) can be easily obtained,

where Cω is a constant. This blowup behavior of ωp is similar to that of ∇ · v and n. Indeed, �D , n and ωp show 
similar finite-time blowups with a proper constant (Eqs. 17, 22, 25). Numerically estimated constants for the three 
kinds of flow are listed for St = 0.6, 1 and 2 and various values of W in Table 2. All constants are found to be of 
order 1 for the range of St and W considered. Only C� for 3D isotropic turbulence is around 2.5, which shows 
a little excursion from the values for 2D Taylor–Green flow and 2D decaying turbulence, while other constants 

(19)
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(25)ωp =
∣

∣
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∣
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Table 1.  Critical Stokes number at various gravity factors for three kinds of flow. Critical Stokes number 
is obtained by fitting data (Fig. 2g–i) by tc/tf = a/ sinh(St − Stc)+ b . The critical Stokes numbers for 3D 
isotropic turbulence are highlighted in bold face.

2D T-G vortex 2D decaying turbulence 3D isotropic turbulence

W = 0 W = 1 W = 2 W = 0 W = 2 W = 5 W = 0 W = 10 W = 20 W = 40

Stc 0.232 0.254 0.328 0.250 0.408 0.575 0.194 0.264 0.425 0.511

a 0.145 0.149 0.159 0.182 0.188 0.178 0.093 0.093 0.112 0.159

b 1.042 1.044 1.053 0.957 0.963 1.030 0.770 0.785 0.793 0.802
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appear to be universal over the three kinds of flow. In particular, all constants for 3D isotropic turbulence show 
strong universality over the ranges of St and W.

Equations (17), (22), and (25) are rearranged for easy numerical validation of the blowup behavior,

demonstrating a universal relation, for which numerical validation for St = 0.6, 1 and 2 and for various values of 
W is provided in Fig. 4. This clearly confirms the near-blowup behavior of those variables for the three kinds of 
flow. Even with the relatively limited resolution for 3D isotropic turbulence, the blowup behavior is well captured 
although the behavior very near tc is untraceable further.

(26)
C�

|�D|tc
=

Cnn0

n
=

Cω

ωptc
= 1−

t

tc
,

Figure 3.  Vorticity fields just before a particle collision. (a, b) Fluid vorticity fields. (c, d) Particle vorticity 
fields. Fluid and particle vorticity fields at the same instant in 2D decaying turbulence (a, c) and 3D isotropic 
turbulence (c, d). The black dot is located where a blowup is going to occur.

Table 2.  Constants of the limiting behavior of �D , n and ωp for various St and W in three kinds of flow. Only 
one W is applied for each dimension.

St

W C� Cn Cω

2D 3D 2D T-G 2D DT 3D IT 2D T-G 2D DT 3D IT 2D DT 3D IT

0.6 0 0 1.05 1.32 2.43 0.76 0.77 0.68 0.83 1.20

0.6 1 10 1.09 1.52 2.60 0.79 1.39 0.70 1.35 0.91

0.6 2 20 1.13 1.49 3.70 1.04 1.51 0.80 3.16 0.89

1.0 0 0 1.04 1.16 2.10 0.63 0.65 0.63 0.72 0.92

1.0 1 10 1.05 1.18 2.18 0.65 0.74 0.65 0.68 0.70

1.0 2 20 1.08 1.25 2.39 0.71 0.79 0.69 0.96 0.68

1.0 5 40 1.09 1.20 2.56 1.81 0.85 0.76 0.52 0.72

2.0 0 0 1.01 1.09 2.01 0.56 0.66 0.60 0.57 0.79

2.0 2 20 1.03 1.12 2.05 0.59 0.68 0.63 0.68 0.65
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Condition for particle collision in 3D turbulence. Since a finite-time blowup implies a collision 
between particles, we can investigate the flow condition for which a collision between particles could occur. 
As we confirmed that a blowup occurs in a thin vortex layer of fluid and particle from Fig. 3, we examine more 
examples for universality of this scenario of collision. Since particle vorticity is usually unavailable, fluid vorticity 
distribution near a blowup for three different example 3D isotropic turbulence is provided in terms of the mag-
nitude of vorticity in Fig. 5. A black dot indicates the location where it is on the verge of a blowup in each flow. 
It can be confirmed that a blowup or collision is likely to be occur in a pancake-type thin flat vortex structure 
induced by nearby vortical structures. It definitely serves as a qualitative condition for a collision.

For a quantitative condition for a collision, we investigate the invariants of the fluid velocity-gradient 
 tensor37,38. The fluid velocity gradient sij(= ∂ui/∂xj) can be decomposed into

ω
ω

λ
λ

Figure 4.  Numerical validation of the blowup behavior of �D , n and ωp . (a, d) 2D Taylor–Green vortex flow. (b, 
e, g) 2D decaying turbulence. (c, f, h) 3D isotropic turbulence. The solid line denotes 1− t/tc.

Figure 5.  Isosurfaces of |ω| in three different 3D isotropic turbulence (a–c). A black dot denotes the location 
where a blowup or particle collision is going to occur for most Stokes numbers greater than the critical Stokes 
number at W = 0 . Commonly, a thin vortex layer was found near a blowup.
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with

where sSij and sAij  are the symmetric and the skew-symmetric parts of sij , implying the strain-rate tensor and the 
rotation tensor, respectively. The eigenvalues �S of sSij , all real, satisfy the following characteristic equation,

where PS,QS and RS are the first, second and third tensor invariants, respectively, given by

with

where Eq. (30) is owing to the incompressibility of fluid and −4νQS = ǫ , local dissipation rate. For sAij  , a similar 
characteristic equation holds with the corresponding invariants PA,QA and RA , but PA = RA = 0 due to the 
skew-symmetricity of sAij  and

which is positive definite. Therefore, �A = 0,±i|ω|.
Distributions of joint probability density functions (PDF) between RS and QS , and QA and −QS for 3D isotropic 

turbulence are demonstrated in Fig. 6 in which collision events observed in 10 different 3D isotropic turbulences 
are marked in colored dot. Two observations can be made: First, a collision tends to occur in the place of locally 
high strain but relatively low rotation, which is rarely found as shown in Fig. 6b. Second, most collision events 
are found closely to the right branch of the dashed line in the joint PDF between RS and QS (Fig. 6a). The discri-
minant of the characteristic equation (Eq. 29), (27/4)R2

S + Q3
S , vanishes on both branches of the dashed line and 

sign(�S2) = sign(RS) . Therefore, on the right branch of the dashed line,

implying a straining field with one compressive direction and two equally stretching directions. All of these 
clearly suggest that a collision preferably occurs in a pancake-like vortex undergoing strong flattening.

Discussion
To investigate the near-collision behavior of particles in particle-laden turbulence, we studied an Eulerian form 
of equation of motion of particles (Eq. 4), which was derived under the assumption that the particle velocity is a 
smooth function of space. Using high-resolution simulations of the 2D Taylor–Green vortex flow, 2D decaying 
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Figure 6.  Joint PDF of (a) RS vs. QS , (b) QA vs. −QS . All quantities are normalized by 〈QA〉 , which is the 
averaged squared magnitude of the fluid vorticity. Colored dots indicate collision events for St = 1 and W = 0 
observed in 10 different 3D isotropic turbulent flows.
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turbulence and 3D isotropic turbulence, we could accurately track a path leading to a blowup of the gradient of 
particle velocity, which was identified as a signature of particle collision.

The temporal behavior of ∼ 1/(tc − t) predicted to occur in the gradient of particle velocity from an order 
of magnitude analysis by ref.1 was found to hold in the divergence of particle velocity and particularly the most 
negative eigenvalue of the particle velocity gradient tensor when Stokes number of a particle is greater than the 
critical Stokes number which was also identified from our investigation. From a parametric study with Stokes 
number and gravity factor for the three different kinds of flow, we observed that as Stokes number increases, the 
blowup or collision occurs earlier and strong gravity delays the blowup.

When a blowup occurs, along with the divergence of particle velocity, particle number density also blows up 
in the similar manner, commonly for all three kinds of flow. Although our Eulerian simulation of particle motion 
is valid until the first blowup occurs somewhere, this direct calculation of particle number density could be very 
useful for multifractal modeling of uneven distribution of  particles10,20,21,39.

Particle vorticity, which means spin velocity of a particle, exhibits similar blowup in both 2D decaying tur-
bulence and 3D isotropic turbulence when the divergence of particle velocity blows up. From the equation for 
particle vorticity and simulation results, we identified that particle vorticity blows up through vortex intensifica-
tion owing to compressive field of particle velocity. This is different from the finite-time blowup of vorticity of the 
solution to Euler equation through vortex stretching, which is possible only in 3D or axisymmetric  flows40–48. It is 
interesting to notice from the equation for particle vorticity (Eq. 23) that the blowup due to compressive motion 
is suppressed in the incompressible Euler equation by pressure field, enforcing the divergence-free velocity field. 
In the particle motion, the Stokes drag force plays a similar role to pressure when Stokes number is below the 
critical Stokes number.

Finally, we investigated the flow condition most probable for particle collision in 3D isotropic turbulence. 
From various cases, we noticed that a thin flat vortical structure is the location where a particle collision is most 
likely to happen (Fig. 5). From a more detailed investigation of the invariants of the fluid velocity-gradient tensor, 
we confirmed that a collision preferably occurs in a pancake-like vortex under the compressive strain.

Our results of the near-collision behavior of particles are in principle valid for infinitesimally small particles. 
When the size of a particle is finite, however, the effect of size such as the lubrication forces between colliding two 
particles should be considered in the study of the near-collision behavior. Several collision models accounting for 
the lubrication forces before collision and the contact forces during collision have been proposed from particle-
resolved simulations based on the immersed boundary  method49–53. However, given that the lubrication forces 
are non-negligible only when the gap between the colliding particles is much less than the radius of a particle, 
the near-collision behavior found in our study remains valid until the contact of two particles occurs as long as 
the particle size is much smaller than the flow length scale such as the Kolmogorov length scale.

We demonstrated from an Eulerian investigation of particle velocity that a blowup leading to particle colli-
sion can be accurately identified. This approach can be extended to an investigation of fractal structure of bubble 
motion in turbulence the behavior of which is different from that of heavy particles in that small bubbles hardly 
collide with each other due to small Stokes number.

Methods
Direct Eulerian simulations of particle‑laden flows. Equations (4), (10), (11) and (12) are solved by 
a spectral method to maintain the spectral accuracy, and a time advancement is accomplished using a third-
order Runge-Kutta method. Spatial resolution is kept at 40962 for the Taylor–Green vortex and 2D decaying 
turbulence and 2563 for 3D isotropic turbulence. For the identification of the flow condition for a collision, an 
investigation of the invariants of the fluid velocity-gradient tensor was carried out using 1283 resolution for 3D 
isotropic turbulence at Re� = 70 . The Eulerian particle equation is solved in the frame moving at the settling 
velocity to avoid accumulation of numerical errors. In all cases, the initial condition for the particle velocity is 
v(x, 0) = u(x, 0)+ w , which is smooth in space. The main nondimensional parameters are the Stokes num-
ber defined by St ≡ τp/τf  and the normalized settling velocity W ≡ |w|/vf  , where τf  and vf  are the flow time 
and velocity scales, respectively. For the 2D Taylor–Green vortex and 2D decaying turbulence, τf = 1/ωrms and 
vf = urms where ωrms and urms are root-mean-square vorticity and velocity of fluid, respectively. For the 3D iso-
tropic turbulence, τf = τη and vf = η/τη.

Condition for resolution. To identify a blowup, we track large amplitude anomaly of the gradient of par-
ticle velocity, particularly the most negative eigenvalue of the symmetric part of the particle velocity gradient 
tensor since a blowup would occur when particles accumulate instead of creating vacuum. Figure 7 shows an 
example of a blowup in the 2D Taylor–Green vortex, in which the most negative eigenvalue �2 blows up in finite 
time. It clearly indicates 1/(t − tc) behavior as t → tc (Fig. 7b) and as the resolution increases such behavior is 
better captured near tc (inset of Fig. 7a). Extrapolation of the linearly decreasing behavior of 1/|�2| near tc also 
determines tc (Fig. 7a). Although an adoption of an adaptive mesh would yield better numerical evidence for a 
 blowup45,48, the current resolution seems to be sufficient for the confirmation of the asymptotic scaling behavior 
as demonstrated in Fig. 4.
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