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External validation of binary 
machine learning models for pain 
intensity perception classification 
from EEG in healthy individuals
Tyler Mari  *, Oda Asgard , Jessica Henderson , Danielle Hewitt , Christopher Brown , 
Andrej Stancak  & Nicholas Fallon 

Discrimination of pain intensity using machine learning (ML) and electroencephalography (EEG) has 
significant potential for clinical applications, especially in scenarios where self-report is unsuitable. 
However, existing research is limited due to a lack of external validation (assessing performance 
using novel data). We aimed for the first external validation study for pain intensity classification with 
EEG. Pneumatic pressure stimuli were delivered to the fingernail bed at high and low pain intensities 
during two independent EEG experiments with healthy participants. Study one (n = 25) was utilised 
for training and cross-validation. Study two (n = 15) was used for external validation one (identical 
stimulation parameters to study one) and external validation two (new stimulation parameters). 
Time–frequency features of peri-stimulus EEG were computed on a single-trial basis for all electrodes. 
ML training and analysis were performed on a subset of features, identified through feature selection, 
which were distributed across scalp electrodes and included frontal, central, and parietal regions. 
Results demonstrated that ML models outperformed chance. The Random Forest (RF) achieved the 
greatest accuracies of 73.18, 68.32 and 60.42% for cross-validation, external validation one and 
two, respectively. Importantly, this research is the first to externally validate ML and EEG for the 
classification of intensity during experimental pain, demonstrating promising performance which 
generalises to novel samples and paradigms. These findings offer the most rigorous estimates of ML’s 
clinical potential for pain classification.

Establishing an accurate assessment of subjective pain intensity is imperative for the diagnosis, prognosis and 
treatment of chronic pain conditions1,2. Current pain assessment methods are contingent on self-report meas-
ures, which are not appropriate for individuals who are unable to communicate their pain precisely or entirely, 
such as those with dementia3,4, disorders of consciousness (e.g., coma)3,5, cognitive impairments3,6, non-verbal 
individuals (e.g., non-communicative palliative care patients)3,7, and children (e.g., infants and neo-natal popula-
tions)3,8. Furthermore, pain is an inherently subjective and multifaceted sensory process, which is challenging to 
measure objectively1,4. Taken together, the complexity of accurate pain assessment, particularly in populations 
with a reduced capacity for self-report, demonstrates the necessity for improved objective evaluation methods.

Recent endeavours to mitigate the necessity of self-report methods have attempted to elucidate biological 
markers of pain intensity using neuroimaging (see9,10). ML analysis of neuroimaging data further enables the 
identification of pain intensity biomarkers. ML refers to algorithms that identify and learn patterns from data 
to make predictions on novel inputs without being explicitly programmed, which is achieved using optimisa-
tion, statistical and probabilistic techniques11–13. The primary aim of supervised ML is to identify a function, f, 
that achieves the best mapping of an input X, to an output Y (see Eq. 1)13,14. To identify the optimal function, 
supervised ML algorithms are trained using labelled data to minimise a loss (error) function by altering internal 
parameters15,16. Following training, the model is evaluated on novel data to assess its generalisability.

Pain-related neural activation forms a distributed network (e.g., neurologic signature17)18, and includes pri-
mary (SI) and secondary somatosensory cortex (SII), insula, thalamus, anterior and midcingulate cortex, 

(1)f : X → Y
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prefrontal cortex, amygdala, middle frontal gyrus, cerebellum and brainstem19–21. In addition, different regions 
encode specific characteristics of pain; SI and SII encode temporal, spatial and intensity features22,23, whilst the 
insula contributes to encoding stimulus salience24.

Regarding EEG, pain modulates cortical oscillations in theta, alpha, beta and gamma frequency bands across 
various cortical sites including frontal, central, parietal, temporal and occipital regions25–27. Altered theta oscilla-
tions (4–7 Hz) are commonly observed in resting state EEG of individuals with chronic pain25, e.g., in fibromy-
algia syndrome patients28. Moreover, augmented theta oscillations have been observed during pain and touch 
stimulation over central and parietal regions, with larger increases during painful stimulation29. Additionally, 
tonic pain stimulation is associated with decreased alpha and increased beta band power (see25–27 for reviews). 
Research has demonstrated decreased global alpha and increased beta band power in response to tonic cold 
pain stimulation30. Source analysis identified pain-related oscillations predominantly in prefrontal cortex, SI, 
SII, insular cortex and cingulate cortex30. Recently, peak alpha frequency has been shown to reliably predict pain 
sensitivity31,32. Finally, gamma oscillations over SI have been shown to predict subjective pain intensity33,34 and 
stimulus intensity33. Consequently, EEG features may be used as a neural marker of pain intensity.

Previous research has successfully implemented ML to identify pain intensity using EEG10. Our recent system-
atic review demonstrated that EEG and ML could discriminate the presence or absence of pain with accuracies 
between 82.73 and 95.33% and predict pain intensity with accuracies between 62 and 100%10. Moreover, ML 
classified low and high pain intensity, with the best-performing models achieving cross-validated accuracies of up 
to 62%, 69.20%, 70.36%, 83.50%, 86.30% and 89.58%35–40. Overall, these findings demonstrate the potential of ML 
for identifying pain intensity in healthy individuals, with all studies performing significantly better than chance.

Specifically, Misra and colleagues40 used a Gaussian support vector machine (SVM) to successfully classify 
low and high pain using theta and gamma power over the medial prefrontal region and lower beta power over 
the contralateral sensorimotor region. Moreover, a naïve Bayes classifier has been used to discriminate pain 
intensity using single-trial laser-evoked potentials39. That study found that low and high pain could be classified 
with accuracies greater than 80% for both within-subject and cross-subject classifications. In the same study, the 
continuous pain rating (0–10) was predicted with a mean absolute error of less than 2 for both within-subject 
and cross-subject levels. Furthermore, similar research used EEG and a random forest (RF) to classify pain 
intensity into 10 classes (1–10); achieving accuracies close to 90% for both within-subject and cross-subject 
classifications41. Interestingly, the study evaluated the relative contributions of each frequency band to the clas-
sification performance and found that all frequency bands were important to the classification (delta, theta, alpha, 
beta, gamma), with gamma being the most important to the classification performance. Therefore, including a 
diverse array of frequency bands and electrode locations would likely achieve optimal classification performance.

Despite previous research demonstrating promising performance, it is unclear if these models will successfully 
generalise to new samples. No studies in the existing literature have reported external validation; the process 
of evaluating a model using novel data, collected at a different time, geographical location, or using a differ-
ent experimental paradigm42. Previous research only assessed cross-validation performance. Cross-validation 
involves partitioning a single dataset into training and testing sets, such that the test set is used to estimate the 
model’s prediction error43. Although cross-validation is essential in model development, it can lead to overly-
optimistic estimates of model performance and overfitting (where the model learns idiosyncrasies in the train-
ing set, which diminishes performance on novel data)44–47. Consequently, the previous research findings are 
potentially inflated and may not be generalisable10, which is insufficient evidence for clinical translation48,49. 
However, a recent study found that pain-free sensorimotor peak alpha frequency could correctly classify pain-
sensitive individuals using an external validation paradigm32, providing evidence that EEG and ML could be 
effectively combined to identify pain outcomes. Nevertheless, external validation has never been attempted for 
investigations of pain intensity classification.

The present study aimed to be the first to externally validate ML for EEG pain intensity classification, through 
a robust two-step process. Given the paucity of external validation research, we aimed (1) to train ML classifiers 
on EEG data to predict pain intensity (low, high) and evaluate the cross-validation performance, (2a) to externally 
validate the classifiers on data collected from a novel sample at a different time, which used identical stimulation 
and (2b) to externally validate the models on data obtained at a different time, which used different stimulation 
parameters. We conducted this multistep validation to thoroughly assess model performance and generalisability 
using seven well-researched supervised ML models. We hypothesised that all ML algorithms would classify pain 
intensity with performance metrics (accuracy and area under the receiver operating characteristics curve, here-
inafter AUC) greater than chance level (≈ 50%) on (1) cross-validation and (2a) external validation one (same 
stimulation parameters) and (2b) external validation two (different stimulation parameters).

Methods
Two independent experiments, separated by approximately 4 months, were conducted. Study one was used for 
training and cross-validation, whilst study two was used for external validation. Moreover, study two included 
external validation one, which used the same stimulus parameters as study one, and external validation two, 
which used different parameters (external validation datasets were collected simultaneously). Both studies were 
processed using a similar pipeline but were managed independently to prevent data leakage50, which could have 
biased the external validation. The classification was performed across all trials, pooled from every participant. 
The EEG data is freely available through the Open Science Framework (https://​osf.​io/​uqt9z/).

Participants.  Forty healthy subjects (29 female) aged between 18 and 37 years were recruited across both 
studies using opportunity sampling. Twenty-five participants (19 female) aged 18–37 years (Mean = 23.64 years, 
SD = 4.04) completed study one, whilst 15 participants (10 female) aged between 19 and 28  years 
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(Mean = 22.13 years, SD = 2.95) completed study two. Both studies were temporally independent, with different 
participants in each study. Only one participant from study one also completed study two. Participant overlap 
was not a concern, as we aimed to temporally validate the ML models. The sample size was consistent with previ-
ous research (See10). All participants had normal or corrected-to-normal vision, and no neurological disorders, 
chronic pain disorders or acute pain at the time of participation. Participants were reimbursed £10 per hour for 
their time. Participants provided fully informed written consent at the beginning of both experiments. Both 
studies achieved ethical approval from the University of Liverpool Health and Life Sciences Research Ethics 
Committee. All methods in both studies were conducted in compliance with the Declaration of Helsinki.

Pneumatic pressure stimulator.  For both studies, tonic pain stimulation was delivered to the finger-nail 
bed of the left-hand index finger using a custom-built pneumatic pressure stimulator (Dancer Design, St. Helens, 
UK), as utilised in previous pain research51. The pneumatic stimulator consisted of a pneumatic force controller, 
which directed compressed air from an 11.1-L aluminium cylinder into the stimulator, which lowered a 1 cm2 
probe to deliver the desired stimulation force. The stimulator was controlled using a LabJack U3 printed circuit 
board for interface. The pressure was limited to a maximum of 3.5 bar (9 kg/cm2) to prevent injury.

Experimental procedure.  Study one.  Following the EEG cap fitting, participants were seated 1-m from a 
19-inch LCD monitor inside a Faraday cage. Participants placed their left-hand index finger into an individual-
ised mould that correctly positioned the finger underneath the stimulator probe. A thresholding procedure was 
employed to identify participants’ pain threshold and high pain intensity stimulus. Participants were verbally 
instructed to rate the pain intensity of each stimulus on an 11-point visual analogue scale (0–10) by using the 
mouse in their right hand to click the desired rating. On the rating scale, 0 reflected no sensation, 3 represented 
pain threshold and 10 reflected extreme pain. Participants were informed that any rating below 3 represented 
non-painful sensations. Following the instructions, a staircase thresholding procedure was implemented. The 
stimulus intensity was initialised at 0.5 bar pressure and incremented in steps of 0.2 bar (0.1 if preferred at higher 
levels) up to a maximum of 3.5 bar. The intensity that elicited repeated responses of 6 (± 1) on the 11-point scale on 
three successive trials was used as the high pain intensity stimulus. Moreover, the stimuli intensity that produced 
a repeated rating of 3 was determined as the pain threshold. Finally, an additional stimulus intensity was defined 
as two-thirds of the participant’s pain threshold stimulus intensity and reflected non-painful touch stimulation.

During the experiment, participants were requested to focus on a fixation cross, displayed on the monitor to 
minimise eye movements. Each trial consisted of the stimulus delivery and the post-stimulus rating. The stimuli 
delivery consisted of the rise time (time for the stimulation to increase from 0 bar to the desired intensity) fol-
lowed by a 3-s hold time (duration the desired stimulus was delivered). For the rise time, the stimuli increased 
by 1/10th of the desired pressure every 0.1 s (to achieve the desired stimuli after 1-s). Subsequently, the stimulus 
intensity was maintained for 3-s before the probe was released, and a fixation cross was presented for a rest period 
of 5-s. Participants subsequently rated the pain intensity on a 101-point visual analogue scale, using the mouse in 
their right hand. The scale was anchored at 0, which reflected no sensation, and 100, which represented extreme 
pain. The rating phase continued until the participant successfully rated the stimuli. The rating phase was fol-
lowed by a 2-s rest period and instructions for participants to place their finger back into the mould if they had 
removed it. Participants underwent a further 2-s rest period before progressing to the next trial.

The experiment contained three blocks, lasting approximately 15-min each, separated by intervals of 
5–10 min. Forty trials with a minimum interstimulus interval (ISI) of 16-s were delivered per block, consisting 
of the three stimuli intensities. The stimuli were pseudo-randomised, such that no two consecutive trials consisted 
of the same intensity and that an equal number of stimuli were presented in each block. There were 13 trials of 
each of the two conditions and 14 trials of the remaining condition in each block, such that all stimuli condi-
tions were delivered 40 times over the entire study. Consequently, a total of 120 stimuli were delivered in the 
experiment. Following the completion of all blocks, the EEG cap was removed, and participants were debriefed.

Study two.  Study two used similar procedures to study one but consisted of different stimulation parameters. 
A 2 × 2 factorial design was employed with 4 conditions: low pain fast rise time, low pain slow rise time, high 
pain fast rise time, and high pain slow rise time. The low and high pain intensities were determined using the 
same thresholding procedure as study one. The high and low pain fast rise time conditions were identical to 
the stimulation in study one (1-s rise, 3-s hold). For the slow rise time conditions, the speed at which the probe 
lowered onto the left-hand index finger was reduced, increasing the rise time to three seconds. The stimuli 
increased from 0 bar to the desired intensity, in 1/30th increments of the desired stimuli every 0.1 s, until the 
desired intensity was reached and maintained for 3-s. After each stimulus, participants rated their pain on the 
same 101-point rating scale as study one.

Study two was comprised of three experimental blocks, lasting approximately 20-min each. Blocks were sepa-
rated by 5–10-min intervals. The experiment consisted of 144 trials, with 48 trials with a minimum ISI of 16 s 
in each block. Blocks consisted of 12 trials of the four conditions, which were pseudo-randomised using similar 
randomisation as study one. On completion of the experiment, the EEG cap was removed, and participants were 
debriefed. Both experiments were delivered using PsychoPy252.

EEG acquisition.  EEG recordings were continuously obtained using a 129-channel EGI System (Electrical 
Geodesics, Inc., Eugene, Oregon, USA) and a sponge-based Geodesic sensor net. Net positioning was aligned 
with respect to three anatomical landmarks: two pre-auricular points and the nasion. Electrode-to-skin imped-
ances were maintained below 50 kΩ for all electrodes throughout the experiment. A recording bandpass filter 
was set at 0.001–200 Hz, with the sampling rate set at 1000 Hz. Electrode Cz was set as the reference electrode.
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EEG pre‑processing.  EEG pre-processing was performed using BESA 6.1 (MEGIS GmbH, Germany). Firstly, 
low- and high-pass filters were applied at 70 Hz and 0.5 Hz, respectively. Secondly, a notch filter of 50 ± 2 Hz 
was implemented. Oculographic and electrocardiographic artefacts were removed using principal component 
analysis (PCA)53. Additionally, electrode channels containing large artefacts were interpolated to a maximum of 
10% of channels. None of the data in either study surpassed this threshold. Finally, the data were resampled to 
256 Hz. Consequently, according to Shannon Sampling Theory, the theoretical maximum frequency that could 
be assessed was 128 Hz in this study (sampling rate/2)54. Although, more conservative measures recommend a 
minimum sampling rate of 2.5 times the maximum frequency of interest; resulting in a maximum frequency of 
approximately 102 Hz55.

Spectral analyses were conducted using MATLAB 2020a (The MathWorks, Inc., Natick, Massachusetts, USA) 
and EEGLAB 2021.156. Firstly, power spectra density (PSD) was estimated using Welch’s method. The power 
spectra computation spanned − 4 to 6 s relative to the trial onset, in 1-s segments, shifted in 0.05-s increments. 
The data were smoothed using multi-taper Slepian sequences. Estimates of the PSD were computed between 
1 and 70 Hz, with a resolution of 1 Hz. The relative band power change was calculated across every time point 
and frequency, in the entire epoch using the event-related desynchronisation (ERD) method57 (See Eq. 2). The 
estimate of ERD at each datapoint (e.g., A in the equation) is calculated by subtracting the mean PSD of the 
baseline period (− 3.5 to − 0.5; R), followed by a numerical transform to give relative change in power as a per-
centage value.

Negative ERD values represent decreases of band power in the active, relative to the baseline period, indicating 
cortical activation, while positive values reflect band power increases, known as event-related synchronisation 
(ERS). For the ML analysis, ERD data were collapsed across established frequency bands theta (4–7 Hz), alpha 
(8–12 Hz), lower beta (16–24 Hz), upper beta (25–32 Hz) and gamma (33–70 Hz). Topographical maps, to illus-
trate power changes from baseline to both low and high pain stimulation conditions of study one are reported in 
the supplementary material for illustrative purposes. ERD visualisation was conducted and reported following 
recommendations from previous research57,58.

Classification procedure.  Firstly, we identified the trials relating to low and high pain conditions. In the 
current study, high and low pain samples were determined by the stimulation intensity rather than the subjective 
rating, as this may ultimately serve as a proxy measure for subjective reporting for populations who cannot accu-
rately report their pain intensity. Secondly, touch intensity trials from study one were removed as study two did 
not contain touch trials. EEG data from two participants in study one was heavily contaminated with artefacts. 
Both participants’ data were consistently contaminated with severe artefacts (e.g., muscle movement), which 
could not be resolved without exclusion. No threshold was used to determine exclusions in this instance, as it 
was evident from visual inspection that the data was not useable. Therefore, both participants were excluded, 
resulting in a final population size of 23. One participant was removed from study two due to corrupted data, 
which affected approximately 1/3 of the data. As a result, the final population was 14 in study two. All 14 par-
ticipants from study two contributed to both external validation one and two, as both datasets were collected 
during the same session.

Candidate features were created using the single-trial time–frequency transformed data from study one. We 
computed 15 candidate features for ERD outputs in each specified frequency band which were calculated over 
the entire trial window [− 4 to 6 s] for all 128 electrodes, resulting in 9600 candidate predictors. The features were 
primarily descriptive statistics of the relative band power changes in each frequency band including the mean, 
mode, median, minimum, maximum, standard deviation, root mean squared, variance, skewness, kurtosis, 
absolute mean, Shannon entropy, log energy entropy, range and squared mean values for the time window of 
each trial. Candidate features used in this study were selected based on previous pain research59,60, which were 
calculated using MATLAB built-in functions where possible. Moreover, the features used in this study have been 
extensively explored in other research domains61–64. We opted to include this selection of different candidate 
features as, due to the complexity of EEG and ML, it is challenging to predict the effectiveness of the features 
and algorithms prior to modelling.

Due to neural variability and volatility of single-trial EEG65–67, missing values and outliers (values beyond 
three median absolute deviations) were replaced using linear interpolation. Interpolated values were calculated 
from neighbouring non-outlier data per condition using the filloutliers MATLAB function. Outliers were inter-
polated as they do not follow patterns, which hinders ML performance68. Additionally, outlier management is 
essential for EEG, as artefacts include non-neural activity69. The data were interpolated to maximise the dataset 
size, as larger datasets are less susceptible to overfitting45. Overall, less than 10% (M = 9.84%, SD = 0.55%) of the 
data were interpolated.

The features were scaled between 0 and 1 and univariate feature selection was employed to rank feature impor-
tance. We opted for a data-driven approach, meaning that all candidate features (e.g., all electrode locations and 
frequency bands) were evaluated during feature selection. Following feature ranking, a form of sequential feature 
selection was implemented to identify the optimal number of features. Here, the models were trained and evalu-
ated using cross-validation with only one feature initially. Features were added sequentially until performance 
stabilised. Through this process, the highest-ranking 50 features were selected as this combination achieved 
near-optimal cross-validation performance without significantly increasing model complexity. The variables 
identified by the feature selection algorithm were distributed across various electrode locations and included 
features from frontal, central, and parietal regions. The electrode locations for all frequency bands assessed are 
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displayed in the supplementary material (Figure S1). Moreover, the number of trials after pre-processing for 
both studies are presented in Table 1.

ML was conducted using Scikit-learn, an open-source ML library written in Python, which offers efficient 
implementations of many ML algorithms70,71. We implemented an adaptive boosting algorithm (AdaBoost), 
linear discriminant analysis (LDA), logistic regression (LR), gaussian naïve Bayes (NB), random forest (RF), sup-
port vector machine (SVM), and an extreme gradient boosting algorithm (XGBoost) (see14,15,72 for overviews). 
Additionally, hyperparameter optimisation was performed on the cross-validation dataset using grid search, a 
common technique that assesses a fixed set of potential values for each hyperparameter and evaluates all possible 
combinations to identify the optimal configuration73. Grid search has been shown to improve ML performance 
over unoptimised parameters73, and previous research has implemented grid search40,74. The optimal hyperpa-
rameters (except for the NB, which does not require optimisation) are presented in Table 3 (see Discrimination 
and Calibration Results).

Model evaluation.  Cross-validation was performed using stratified k-fold validation, whereby the dataset 
is divided into k partitions, with one partition used for validation and the remaining for training. Each model 
is trained k times, with a different validation set at each iteration, meaning all data is used for validation43,50,75. 
Model performance is then averaged over all iterations. Stratified k-fold is advantageous over traditional k-fold 
as class distributions are preserved in each partition, rather than being random50,75. We set the value of k = 1043. 
The models were also assessed using a two-stage external validation procedure. For each validation, we com-
puted accuracy, precision, recall, F1, AUC and brier scores to assess performance76–79 (See Supplementary Mate-
rial for overviews). A flow chart of the classification procedure is presented in Fig. 1.

Table 1.   Number of events per condition for each validation procedure.

Condition Training and cross validation sets
External validation one set 
(identical stimuli)

External validation two set 
(different stimuli) Total

Low pain 919 503 504 1926

High pain 897 504 504 1905

Total 1816 1007 1008 3831

Figure 1.   Flow chart of the classification pipeline. The final dataset from study one was cleaned, and features 
of interest were extracted (1a). The dataset, which was comprised of all 23 participants’ data, was split into 10 
approximately equal folds (1b), with 9 folds used for training and 1 fold used for testing. Candidate models were 
then trained 10 times until all folds had been used for testing. During the training process, the hyperparameters 
of each model were optimised using grid search (1c). After training, the models’ cross-validation performance 
was examined (1d) and the final models and hyperparameters were selected based on the best cross-validation 
performance (1e). The dataset for study two was prepared using a similar pipeline (i.e., data cleaning) to study 
one, but was managed independently to prevent data leakage (2a). The dataset for study two was then split into 
external validation one and two, based on the trial types of the study (fast and slow rise) (2b). All 14 participants 
in study two contributed to both external validation datasets. Finally, the final models were tested separately on 
external validation one and two datasets, and model performance (discrimination and calibration) was assessed.
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Calibration assessment
We also assessed model calibration. Calibration assessment evaluates the agreement between the model’s predic-
tion and the observed or reference value50,79,80. If a model predicts a 30% risk of an outcome being present, then 
the observed outcome frequency should be approximately 30 of 100 events50,80,81. For example, in a diagnostical 
context, in individuals with a predicted risk of x% for having a medical condition, x out of 100 individuals should 
have the condition82. Calibration is important for model evaluation but is rarely evaluated10,83. We assess calibra-
tion using calibration curves, whereby the predicted probability is plotted on the x-axis, and the true probability 
is plotted on the y-axis. Perfect calibration occurs when the predicted probabilities perfectly match the observed 
probabilities, which is represented by a 45° line in calibration curves. Comprehensive overviews of prediction 
model calibration assessment have been reported elsewhere80,84.

Statistical analysis
Statistical analyses were conducted to investigate self-reported pain ratings for both studies. Firstly, a paired 
sample t-test assessed whether pain ratings differed between the low and high pain stimuli in study one. For 
study two, we assessed whether pain ratings differed between low and high stimuli and the fast and slow rise time 
conditions, using a 2 × 2 repeated measures ANOVA with the levels being stimuli intensity (low, high) and rise 
time (fast, slow). Statistical analysis was completed using IBM SPSS 27 (IBM Corp., Armonk, New York, USA).

Results
Behavioural pain ratings.  Descriptive statistics for the behavioural pain ratings for both studies are pre-
sented in Table 2. A paired samples t-test demonstrated that subjective pain ratings in the high pain condition 
were significantly greater than those in the low pain condition in study one (t (22) = 12.71, p < 0.001, d = 2.65).

Regarding study two, a 2 × 2 repeated measures ANOVA demonstrated a significant main effect of stimuli 
intensity on subjective pain ratings (F (1,13) = 53.91, p < 0.001, ηp

2 = 0.81), with pain ratings being significantly 
higher in the high pain conditions compared to the low pain conditions. Additionally, the analysis demonstrated 
a significant main effect of rise type on subjective pain ratings (F (1,13) = 14.94, p = 0.002, ηp

2 = 0.53), with sub-
jective pain intensity being higher in the fast rise time conditions compared to the slow rise time conditions. 
Finally, the ANOVA demonstrated that there was no significant interaction between stimuli intensity and rise 
type on subjective pain intensity (F (1,13) = 1.25, p = 0.284, ηp

2 = 0.09).

Discrimination and calibration results.  The classification performance metrics and optimal hyperpa-
rameters are reported in Table 2. The ROC curves for both external validation stages are presented in Fig. 2. 

Table 2.   Descriptive statistics (Mean ± standard deviation) for pain ratings across condition and study 
paradigm.

Condition Low pain High pain

Study one

Cross-validation dataset (fast rise) 36.87 ± 13.44 62.65 ± 15.28

Study two

External validation one dataset (fast rise) 50.51 ± 12.96 73.53 ± 10.61

External validation two dataset (slow rise) 47.22 ± 12.55 68.77 ± 9.83

Figure 2.   Discrimination results for both external validation stages. (a) ROC curve for all models assessed on 
the first external validation dataset. (b) ROC curve assessment on the second external validation dataset. The 
dotted blue line represents chance classification (a classifier with no skill) as a reference.
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In addition, the confusion matrices are reported in the supplementary material, allowing for the calculation of 
additional metrics, which may be of interest to readers and to those conducting meta-analyses.

The results can be segmented based on the type of validation performed. Regarding cross-validation dis-
crimination, the results demonstrate that all the models perform better than chance on all metrics. The models 
achieved accuracies between 67.73 and 77.32% and AUCs between 0.7676 and 0.8644. Out of the seven models 
tested, four achieved accuracies greater than 70%. Moreover, the AdaBoost model achieved the best performance 
overall, recording the highest accuracy (77.32%) and AUC (0.8644) during cross-validation.

Regarding external validation one, the results demonstrate that the models performed better than chance 
on most of the performance metrics. The accuracy of the models ranged from 58.99 to 68.32%, whilst the 
AUC ranged from 0.6170 to 0.6995. Here, six out of the seven models achieved accuracies greater than 60%. 
Moreover, the RF model achieved the highest accuracy (68.32%), whilst the AdaBoost model recorded the best 
AUC (0.6995) on the first external validation dataset. However, it must be noted that the AdaBoost model only 
marginally exceeded the RF at this validation stage, with the RF achieving an AUC of 0.6910.

Lastly, for the discrimination results, the models achieved accuracies between 54.76 and 60.42% and AUCs 
ranging from 0.5615 to 0.6288 on external validation two. Two models (RF and NB) achieved accuracies greater 
than 60%. In line with the first external validation, the RF achieved the best accuracy (60.42%) on the second 
validation dataset, whilst the NB algorithm achieved the greatest AUC (0.6288).

Finally, we also assessed the calibration of the models. The calibration plots for all models across both external 
validation stages are presented in Fig. 3. Regarding the interpretation of the calibration curves, if the model line 
is above the reference line, it suggests that the model is underestimating the probability of the incidence, whilst 
the inverse insinuates that the model is overestimating the incidence prevalence. Finally, the Brier score provides 
a metric of the disparity between predicted and true outcome probabilities is reported in Table 3.

Discussion
This study represents the first successful attempt to externally validate ML to discriminate between high and 
low pain intensity using EEG. We hypothesised that all ML algorithms would achieve greater than chance per-
formance (≈50%) on (1) cross-validation, (2a) external validation one (same stimulation parameters as training 
data), and (2b) external validation two (different stimulation parameters to training data). Our results dem-
onstrated that all models surpassed chance performance, achieving accuracies of up to 78%, 69% and 61% on 
cross-validation and external validation one and two, respectively. The RF model demonstrated the highest 
accuracy on both external validation stages. Overall, the findings support our hypothesis. This study is the first 
to demonstrate that ML and EEG can be effectively combined for binary classification of pain intensity with 
accuracies approaching 70% using external validation. Moreover, the second external validation confirms the 
robustness of the results, demonstrating that ML can accurately classify experimentally induced pain intensity 
using different stimulation parameters, which is imperative for translation when minor variations in the nature 
of pain should not invalidate the algorithm. Therefore, this study advances the field, correcting widespread 
limitations and providing the first rigorous and generalisable estimates of the effectiveness of ML and EEG for 
pain intensity classification.

Our findings support previous literature demonstrating that subjective pain intensity can be accurately classi-
fied using EEG and ML9,10. The cross-validation performance in this study is comparable to previous research10. 
Previous attempts to classify low and high pain intensity from EEG have produced comparable results, with 
accuracies ranging between 62 and 89.58%35–40. Similar research successfully classified 10-classes of pain intensity 
using a RF model and multichannel EEG41. Our findings support the existing literature, as both studies demon-
strate the importance of using a diverse array of frequency bands to achieve optimal classification performance. 
In addition, Huang and colleagues39 developed models using single-trial laser-evoked potentials, capable of 

Figure 3.   Calibration results for both external validation stages. (a) Calibration curve for all models assessed 
on the first external validation dataset. (b) Calibration curve for the second external validation dataset. The 
blue dotted line (45°) represents perfect calibration (complete agreement between predicted and observed 
probabilities). When the colour line is above the reference, the model underestimates the true probability, whilst 
the model overestimates probabilities when the line is below the reference line.



8

Vol:.(1234567890)

Scientific Reports |          (2023) 13:242  | https://doi.org/10.1038/s41598-022-27298-1

www.nature.com/scientificreports/

accurately classifying low and high pain for both within-subject and cross-subject predictions. Alternative neu-
roimaging (e.g., fMRI) approaches also demonstrate promise for pain outcome prediction9. For example, the 
neurologic signature of pain demonstrated 93% sensitivity and specificity in discriminating between no pain 
and pain conditions in a novel sample17. Overall, the previous research demonstrates the potential of neuroim-
aging and ML for pain intensity classification. However, EEG may prove to be the optimal method after further 
validation, due to its accessibility, ease of use, and low cost85,86, which offers potential for the method to be used 
in a more diverse array of use cases.

Whilst our results are comparable to the best-performing models of the existing literature (e.g., classifying 
better than chance), it must be noted that several models reported across all studies had reduced performance, 
demonstrating the importance of careful evaluation. Moreover, the literature is comprised of positive results, 
which may be a result of publication bias and therefore should be carefully interpreted. In addition, previous 
research assessed model performance using only internal validation methods (e.g., cross-validation), meaning 

Table 3.   Classification performance metrics for cross validation and both external validation procedures.

Model Optimal parameters
Cross validation 
(Mean ± SD)

External validation 
one

External validation 
two

AdaBoost Learning rate = 0.1, Number of estimators = 2500

Accuracy 0.7732 ± 0.0374 Accuracy 0.6385 Accuracy 0.5595

AUC​ 0.8644 ± 0.0199 AUC​ 0.6995 AUC​ 0.5823

Brier 0.2450 ± 0.0011 Brier 0.2473 Brier 0.2488

F1 0.7596 ± 0.0469 F1 0.6459 F1 0.5681

Precision 0.7983 ± 0.0538 Precision 0.6336 Precision 0.5573

Recall 0.7302 ± 0.0717 Recall 0.6587 Recall 0.5794

Linear discriminant analysis Shrinkage = 0.4, Solver = Least squares

Accuracy 0.6965 ± 0.0249 Accuracy 0.6008 Accuracy 0.5625

AUC​ 0.7707 ± 0.0307 AUC​ 0.6248 AUC​ 0.5724

Brier 0.2007 ± 0.0135 Brier 0.2609 Brier 0.2888

F1 0.6809 ± 0.0450 F1 0.5630 F1 0.5127

Precision 0.7114 ± 0.0473 Precision 0.6226 Precision 0.5786

Recall 0.6665 ± 0.1042 Recall 0.5139 Recall 0.4603

Logistic regression C = 1.0, Penalty = Lasso (L1), Solver = LibLinear

Accuracy 0.6910 ± 0.0301 Accuracy 0.5899 Accuracy 0.5476

AUC​ 0.7676 ± 0.0283 AUC​ 0.6170 AUC​ 0.5615

Brier 0.1990 ± 0.0108 Brier 0.2544 Brier 0.2793

F1 0.6793 ± 0.0391 F1 0.5663 F1 0.5043

Precision 0.7024 ± 0.0548 Precision 0.6013 Precision 0.5577

Recall 0.6687 ± 0.0856 Recall 0.5357 Recall 0.4603

Naïve bayes -

Accuracy 0.7137 ± 0.0432 Accuracy 0.6395 Accuracy 0.6012

AUC​ 0.8011 ± 0.0362 AUC​ 0.6746 AUC​ 0.6288

Brier 0.2382 ± 0.0378 Brier 0.2978 Brier 0.3437

F1 0.6806 ± 0.0807 F1 0.6142 F1 0.5830

Precision 0.7532 ± 0.0513 Precision 0.6613 Precision 0.6109

Recall 0.6377 ± 0.1339 Recall 0.5734 Recall 0.5575

Random forest Criterion = Entropy, Maximum depth = 10, Maximum features = Log2, 
Number of estimators = 350

Accuracy 0.7318 ± 0.0556 Accuracy 0.6832 Accuracy 0.6042

AUC​ 0.8129 ± 0.0392 AUC​ 0.6910 AUC​ 0.6088

Brier 0.2008 ± 0.0100 Brier 0.2217 Brier 0.2409

F1 0.6748 ± 0.0961 F1 0.6216 F1 0.5481

Precision 0.8315 ± 0.0757 Precision 0.7729 Precision 0.6385

Recall 0.5830 ± 0.1253 Recall 0.5198 Recall 0.4802

Support vector machine C = 1.0, Gamma = 0.1, Kernel = RBF

Accuracy 0.6773 ± 0.0189 Accuracy 0.6187 Accuracy 0.5645

AUC​ 0.7844 ± 0.0226 AUC​ 0.6647 AUC​ 0.5956

Brier 0.1927 ± 0.0084 Brier 0.2369 Brier 0.2653

F1 0.6669 ± 0.0454 F1 0.6265 F1 0.5675

Precision 0.7279 ± 0.0515 Precision 0.6145 Precision 0.5636

Recall 0.6298 ± 0.1013 Recall 0.6389 Recall 0.5714

XGBoost Column sample by tree = 1.0, Gamma = 1.5, Maximum depth = 2, Mini-
mum child weight = 1, Subsample = 1.0

Accuracy 0.7527 ± 0.0337 Accuracy 0.6246 Accuracy 0.5754

AUC​ 0.8362 ± 0.0270 AUC​ 0.6770 AUC​ 0.5931

Brier 0.1657 ± 0.0134 Brier 0.2336 Brier 0.2756

F1 0.7282 ± 0.0591 F1 0.6205 F1 0.5737

Precision 0.7922 ± 0.0405 Precision 0.6280 Precision 0.5760

Recall 0.6845 ± 0.1019 Recall 0.6131 Recall 0.5714
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that overfitting and generalisability had not been sufficiently evaluated10. Therefore, the novelty and impact of the 
present research stem from the extensive external validation. Presently, the clinical potential of ML and EEG for 
pain prediction has likely been overestimated45,48,49 and significant developments are required before the clinical 
potential can be accurately assessed. However, although our results are modest, the current study extends upon 
previous research, demonstrating that ML and EEG can accurately classify novel samples which provides more 
robust evidence for the clinical utility of ML.

Beyond EEG, alternative proxy pain measures have been proposed (e.g., behavioural assessments). Many 
behavioural approaches rely on facial expressions (e.g., PACSLAC87 or ML techniques88), which is time-con-
suming88 and can be erroneous in individuals with dementia (e.g., Lewy Body)89, Parkinson’s disease90, or facial 
paralysis (e.g., locked-in syndrome)91, as well as children who can suppress pain expressions92. EEG and ML 
may provide effective pain assessment in these challenging conditions. Pain-related neural activity is observable 
across populations (e.g., infants)93 and should not be affected by intentional suppression. Therefore, EEG-ML 
methods could become useful adjunctive pain assessment tools, specifically in situations that have previously 
proved challenging.

EEG-ML approaches may also prove advantageous over other pain biomarker techniques. Physiological 
measurements including heart rate variability (HRV), electrodermal activity (EDA), and pupillometry demon-
strate potential94. However, such approaches also exhibit significant limitations, which often result in reduced 
effectiveness in certain populations (e.g., paediatric postoperative patients95). Moreover, alternative neuroim-
aging techniques remain promising (e.g., fMRI)9,17. However, many neuroimaging techniques are impractical 
for widespread clinical implementation, due to financial and infrastructure restrictions96. EEG is inexpensive 
compared to fMRI and can be easily implemented in a multitude of settings (e.g., doctor’s office) using dry or 
mobile EEG85,86,97,98. Furthermore, EEG can be used during surgery99 and can also be further simplified using a 
single electrode100. Taken together, EEG may be advantageous over other methods, demonstrating diverse utility 
in clinical settings.

The findings from this study also highlight the importance of external validation, as cross-validation metrics 
did not consistently reflect external validation metrics, which challenges previous EEG and ML research. It 
is established that ML performs better on data from the same cohort (internal validation) when compared to 
novel samples (external validation)46,47. Consequently, cross-validated metrics are potentially biased and not 
representative of prediction errors44,45,47. In this study, the AdaBoost model achieved the best cross-validation 
metrics but performed worse than the RF on both external validations. As the RF performance only reduced 
minimally during external validation, we have increased confidence that the model has learned pain-related 
information, rather than fitting random noise. Furthermore, small reductions in performance when progress-
ing from cross-to-external validation procedures are common and should not invalidate the model’s clinical 
utility46,47,101. Given the subjective nature of pain1,4 and variability of neural activity (e.g., single-trial EEG)65–67, 
a reduction of only 5% demonstrates the RF’s robustness, providing evidence for the clinical potential of this 
approach. Overall, our research emphasises that failing to include external validation in experimental paradigms 
reduces clinical interpretation48,49 and should be avoided in future research. We also recommend caution when 
interpreting research that only reports cross-validation, to avoid presenting over-optimistic results, which could 
hinder future efforts towards clinical translation.

Models that are not sufficiently evaluated are potentially damaging to the clinical utility of ML and EEG. A 
biased algorithm risks that patients could receive sub-optimal care (e.g., under-treatment), which has significant 
dangers48,102. Indeed, ML models failing due to biases are common and may be overlooked without sufficient 
validation (e.g., skin markings in dermoscopic images inflating the probability of an input being classified as a 
melanoma using a convolutional neural network)103. Such biases may render the algorithm useless. Therefore, 
our research provides a foundational development toward clinical translation and paves the way for improved 
standards in ML-EEG studies for pain classification.

ML and artificial intelligence (AI) are rapidly advancing society (e.g., route planning and self-driving vehi-
cles), but successful medical applications are rare104,105. Clinical translation requires significant developments 
spanning external validation to dissemination96. Whilst our best model is an important initial development, the 
performance is not currently clinically applicable. Further external validation is imperative, particularly through 
international multi-centre collaborations9,10,96 to demonstrate clinically relevant performance. This would evalu-
ate algorithms using larger, more diverse samples, allowing for greater confidence that the algorithm is not biased 
by dataset idiosyncrasies, which are specific to a single lab’s apparatus or procedures85. Moreover, progression 
to research in clinical populations which attempts to classify clinical rather than experimental pain is critical 
to establish the clinical utility of the method. Subsequently, the clinical translation pipeline should be carefully 
navigated. Real-world and utility assessments (e.g., randomised controlled trials) should ensure the algorithm is 
useful to clinicians96,105. Moreover, feasibility, safety, ethical and acceptability considerations will be essential to 
establish appropriate deployment standards to limit risk before dissemination85,96,105. However, before attempt-
ing these stages significant further research is required. Establishing a substantial body of external validation 
research, including multi-centre collaborations must be the primary objective. The long-term future of clinical 
ML applications for pain is contingent on the collective research community successfully addressing the clinical 
translation stages.

The current study has several limitations. Firstly, the calibration assessment demonstrated that the pre-
dicted probabilities were not consistently representative of the true probabilities. Consequently, the clinical 
potential of the findings at this early stage should be interpreted with caution. Imperfect calibration is sugges-
tive of potential overfitting, reducing validation performance due to the idiosyncrasies in the training data80. 
However, given the volatility of neural activity65–67, it is to be expected that the models capture some random 
noise. As calibration is rarely assessed10,83, future research should aim to assess and improve model calibration 
(e.g., Platt scaling)84. Moreover, whilst this study consists of two temporally independent datasets, our overall 
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sample size is relatively small, which reduces the confidence in the results. For ML to exhibit clinical relevance, 
a larger, more diverse sample is required. Future research should increase sample sizes to provide more robust 
conclusions, which would offer substantial further evidence for clinical translation. In addition, there was some 
overlap between the samples, with one participant contributing to both the development and validation samples. 
Future research should avoid participant overlap, or specifically explore the differences between within—and 
cross-subject prediction. However, in the current study, both samples were temporally independent and con-
sisted of different experimental paradigms. Therefore, participant overlap is unlikely to significantly affect the 
results. Moreover, although the sampling rate in this study was sufficient (sampling rate > 2.5 times the maximum 
frequency analysed) to retrieve gamma band frequencies and avoid aliasing issues55, future research should 
maximise the sampling rate to ensure that the highest frequencies are precisely sampled.

The current study predicted stimulation intensity rather than subjective intensity, as this may ultimately serve 
as a better proxy method for individuals who cannot self-report their pain. However, on a trial level, there were a 
few instances where a low-intensity stimulus produced a high subjective response and vice-versa. Consequently, 
such trials may have hindered the learning algorithms’ performance. Future research should investigate both sub-
jective pain intensity and stimulus intensity. Additionally, it is possible that EEG signals used in the classification 
were not pain-specific, which should be explored in further research. Research has suggested that EEG responses 
to pain may be more directly related to stimulus saliency rather than pain perception106. Moreover, whilst clas-
sifying discrete pain classes has clinical potential, predicting parametric outcomes would improve the impact 
of the research. The ability to accurately predict subjective pain intensity to a finer resolution would increase 
clinical utility. Therefore, future research should externally validate regression models to demonstrate greater 
clinical relevance. Concurrent attempts to improve binary classification performance are also warranted before 
clinical translation. Finally, although the models in this study outperformed chance, we cannot definitively state 
that the models are exclusively reflective of neural processing. EEG signals can often contain non-brain responses 
e.g., muscle movements107, which could affect the results. Many of the features were from electrodes located over 
feasible brain regions and not exclusively from those electrodes most commonly impacted by movement artefacts 
such as peripheral sites107, which provides confidence in the results. Moreover, model performance generalised 
to two external validation datasets, which included different experimental pain stimulation. Therefore, we can 
reasonably suggest that pain-related brain information was the predominant contributor to accurate classification. 
However, despite thorough artefact correction, residual non-brain activity may be present in the EEG signal. 
Whilst our artefact correction procedure is extensively validated, it is possible residual non-brain activity may 
still contribute to the features and classification. For example, whilst similar research has used prefrontal theta 
as a feature for pain classification40, we cannot rule out the possibility that residual oculographic (e.g., saccades) 
or facial muscle movements may also contribute to the EEG data in the present study. Therefore, we propose 
that the importance of the frontal theta features should be interpreted with caution. Future research should aim 
to explore the role of non-brain responses on EEG pain classification using additional techniques such as the 
characterisation of electromyographic (EMG) signals or concurrent evaluation of facial expressions. In addi-
tion, future research should investigate the impact of different pre-processing procedures on pain classification 
performance, with the goal to develop standardised, reproducible pre-processing.

Conclusion
This research study is the first to demonstrate that ML and EEG can be used in tandem to discriminate between 
low and high pain intensity using a comprehensive two-stage external validation paradigm. Our best-performing 
model (RF) classified low and high pain with around 70% accuracy on external validation with matched stimu-
lation and around 60% with different experimental pain stimuli. The results presented here are a significant 
development for the research field, as we begin to address limitations that have hindered clinical interpretation 
in the past. Consequently, this study provides the current best estimates of the effectiveness of ML and EEG for 
pain intensity classification. Future research should strive to build on the work presented here by consistently 
externally validating models, before progressing to multi-centre validation studies. Overall, the current study 
demonstrates the potential of ML and EEG for successful pain intensity prediction and provides the first robust 
estimates of ML generalisability which have eluded all previous research in this field.

Data availability
The datasets generated and/or analysed during the current study are available in the OSF repository, https://​
osf.​io/​uqt9z/.
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