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Towards sweetness classification 
of orange cultivars using 
short‑wave NIR spectroscopy
Ayesha Zeb 1,2, Waqar Shahid Qureshi 2,5*, Abdul Ghafoor 1, Amanullah Malik 3, 
Muhammad Imran 1, Alina Mirza 1, Mohsin Islam Tiwana 2 & Eisa Alanazi 4

The global orange industry constantly faces new technical challenges to meet consumer demands 
for quality fruits. Instead of traditional subjective fruit quality assessment methods, the interest in 
the horticulture industry has increased in objective, quantitative, and non‑destructive assessment 
methods. Oranges have a thick peel which makes their non‑destructive quality assessment 
challenging. This paper evaluates the potential of short‑wave NIR spectroscopy and direct sweetness 
classification approach for Pakistani cultivars of orange, i.e., Red‑Blood, Mosambi, and Succari. The 
correlation between quality indices, i.e., Brix, titratable acidity (TA), Brix: TA and BrimA (Brix minus 
acids), sensory assessment of the fruit, and short‑wave NIR spectra, is analysed. Mix cultivar oranges 
are classified as sweet, mixed, and acidic based on short‑wave NIR spectra. Short‑wave NIR spectral 
data were obtained using the industry standard F‑750 fruit quality meter (310–1100 nm). Reference 
Brix and TA measurements were taken using standard destructive testing methods. Reference taste 
labels i.e., sweet, mix, and acidic, were acquired through sensory evaluation of samples. For indirect 
fruit classification, partial least squares regression models were developed for Brix, TA, Brix: TA, 
and BrimA estimation with a correlation coefficient of 0.57, 0.73, 0.66, and 0.55, respectively, on 
independent test data. The ensemble classifier achieved 81.03% accuracy for three classes (sweet, 
mixed, and acidic) classification on independent test data for direct fruit classification. A good 
correlation between NIR spectra and sensory assessment is observed as compared to quality indices. 
A direct classification approach is more suitable for a machine‑learning‑based orange sweetness 
classification using NIR spectroscopy than the estimation of quality indices.

Oranges are juicy, refreshing, and Pakistan’s most loved winter fruit. Pakistan is the 6th largest producer of citrus 
in the  world1, and around 0.46 million tons of fruit were exported in the year  20202. Ripeness is very critical as 
it directly influences the eating quality of harvested  fruits3. Oranges are non-climacteric fruits i.e., they don’t 
ripe further once they are harvested. In Pakistan, quality inspection for fruits to be exported is still carried out 
subjectively by the packaging industry using sample-based tasting and/or by visualizing physical features, such as 
fruit color and size. The method is error-prone and tedious. These factors serve as a motivation for the automation 
of testing procedures. To automate the visual quality inspection, one can utilize camera sensors for estimating 
size, surface characteristics, and  texture4. For gauging taste, sweetness, or other quality measures, one can utilize 
near-infrared (NIR) spectroscopy-based  methods5. The non-destructive assessment using NIR spectroscopy can 
help to correlate dry matter (DM), Brix, titratable acidity (TA), and  colour6 with fruit quality. Such assessment 
can also help in full batch testing and quality-based segregation as opposed to sample-based manual judgment.

Over the past decades, NIR spectroscopy has gained considerable attention for non-destructive maturity 
index assessment due to its ease, fast detection speed, and  precision7,8. Researchers have used NIR spectroscopy 
with machine learning regression algorithms to develop maturity index prediction models such as DM, Brix, 
color, chlorophyll, starch and TA (only in high acid fruit like lemon and mandarin) of various fruits includ-
ing  apple9,  pear10,  nectarine11,  mango12,  banana13,  melon14,  mandarin15,  strawberry16,  apricot17,  kiwifruit18, 
 carambola19,  grape20,  loquat21 and  pineapple22. However, due to the diversity in varieties and growing conditions, 
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it is essential to develop the maturity index prediction model for a particular variety, growing region, and for 
local or export  varieties23. Other applications require direct classification by use of some machine learning clas-
sification algorithm rather than quantification of quality parameter levels. For example, nectarine  cultivars24,25, 
orange  cultivars26, and orange growing  regions27 have been differentiated, maturity classes of  durian28,  avocado29 
and mango  fruit30, internal defects detection of  mango31,  citrus32 and  apple33, storage potential classification of 
 kiwi34 and sweetness levels of  melon35 and  grapes36 have been classified.

Most of the published research on the measurement of intact fruit internal parameters have used wider wave-
length regions including extended NIR region (> 1000 nm)7, e.g. for ‘Valencia’ orange 450–2500  nm37, for citrus 
1100–2500  nm38, for ‘Satsuma’ mandarin 400–2350  nm39. The short-wave NIR (SWNIR) region (750–1100 nm) 
is used commercially for the assessment of internal quality attributes of intact fruit, in preference to the extended 
NIR  region7. Longer wavelength ranges offer narrower and stronger absorption features as compared to SWNIR 
and thus better evaluation of internal parameters however, the SWNIR wavelengths have greater effective penetra-
tion depth into the fruit, hence, offer robustness across independent populations and given the variation in outer 
layer attributes. The short-wave Vis–NIR option is preferred for commercial purposes due to (currently) lower 
hardware  costs7,8. Kim et al.40 reported  RMSEP and  RP of 0.514 oBrix and 0.80 respectively for ‘Unshiu’ orange 
Brix prediction PLSR model trained using wavelength range 472-1156 nm. Luo et al.41 for Brix prediction of 
‘Navel’ orange built PLSR model using wavelength range 450–1000 nm and reported  RMSEP and  RP of 1.35 oBrix 
and 0.80, respectively. It is observed in both of the  experiments40,41 that the wavelength region includes visible 
region as well along with SWNIR region and the results are for a single cultivar dataset. McGlone et al.42 used 
NIR direct transmission measurement mode with a spectral window of 700–930 nm for Brix and TA prediction 
of ‘Satsuma’ mandarin. The best results for Brix prediction are R and  RMSEP of 0.96, 0.32% and for TA it is stated 
that accurate TA prediction was not possible.

The pulp of oranges is covered inside a thick peel, which makes penetration of NIR spectroscopy challenging. 
Since ripening and harvest maturity is the same for non-climacteric fruits, there can be two ways to estimate 
ripeness/maturity. The first method is to estimate the fruit quality parameters like Brix, TA, etc. using a machine 
learning regression algorithm and based on their values judge the sample quality as done  in15,37–42. The second 
method is to directly classify the eating quality using a machine learning classification algorithm, as reported by 
researchers  in35,36 for the direct sweetness classification of melons and grapes. To the best of author’s knowledge, 
SWNIR spectroscopy is never investigated for direct sweetness classification of orange fruit. Moreover, the poten-
tial of SWNIR spectroscopy and direct sweetness classification for mixed cultivar datasets needs to be analyzed.

Like oranges, melons also have a thick rind. Zeb et al.35 have previously proposed a direct sweetness classifier 
for melons as opposed to Brix-based thresholding, using the correlation between short-wave NIR spectroscopy 
and sensory assessment. The proposed direct sweetness classifier tested on a single cultivar of melons i.e., ‘honey’ 
melons, outperformed the Brix estimation-based indirect classification  method35. There is a need to evaluate the 
correlation of SWNIR spectroscopy and sensory assessment in other fruits as well and mixed cultivar datasets. 
As an extension of the Zeb et al.35 work, in this paper, the potential of SWNIR spectroscopy and direct sweet-
ness classification through machine learning modelling is evaluated for Pakistani cultivars of orange i.e., Blood 
red, Mosambi, and Succari (average peel thickness 6 mm). A correlation is developed between quality indices 
i.e., Brix, TA, Brix: TA, and BrimA (Brix minus acids), the sweetness of the fruit, and NIR spectra which are 
then classified as sweet, mixed, and acidic using a machine learning classifier based on NIR spectra. We argue 
that direct classification is more suitable to evaluate orange sweetness as opposed to estimating quality indices.

Materials and methods
Fruit samples. Orange (Citrus sinenses (L.) Osbeck), cultivars (cvs.) ‘Blood red’, ‘Mosambi’ and ‘Succari’) 
ripened samples were harvested with due permission from orchard (Ghulam Rasool Farms) located in Chakwal 
district of Punjab province on two dates i.e., the first one started on 10th Jan 2021 and the second one on 28th 
Jan 2021 (33 of Blood red, 32 of Mosambi and 27 of Succari; 92 fruits in total). Average peel thickness was 6 mm. 
Sixty-four samples were used for model calibration, with each fruit scanned on two sides for Brix and TA to give 
128 spectra. Twenty-eight samples (total 56 spectra) were used for model validation (see Table 1 for details). 
Samples within each fruit were treated as independent spectral set. All methods related to sample collection, 
destructive testing and sensory assessment were performed in accordance with the relevant guidelines/regula-
tions/legislation.

Collection of Vis/NIR spectra. Orange samples were marked on-tree on opposite sides i.e. sun facing 
side and non-sun facing side (180° apart approximately) as shown in Fig. 1, to account for within fruit vari-
ations. After marking samples on-tree, the oranges were harvested on two dates (both harvest dates were one 
week apart) and brought to a local laboratory at National Centre of Robotics and Automation (Islamabad, Paki-

Table 1.  Number of samples of investigated orange cultivars in calibration and prediction datasets.

Cultivar Number of samples in calibration set Number of samples in prediction set

Blood red 23 10

Mosambi 22 10

Succari 19 8

Total 64 28
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stan) and stored at room temperature for 24 h to minimize the influence of sample temperature on prediction 
 accuracy43. Three spectra were collected from each position and average was computed. Vis–NIR spectra (range 
400–1150 nm) were collected using the F-750 (Felix Instruments, Camas, WA, USA). This device employs inter-
actance optical geometry and a Carl Zeiss MMS-1 spectrometer, with a pixel spacing of approximately 3.3 nm 
and a spectral resolution (FWHM) of 8–13 nm. It uses a halogen lamp as a light source.

Reference measurements. For reference measurements, the marked region (along with surrounding tis-
sues to get a suitable representation of the core as well) was excised and skin was removed. The extracted flesh 
was squeezed using a garlic press. Brix was assessed of a sample of the extracted juice using a digital refractom-
eter (Model: PAL-1 [°Brix 0–53%], Atago Co., Ltd, Tokyo, Japan). The refractometer has automatic temperature 
compensation with range 10–100 °C and measurement accuracy of ± 0.2%.

TA was measured by manual titration of 10 mL of extracted juice with 0.1 M sodium hydroxide (NaOH) 
using phenolphthalein as an indicator. The acid formula for citrus fruit samples (Eq. 1) was applied to calculate 
TA, expressed as % citric acid.

Maturity index and BrimA were then calculated by Eqs. (2) and (3) respectively. The value of k in Eq. (3) is 
taken as 1.

Sensory assessment. Reference values for sweetness were assessed by a briefly trained five judges panel 
with age between 20 and 50. After spectra acquisition, two slices were cut from the neighbor region from where 
destructive testing has been performed and presented to two of the judges at random for taste evaluation. Dis-
tilled water was provided to judges for drinking after every sample evaluation to clear previous sample taste. 
Oranges were classified into three classes by sensory evaluation i.e. Sweet, mix (sweet and acidic both) and 
acidic. The class label of each sample was described by average score of the two judges for that sample. Class wise 
scoring sheet used for assessment is given in Table 2.

Chemometric analysis. A direct sweetness classification method has been  proposed35 by authors for mel-
ons sweetness classification as opposed to indirect measure of Brix estimation. As an extension of author’s pre-
vious  work35, in this paper, we have investigated potential of both the methods for quality assessments of mix 
cultivar oranges as shown in Fig. 2. The first method exploits the correlation between NIR spectra and fruit 
quality index parameters to estimate these parameters using machine learning regression algorithm and based 
on those predicted values, the quality of the sample is classified. The second method exploits the correlation 

(1)TA(%citric acid) =
0.0064 ∗ titre(NaOH)mL

10mL(juice)
x100

(2)Brix to TA ratio
(

maturity index
)

=

Brix

TA

(3)BrimA = Brix − k(TA)

Figure 1.  Schematic diagram of the marked positions for NIR spectra collection in oranges.

Table 2.  Score distribution for classification of sweetness level of oranges.

Class label Score

Sweet 8–10

Mix 5–7

Acidic 0–4
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between NIR spectra and sensory assessment to directly classify test sample as sweet, acidic or mix class sample, 
using machine learning classification algorithm.

Savitzky-Golay (SG) second derivative spectral pre-processing is a famous pre-processing method that usually 
outperforms other pre-processing methods for spectral data  analysis44. Hence, 11-point SG second derivative 
preprocessing was performed on spectral data. Amongst all regression algorithms, the partial least squares 
regression is the most widely used regression algorithm for prediction of fruit quality index  parameters45. For 
indirect quality assessment, partial least squares regression was used to build Brix, TA, Brix:TA ratio and BrimA 
estimation models.

Principle component analysis (PCA) has been widely used with spectroscopic  data45 to emphasize variation 
and bring out strong patterns in the data set. For direct sweetness classification, after pre-processing, PCA was 
applied on spectral data and then several supervised and unsupervised learning classifiers are implemented and 
compared including tree, ensemble, K nearest neighbor (KNN), linear discriminant analysis (LDA) and SVM.

For indirect classification, the Unscrambler v11.0 spectral analysis software evaluation version (CAMO 
PRECESS AS, Oslo, Norway) was used for building combined variety calibration model using calibration 
dataset (Table 4). 11 points Savitzky-Golay second derivative smoothing filter was applied before building model. 
The performance of developed models was evaluated by  RCV (correlation coefficient of cross validation),  RP 
(correlation coefficient of prediction),  RMSECV (root mean square error of cross validation) and  RMSEP (root 
mean square error of prediction). Tenfold cross validation was performed. Prediction models were developed 
using the Vis/NIR region in the range 600–1050 nm  (following41).

For direct classification, MATLAB R 2018a software was used. Input data for both the methods i.e. direct 
and indirect classification was same (600–1050 nm wavelength values pre-processed with 11-point SG second 
derivative using Unscrambler software). Classification was performed using MATLAB classification learner 
module with PCA enabled (first 15 principal components were used).

Results
Dataset statistics. Destructive testing statistics of orange quality index parameters i.e. Brix, TA, maturity 
index and BrimA with respect to the individual variety are shown in Table 3. The range and mean of Blood red 
cultivar is relatively low for Brix, Brix:TA ratio and BrimA, and high for TA as compared to other two varieties. 
Table 3 shows that the statistics of Succari cultivar are dissimilar from the other two investigated cultivars with 
respect to TA and Brix:TA ratio i.e. TA range (0.14–0.33%) and mean (0.21%) is lowest and maturity index range 
(33.64–75.63) and mean (55.38) is highest than that of Blood red and Mosambi cultivars.

Figure 2.  Block diagram representing two different methods of orange quality assessment.

Table 3.  Statistics of Brix, TA, maturity index and BrimA with respect to the individual investigated varieties 
of orange.

Dataset
Number of 
samples

Range Mean S.D

Brix 
(oBrix) TA (%)

Brix:TA 
ratio BrimA (%)

Brix 
(oBrix) TA (%)

Brix:TA 
ratio BrimA (%)

Brix 
(oBrix) TA (%)

Brix:TA 
ratio BrimA (%)

Blood red 33 7.3–11.3 0.59–1.98 5.3–12.71 6.53–9.97 9.22 1.03 9.37 8.2 1.04 0.29 1.67 0.88

Mosambi 32 9–13.4 0.4–1.12 9.82–24.69 8.51–12.73 10.98 0.68 16.9 10.31 1.22 0.19 3.57 1.12

Succari 27 8.8–13.1 0.14–0.33 33.64–
75.63 8.54–12.9 11.03 0.21 55.38 10.77 1.02 0.04 11.09 0.99
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Since, Succari cultivar is statistically different from the other two cultivars, the models were built using two 
different combinations of investigated cultivars i.e. dataset-1 contains all three investigated cultivars and dataset-2 
contains only Blood red and Mosambi cultivars. Table 4 shows data set wise statistics of quality index parameters.

Figure 3 shows the distribution of quality index values with respect to orange sweetness levels. From 184 
samples (92 oranges, 2 samples each), 129 samples belonged to sweet class, 48 belonged to mix class and 7 
belonged to acidic class. From Fig. 3, the sweetness levels cannot be concluded based on individual values of Brix, 
TA, Brix:TA or BrimA, since there is significant overlap between the three sweetness levels and the respective 
quality indexes. Moreover, it can be concluded that with respect to quality index parameters, Succari cultivar is 
dissimilar to the other two investigated varieties.

Figure 4 and Table 5 show the statistical correlation amongst the quality indices. Brix and BrimA (Fig. 4a) 
show a strong positive correlation (R = 0.967) while TA and maturity index (Fig. 4d) show negative correlation 
(R = − 0.832) for all the three investigated cultivars. Other scatter plots (Fig. 4b,c,e,f) do not show a strong 

Table 4.  Statistics of reference values with respect to calibration and prediction data sets.

Dataset
Total 
samples

Min Mean S.D

Brix 
(oBrix) TA (%)

Brix:TA 
ratio

BrimA 
(%)

Brix 
(oBrix) TA (%)

Brix:TA 
ratio

BrimA 
(%)

Brix 
(oBrix) TA (%)

Brix:TA 
ratio

BrimA 
(%)

Dataset1: 
(Blood red, 
Mosambi 
and 
Succari)

Calibration 128 7.4–13.4 0.14–1.98 5.3–75.63 6.53–
12.73 10.37 0.69 24.91 9.68 1.39 0.39 20.89 1.49

Prediction 56 7.3–13.1 0.17–1.5 6.2–65.5 6.56–12.9 10.3 0.62 25.87 9.64 1.36 0.37 19.70 1.55

Total 184 7.3–13.4 0.14–1.98 5.3–75.63 6.53–12.9 10.36 0.67 25.20 9.70 1.39 0.39 20.48 1.52

Dataset2: 
(Blood 
red and 
Mosambi)

Calibration 90 7.4–13.4 0.4–1.98 5.3–22.94 6.53–
12.73 10.20 0.89 12.54 9.31 1.52 0.29 4.22 1.53

Prediction 40 7.3–12.1 0.4–1.5 6.2–24.69 6.56–
11.61 9.83 0.79 14.17 9.03 1.20 0.30 5.44 1.25

Total 130 7.3–13.4 0.4–1.98 5.3–24.69 6.53–
12.73 10.08 0.86 13.05 9.23 1.43 0.3 4.67 1.45

Figure 3.  Distribution of (a) Brix, (b) TA, (c) maturity index and (d) BrimA with respect to orange taste quality 
levels.
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positive/negative correlation amongst the indices for all the investigated cultivars. Table 5 shows that there is no 
correlation between Brix vs TA and BrimA vs TA for Succari samples.

Overview of spectra. The absorbance spectra of orange fruit (Fig.  5a) is dominated by a peak around 
680 nm associated to chlorophyll  absorption46. Moreover, broad peaks around 750 nm and 850 nm are observed 
due to the third overtone of O–H bond stretching and the third and fourth overtones of C-H bond  stretching47. 
Another observed peak at 970 nm is associated with water absorption band (second overtone of O–H bond 
stretching)48. Second derivative of the spectrum shown in Fig. 5b confirmed all above absorbance peaks. Pre-
diction models were developed using the Vis/NIR region in the range 600–1050 nm  (following41) as this is the 
region of carbohydrates such as glucose, fructose and  sucrose47.

Figure 4.  Scatter plots depicting statistical correlation among (a) Brix vs BrimA (b) Brix vs TA, (c) Brix vs 
maturity index, (d) TA vs maturity index, (e) BrimA vs maturity index, and (f) BrimA vs TA for all three 
cultivars.
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Table 5.  Correlation coefficient (R) values among quality parameters with respect to individual cultivars and 
combined dataset.

Parameters

Correlation coefficient (R)

Blood red Mosambi Succari All three cultivars

Brix vs BrimA 0.971 0.991 0.999 0.967

Brix vs TA 0.681 0.613 0.087 − 0.189

Brix vs maturity index − 0.336 − 0.268 0.320 0.369

BrimA vs maturity index − 0.114 − 0.139 0.360 0.555

TA vs Maturity index − 0.877 − 0.898 − 0.893 − 0.832

BrimA vs TA 0.485 0.5 0.043 − 0.432

Figure 5.  (a) Raw absorbance and (b) Savitzky–Golay second derivative spectra of collected dataset.
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Indirect classification results. Table 6 presents the combined variety PLSR model results on Brix, TA, 
Brix:TA and BrimA with dataset having 184 samples including all three investigated varieties. The cross valida-
tion R is 0.69, 0.48, 0.5 and 0.66 respectively and RMSE is 1.00 oBrix, 0.34%, 18.06 and 1.13% respectively.

These models include samples of Succari variety as well, which is a statistically incompatible cultivar (with 
respect to TA and Brix:TA) with the Blood red and Mosambi cultivars. Hence, Table 7 shows PLSR models trained 
on Blood red and Mosambi cultivars since they are similar to each other w.r.t TA and Brix:TA statistics. Table 6 
shows that excluding Succari samples from dataset and rebuilding PLSR models provided improved results for 
TA and Brix:TA models. However, Brix and BrimA prediction results were worsened because with respect to 
Brix, all three investigated varieties have similar statistics. Removing Succari samples reduced the size of data 
set and hence worse results. Figure 6 shows the scatter plots of predicted vs reference values of the developed 
PLSR models of Tables 6 and 7.

Direct classification results. To predict orange’s eating quality in terms of sweetness, multi class classifica-
tion algorithms were implemented on both datasets. The cross validation and prediction result for both data sets 
are listed in Tables 8 and 9. For dataset1, ensemble classifier achieved 81.03% accuracy for 3 class classification 
of independent test data. For dataset2, SVM and KNN both achieved 79.49% accuracy for 3 class classification 
of independent test data.

Observations and discussion
Statistics comparison of investigated cultivars. The “Blood red” variety is the most tasteful (mix to 
sweet taste) cultivar of orange in Pakistan. Table 3 shows that the range and mean of TA are high and of Brix, 
Brix: TA, and BrimA are low. Of 66 samples of Blood red, 33 belonged to sweet class, 26 belonged to mix class, 
and 7 belonged to acidic class.

The Mosambi cultivar is also segregated as sweet by the judges. It can be seen from Table 3 that its range 
and mean of TA are lesser and for Brix, it’s higher than the Blood red cultivar hence its flavor is generally more 
sweater than Blood red variety. Amongst 64 samples of Mosambi, 46 belonged to the sweet class and 17 belonged 
to the mixed class.

The Succari cultivar is a different cultivar in terms of sweetness from the other two cultivars. Succari samples 
always have a flat sweet taste due to a lack of acid contents. The statistics of quality index parameters also 
support this claim as its TA range and mean is the lowest and hence Brix: TA values are the highest amongst 
other investigated. Amongst 54 samples of Succari, 47 belonged to the sweet class and only 5 belonged to the 
mixed class.

Development of mixed cultivar PLSR models. An attempt was made to predict Brix, TA, Brix: TA, and 
BrimA using PLSR regression models developed for mixed cultivar datasets. Since the Succari cultivar is statisti-
cally (w.r.t TA and Brix: TA) and taste-wise different from the other two investigated cultivars, PLSR models were 
built for two datasets, one having a mixture of statistically different cultivars i.e. Blood red, Mosambi and Succari 
and other one having only statistically compatible cultivars i.e. Blood red and Mosambi.

Table 6.  Cross validation and prediction results for PLSR models developed for dataset1 (Blood red, Mosambi 
and Succari).

Index

PLSR model

Cross validation Prediction

Rcv RMSEcv (oBrix/%) RP RMSEP (oBrix/%)

Brix (oBrix) 0.69 1.00 0.57 1.05

TA (% citric acid) 0.48 0.34 0.25 0.48

Brix:TA ratio 0.5 18.06 0.39 20.99

BrimA (%) 0.66 1.13 0.55 1.35

Table 7.  Cross validation and prediction results for PLSR models developed for dataset2 (Blood red and 
Mosambi).

Index

PLSR model

Cross validation Prediction

Rcv RMSEcv (oBrix/%) RP RMSEP (oBrix/%)

Brix (oBrix) 0.83 1.10 0.43 1.18

TA (% citric acid) 0.59 0.23 0.73 0.19

Brix:TA ratio 0.43 3.79 0.66 3.14

BrimA (%) 0.58 1.23 0.29 1.33
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Figure 6.  Scatter plots of predicted vs reference values for PLSR models using dataset 1 (a) Brix, (b) TA, (c) 
Brix:TA and (d) BrimA, and dataset 2 (e) Brix, (f) TA, (g) Brix:TA and (h) BrimA.
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It is observed that since all three investigated cultivars have almost similar Brix and BrimA statistics and 
are positively correlated (Table 3 and Fig. 4a), hence the model built with data set having all three cultivars 
achieved better prediction results for Brix and BrimA as compared to the model built with a dataset having only 
two cultivars i.e. Blood red and Mosambi (Tables 6, 7). This is because dataset 2 has a lesser number of samples 
than dataset1. The TA and Brix: TA results of PLSR models built with only two cultivars’ data (Blood red and 
Mosambi) achieved relatively better prediction results than the three cultivar dataset.

Dataset standard deviation (S.D.) is important to determine the value of the NIR spectroscopy technique for 
fruit quality  assessment7. The technique holds significance only when the S.D. of the attribute of interest is greater 
than the measurement  RMSEP. Indeed, the prediction set R is directly related to measurement bias corrected 
RMSEP and S.D. i.e., for a particular bias corrected  RMSEP, higher S.D. will result in a higher  RP  value7.

For indirect classification, it is observed that the  RCV and  RP values of the developed PLSR models are low 
however, the  RMSECV and  RMSEP are below the S.D. of the datasets (for Brix and BrimA considering S.D. of 
dataset1 and for TA and Brix: TA considering S.D. of dataset2) (see Tables 3, 4, 5, 6 and 7). The low  RP values 
are because of the low S.D. of the collected dataset, which is a limitation for the presented work as well. Due to 
the low  RCV and  RP values, estimation of quality index value using PLSR models is not a suitable option with 
the investigated dataset, rather the overall sorting using the classification of sweetness levels is a suitable option.

We observed (see Tables 8 and 9) a good correlation between NIR spectra and sensory assessment as opposed 
to quality indices. Hence, like  melons35, direct classification is more suitable for mixed cultivar orange sweetness 
classification using NIR spectroscopy as opposed to the estimation of quality indices.

Conclusion
The research was carried out to investigate the correlation between quality indices i.e. Brix, titratable acidity (TA), 
Brix: TA, and BrimA (Brix minus acids), sensory assessment of the fruit, and short wave near-infrared (SWNIR) 
spectra that were then classified as sweet, mixed, and acidic based on SWNIR spectra for mixed cultivar datasets. 
Datasets were collected using three Pakistani cultivars of orange i.e., Blood red, Mosambi, and Succari cultivars. 
It is observed that Succari cultivar is a statistically different cultivar (w.r.t. TA and Brix:TA values) than Blood 
red and Mosambi cultivars. Hence, two experiments were performed: one with samples of Blood red, Mosambi, 
and Succari (dataset1), the second with samples of statistically similar cultivars (dataset2) i.e., Blood red and 
Mosambi. Given both the datasets, the best fit PLSR model for Brix and BrimA is obtained with dataset1 while 
for TA and Brix:TA, the best fit model is obtained with dataset2. It is concluded that to develop a statistical 
model, samples of statistically dissimilar cultivars should not be merged to form a single mixed cultivar dataset. 
Moreover, we observed a good correlation between SWNIR spectra and sensory assessment as opposed to quality 
indices. Hence, direct classification machine learning model is more suitable for orange sweetness classification 
using SWNIR spectroscopy as opposed to the developing a machine learning model for estimation of quality 
indices (Supplementary information S1).

Data availability
The data that support the findings of this study and/or analyzed during the current study available from the 
corresponding author on reasonable request.

Table 8.  Cross validation and prediction results for 3 class classification for dataset1 (Blood red, Mosambi and 
Succari cultivars). Significant values are given in bold.

Classifiers Cross validation accuracy (%) Prediction set accuracy (%)

Tree 57.5 72.41

LDA 56.7 60.34

SVM 64.2 60.34

KNN 63.4 72.41

Ensemble 58.2 81.03

Table 9.  Cross validation and prediction results for 3 class classification for dataset2 (Blood red and Mosambi 
cultivars). Significant values are given in bold.

Classifiers Cross validation accuracy (%) Prediction set accuracy (%)

Tree 57.8 64.10

LDA 53.3 76.92

SVM 60 79.49

KNN 66.7 79.49

Ensemble 57.5 71.79
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