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P‑TarPmiR accurately predicts 
plant‑specific miRNA targets
Victoria Ajila 1, Laura Colley 1, Dave T. Ste‑Croix 2, Nour Nissan 3,4, Ashkan Golshani 4, 
Elroy R. Cober 3, Benjamin Mimee 2, Bahram Samanfar 3,4 & James R. Green 1*

microRNAs (miRNAs) are small non-coding ribonucleic acids that post-transcriptionally regulate 
gene expression through the targeting of messenger RNA (mRNAs). Most miRNA target predictors 
have focused on animal species and prediction performance drops substantially when applied to 
plant species. Several rule-based miRNA target predictors have been developed in plant species, but 
they often fail to discover new miRNA targets with non-canonical miRNA–mRNA binding. Here, the 
recently published TarDB database of plant miRNA–mRNA data is leveraged to retrain the TarPmiR 
miRNA target predictor for application on plant species. Rigorous experiment design across four plant 
test species demonstrates that animal-trained predictors fail to sustain performance on plant species, 
and that the use of plant-specific training data improves accuracy depending on the quantity of plant 
training data used. Surprisingly, our results indicate that the complete exclusion of animal training 
data leads to the most accurate plant-specific miRNA target predictor indicating that animal-based 
data may detract from miRNA target prediction in plants. Our final plant-specific miRNA prediction 
method, dubbed P-TarPmiR, is freely available for use at http://​ptarp​mir.​cu-​bic.​ca. The final P-TarPmiR 
method is used to predict targets for all miRNA within the soybean genome. Those ranked predictions, 
together with GO term enrichment, are shared with the research community.

microRNAs (miRNAs) are a class of short non-coding ribonucleic acids (RNAs) 20 to 24 nucleotides in length 
that achieve post-transcriptional gene expression regulation1–3. miRNAs are created through a multi-step pro-
cess that includes the formation of pre-miRNA (precursor miRNA) sequences before the final processing step 
creating mature miRNA2,4. miRNAs regulate gene expression through the ribonucleoprotein complex (RISC)3,4. 
The miRNA-RISC complex binds to its target messenger RNA (mRNA) inducing its silencing or degradation 
through translational repression which can be coupled with mRNA decay and RISC-catalyzed endonucleolytic 
mRNA cleavage2,4,5.

Biochemical assays including western blots, microarrays, next-generation sequencing, and quantitative poly-
merase chain reaction have been used to successfully determine miRNA targets at the gene level6. However, these 
techniques are unable to determine the exact binding site of miRNA within the mRNA7. Other experimental 
techniques, such as HITS-CLIP and PAR-CLIP can identify specific target sequences8. Cross-linking ligation and 
sequencing hybrids (CLASH) is a high throughput experimental approach that simultaneously identifies miRNA 
target sequences and the corresponding miRNA9. Cross-linking and immunoprecipitation (CLIP) is a high 
throughput profiling data technique that identifies transcript targets associated with functional RISC complexes; 
however, the discovery of miRNA target sites does not guarantee functional target suppression10. High-quality 
high-throughput data from wet-lab experimentation are essential for the improvement of computational miRNA 
target prediction methods10. Experimental observations have led to widely used miRNA target prediction rules 
that describe important features in a probable target1.

Given the complexity and cost of experimental techniques, several computational methods for predicting 
miRNA targets have been developed. The computational methods can be organized into ab initio, machine 
learning, and hybrid methods1. The ab initio methods are designed to apply experimentally-derived rules that 
examine sequence complementarity in the seed region and other features including the accessibility of the target 
site, AU content, folding energy, conservation, perfect pairing of the miRNA 5 ′ end, and low GC content in the 
target site1,8. TargetScan and miRanda are the two most widely used ab initio miRNA target prediction tools8. 
MiRanda9 uses an estimated sequence complementarity score, sequence conservation, and free energy values to 
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predict target sites1,8. TargetScan10 looks for perfect seed matches to form a candidate target list then uses site-
type, local AU enrichment, and other features to calculate a target score for each candidate1.

In both plants and animals, miRNAs regulate gene expression by controlling regulatory genes; however, 
there are many differences between the two kingdoms concerning miRNA biogenesis, miRNA–mRNA binding, 
and method of mRNA control11. Plant miRNA typically require much higher sequence complementarity than 
animals in the seed region11. Additionally, homology-based searches of similar miRNA–mRNA relationships in 
similar species are much more successful in plants than in animals11. Notably, the location of miRNA binding 
sites on mRNA is different between plants and animals. Animal miRNA bind in the 3 ′ UTR region of the mRNA 
and can exhibit multiplicity, where one mRNA can have many miRNA binding sites and one miRNA can target 
multiple mRNAs4,11. Whereas a plant miRNA binds to the target gene’s open reading frame and there is typically 
only one binding site per mRNA2,4,11.

Plant-specific ab initio miRNA target predictors have also been developed. psRNATarget12 is a method 
that uses the RNAup algorithm13 and a modified Smith–Waterman algorithm to find high-confidence miRNA 
targets14. Other plant-specific algorithms like Targetfinder15, TAPIR16, and Target-align17 use the FASTA or 
Smith–Waterman algorithm accompanied with scoring methods to discover high confidence interactions14. The 
combination of psRNATarget and Targetfinder has resulted in improved performance14. Plant miRNA targeting 
was initially thought to be simple since high seed region complementarity is a requirement for effective gene 
silencing; however, deviations from the experimentally defined rules have been reported18.

Traditionally, machine learning algorithms apply a classifier trained on features extracted from experimentally 
verified data to filter candidate predictions arising from ab initio algorithms1. Some of these machine learning 
methods include RFMirTarget19 (a random forest classifier), MultiMiTar20 (an SVM classifier), NBmiRTar21 (a 
hybrid Naïve Bayes classifier), MiRAW​22 (deep learning), DeepMirTar6 (stacked denoising autoencoders), and 
MiRDTL23 (convolutional neural networks).

TarPmiR is a random-forest-based approach that integrates six conventional features with seven new features 
to predict miRNA target sites8. TarPmiR first extracts candidate target sites using miRanda9 or other ab initio 
methods, then extracts 13 features for prediction21,24. These features include folding energy, seed match acces-
sibility, AU content, stem conservation, flanking conservation, m/e motif, the total number of paired positions, 
the length of the target mRNA region, the length of the largest consecutive pairings, the position of the largest 
consecutive pairings relative to the 5 ′ end of miRNA, the number of paired positions at the miRNA 3 ′ end, the 
difference between the number of paired positions in the seed region and that in the miRNA 3 ′ end8. The algo-
rithm was developed through a thorough validation and feature selection process which determined the best 
machine learning model and most important features8. TarPmiR performed better than both TargetScan and 
miRanda, two of the most commonly used miRNA target prediction tools when tested on two datasets from the 
human HEK293 cell line, a mouse dataset, and a general human dataset8. Their results also suggest that miRanda 
and TargetScan do not accurately predict non-seed-matching binding sites9.

miRNA–mRNA interactions, predicted by the methods mentioned above and others, are aggregated in 
several databases, including EIMMo, DIANA-microT, Microcosm, Microrna.org, MirDB, PITA, TargetScan, 
miRWalk-predictive, and TargetSpy1 all of which contain stricly animal interactions. Experimentally validated 
miRNA–mRNA pairs can be found in repositories such as miRWalk25, miRecords26, TarBase27, miRTarBase28, 
and starBase29. Of these databases, only TarBase and miRTarbase list plant interactions in addition to animal 
interactions.

Most machine learning miRNA–mRNA target prediction algorithms are based on training data derived 
from organisms in the Animalia kingdom. However, a small number of methods are amenable to fine-tuning 
or retraining using data from species closely related to the target species. Specifically, the TarPmiR method 
can be adapted to extract 11 of the 13 required features from custom datasets of miRNA–mRNA interactions 
with known binding sites. However, the retraining of machine learning models requires a significant amount 
of miRNA–mRNA interaction data, which has thus far been limited for most plant species. TarDB30 is a newly 
released database containing tens of thousands of high-confidence plant miRNA–mRNA interactions. Although 
the database was originally created for biologists to use for manual homology-based target analysis, we here 
demonstrate that it can be used to retrain a machine learning method to create a highly accurate plant-specific 
miRNA target prediction pipeline.

In this study, TarPmiR, a state-of-the-art animal-based miRNA target predictor is modified and retrained 
for use on plants. TarDB, a new plant miRNA–mRNA database is used for the first time to train a miRNA target 
predictor. Negative miRNA–mRNA interaction examples are derived from positive miRNA–mRNA interac-
tion examples to form comprehensive training and evaluation datasets. Rigorous experiment design is used to 
demonstrate that the inclusion of plant interaction data, and the complete exclusion of animal interaction data, 
significantly improves miRNA target prediction performance across four plant species. Our experiments also 
determine that a large amount of plant interaction data is required to significantly improve prediction perfor-
mance. Our final method, dubbed P-TarPmiR, is available for use at http://​ptarp​mir.​cu-​bic.​ca. The final predic-
tor is applied to all miRNA in the soybean genome and ranked targets are shared with the research community 
at https://​doi.​org/​10.​5683/​SP3/​LOD4E3. GO term enrichment analysis is completed among all predicted gene 
targets for each miRNA, in an effort to elucidate the function of each miRNA.

Results
TarPmiR is a miRNA target predictor traditionally trained on the Human CLASH dataset. In this study, four 
classifiers with the same model architecture as TarPmiR but different training data were trained and tested in 
four different experiments. The experiments were designed to ascertain the effect of including plant interaction 
data in the training dataset on the plant miRNA target prediction performance of the classifier. Four classifiers 
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of varying proportions of plant interaction data were trained, including an animal-based classifier, a multi-
kingdom classifier with minimal plant data, a multi-kingdom classifier significantly augmented with plant data, 
and a strictly plant-based classifier. Each experiment consisted of applying a classifier to the four different test 
sets. These test sets consisted of positive and negative miRNA–mRNA interaction examples from one of the four 
most represented organisms in the TarDB dataset: Glycine max (gma), Oryza sativa (osa), Populus trichocarpa 
(ptc), and Brachypodium distachyon (bdi).

Rigorous experiments were designed to ensure low sequence homology between the training data of the 
training sets and the test sets. This was used to simulate the case where an unannotated species is analyzed. For 
each plant species, it was ensured that none of the training data was similar to any known interaction in the 
test data. All miRNA included in the TarDB dataset were first clustered by CD-HIT using a sequence identity 
threshold of 70%.

The miRNA and mRNA sequence data of the interactions in the H. sapiens, A. thaliana, and TarDB datasets 
were retrieved. Some mRNA listed in the datasets could not be retrieved due to their removal from current 
genome annotations. The negative target sites were extracted from the retrievable mRNA and the features were 
extracted from all positive and negative interactions (see “Methods” section for further detail). The composition 
of the H. sapiens dataset, the A. thaliana dataset, and the TarDB dataset are listed in Table 1.

Four classifiers with the same model architecture as TarPmiR but differing training sets were trained and 
tested in four plant species. As described in the “Methods” section, training data from each experiment excluded 
miRNA–mRNA interactions similar to miRNA from the test species. In each experiment, the test dataset con-
tained representative miRNA from one of the four target organisms (gma, osa, ptc, and bdi).

In the first experiment, the “Human” classifier was trained on the “Human” training set comprising only H. 
sapiens data. The “Human+ath” classifier was trained on the “Human+ath” dataset consisting of the H. sapiens 
and A. thaliana datasets. The four “Human+Plant” classifiers were trained on the H. sapiens dataset augmented 
with TarDB plant training data for each plant species. Finally, the “Plant” classifiers were trained using only plant 
training data from TarDB. The composition of the training sets and test sets for the four test species in the four 
experiments are listed in Table 2. Notably, there is a drastic decrease between the size of the TarDB dataset shown 
in Table 1 and the training datasets available for the “Plant” classifiers. TarDB contains many cross-species con-
served miRNA targets, which results in a large reduction of the training dataset when all interactions involving 
a miRNA with 70% similarity or larger are removed30

Table 3 summarizes the performance of the four classifiers on the test sets in terms of area under the Preci-
sion–Recall curve (AUC), recall (Re), Precision (Pr), and accuracy (ACC), where the latter three metrics were 
evaluated at a confidence threshold of 0.5. Classifiers that included a large number of plant interactions (i.e., 
“Human+Plant” and “Plant”) performed the best in terms of AUC, recall, precision, and accuracy. Fig. 1 compares 
the average of each performance metric of the four classifiers.

Figure 2 contains the Precision–Recall curves of the four classifiers over all experiments. As more plant inter-
action data are included in the training sets of the classifiers, the AUC of the Precision–Recall curve increases. 
Notably, the AUC on the ptc test set of all the experiments was greater than other test sets (except the plant-
only case). ANOVA tests ( p < 0.05 ) found that the AUC, precision, and accuracy of the classifier results listed 
in Table 2 were statistically significantly different. Post hoc paired t-tests showed that the performance of the 
“Human+Plant” and “Plant” classifiers was significantly different from the “Human” and “Human+ath” classi-
fiers. However, the performance of the “Human” and “Human+ath” classifiers was not significantly different from 
each other. Conversely, the “Human+Plant” and “Plant” classifiers were significantly different from each other, 
except for the AUC and recall performance metrics. Figure 3. displays the density plots for the classifiers on the 
gma test set. Here, a wider separation between negative and positive scores is desirable. In line with the results 

Table 1.   The composition of the miRNA–mRNA interaction datasets used to develop model training sets, 
reporting the number of interacting (positive) and non-interacting (negative) miRNA:mRNA sequence pairs.

Training set H. sapiens dataset A. thaliana dataset TarDB dataset

Positive 17,187 68 40,483

Negative 12,198 53 36,940

Table 2.   The composition of the training sets and test sets used to train four classifiers (Human, Human+ath, 
Human+Plant, and Plant) for application on four test sets (Glycine max, Oryza sativa, Populus trichocarpa, and 
Brachypodium distachyon).

Training set
Human 
training set

Human+ath 
training 
dataset

Human+Plant training set Plant training set Test set

gma bdi osa ptc gma bdi osa ptc gma bdi osa ptc

Positive 17,187 17,255 (68 
from ath)

22,078 (4891 
from TarDB)

25,285 (8098 
from TarDB)

23,123 (5936 
from TarDB)

23,098 (5911 
from TarDB) 4891 8098 5936 5911 3939 1664 1237 2761

Negative 12,198 12,251 (53 
from ath)

16,527 (4329 
from TarDB)

19,572 (7374 
from TarDB)

17,494 (5296 
from TarDB)

17,638 (5440 
from TarDB) 4329 7374 5296 5440 3635 1616 1174 2540
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in Table 3 and Fig. 2, as more plant interaction data are included in the training sets, the separation between the 
positive and negative test data increases.

Web server.  A user-friendly web server was developed to perform miRNA target prediction using the 
P-TarPmiR algorithm. The web server allows users to upload miRNA and target files or copy text into the avail-
able text boxes for prediction (Fig. 4). Sequence length limits are imposed to limit the strain on the external 
remote compute resource. The typical run time for a submission of maximum size is 4 h. The time in the queue 
is dependent on the job load experienced by the remote compute resource.

Once the job is complete, prediction results are displayed and available for download in CSV format. In 
addition to the target prediction confidence, the results include the target region location and sequence (Fig. 5).

Table 3.   Performance of the four (Human, Human+ath, Human+Plant, and Plant) classifiers in each of the 
four test plant species (Glycine max, Oryza sativa, Populus trichocarpa, and Brachypodium distachyon).

Org./exp.

Human Human+ath Human+Plant Plant only

AUC​ Re Pr Acc AUC​ Re Pr Acc AUC​ Re Pr Acc AUC​ Re Pr Acc

gma 0.934 0.992 0.697 0.772 0.937 0.991 0.695 0.769 0.997 0.998 0.788 0.859 1.000 0.986 0.995 0.990

bdi 0.934 0.996 0.663 0.741 0.939 0.997 0.660 0.738 0.998 0.999 0.744 0.825 0.999 0.996 0.993 0.994

osa 0.932 1.000 0.677 0.755 0.928 0.997 0.679 0.757 0.998 0.999 0.720 0.800 0.999 0.997 0.963 0.978

ptc 0.959 0.999 0.682 0.757 0.964 0.998 0.703 0.779 0.998 1.000 0.804 0.873 0.996 0.996 0.987 0.991

Average 0.939 0.996 0.680 0.756 0.942 0.996 0.684 0.761 0.998 0.999 0.764 0.839 0.999 0.993 0.984 0.988

Figure 1.   The average value and standard deviation of the performance metrics of each classifier (Human, 
Human+ath, Human+Plant, and Plant) over the four test species (Glycine max, Oryza sativa, Populus 
trichocarpa, and Brachypodium distachyon). The performance metrics included are area under the Precision–
Recall curve (AUC), recall (Re), Precision (Pr), and accuracy (ACC).
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We have also made available the code and installation instructions such that users can install and run PTarP-
Mir locally at https://​github.​com/​Green​CUBIC/​PTarP​miR.

P‑TarPmiR applied to soybean genome.  P-TarPmiR trained on all plant data described in Table 1 was 
applied to available soybean miRNA and mRNA. Following fivefold cross-validation across all known soybean 
interactions, a confidence threshold of 0.98 was selected, which represents a recall and precision of 0.90 ± 0.01 
and 1.0 ± 0.00 respectively. This threshold was applied to the target predictions to arrive at a list of high-confi-
dence interactions for each soybean miRNA. GO term enrichment was computed among the high-confidence 
mRNA targets predicted for each miRNA, using the PANTHER package31,32. This resulted in 3 tables of enriched 
GO terms for each miRNA, one for each annotation set (biological process, molecular function, and cellular 
component). All target predictions and their relative confidence levels and GO term enrichment results are avail-
able at https://​doi.​org/​10.​5683/​SP3/​LOD4E3

Discussion
We have leveraged a newly released large database of plant-specific miRNA–mRNA interactions to retrain a state-
of-the-art predictor to achieve near-perfect performance over four plant test species. We have demonstrated that 
plant-specific predictors are more effective than cross-kingdom or multi-kingdom classifiers.

In our study, we demonstrated that the inclusion of plant interaction data in the training data resulted in 
a statistically significant difference in the performance of the classifier. “Human+Plant” and “Plant” classifiers 
performed significantly better than the two other classifiers that were not trained on a large amount of plant 
interaction data. Moreover, we demonstrated that the classifier trained strictly on plant interaction data can 
result in a consistent increase in performance over the “Human+Plant” classifiers even with the reduction in 
the size of the training dataset.

This study has shown that the inclusion of species-specific data increases the precision of the target predictions 
while maintaining a high recall. Over four test species, the “Human” classifier was applied to four different plant 
interaction datasets where the experimental design used here ensured that there was no significant sequence 
similarity between the training and test sets. Thus resulting in an average recall of 0.996 and average precision of 
0.680. The “Human” classifier was able to predict high-confidence miRNA-mRNA interactions with high recall, 
but the precision was lower than the classifiers trained using plant-based data. These findings are in line with the 

Figure 2.   The Precision–Recall curves of each of the four classifiers (Human, Human+ath, Human+Plant, 
and Plant) for the four plant test species (Glycine max, Oryza sativa, Populus trichocarpa, and Brachypodium 
distachyon).

https://github.com/GreenCUBIC/PTarPmiR
https://doi.org/10.5683/SP3/LOD4E3


6

Vol:.(1234567890)

Scientific Reports |          (2023) 13:332  | https://doi.org/10.1038/s41598-022-27283-8

www.nature.com/scientificreports/

original TarPmiR manuscript, where Ding et al. reported a significant drop in performance when independent 
test data were used to evaluate their method8. The lower precision observed in this study between the “Human” 
classifier and the “Human+Plant” classifier could be a measure of the generalizability of the “Human” classifier 
on a cross-kingdom case. In Ref.33, we have previously demonstrated the value of species-specific training sets 
for miRNA discovery. The present study reinforces this finding but for the case of miRNA target prediction.

The training and test sets exhibited some class imbalance which would affect the precision, accuracy, and 
AUC scores; however, the recall performance metric would be unaffected by the imbalance. Along with the 
other metrics, the recall scores of the classifier increased between the animal-based classifier and the plant-based 

Figure 3.   Density plots of the prediction scores of the four classifiers (Human, Human+ath, Human+Plant and 
Plant) on the gma test set. Here, prediction scores for negative test samples are shown in red, while positive test 
sample scores are shown in blue. A stronger classifier will lead to greater discriminability between the scores 
generated from positive and negative test miRNA:mRNA pairs.

(a) File Upload (b) Paste Text

Figure 4.   Screenshots of the P-TarPmiR web server job submission page, (a) for file upload and (b) for direct 
text input of sequences. Both types of submissions include the ability to add an email so the web server can 
notify the user when the job is complete. This functionality is particularly useful for large jobs.
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classifier. When the methods are deployed to examine miRNA targets within a complete genome, we expect the 
class imbalance to be much higher since most miRNA–mRNA pairs will not represent actual interacting pairs.

psRNATarget12, a commonly used plant-specific ab initio miRNA target predictor reported an average recall 
of 0.431, an average precision of 1.0, and an average accuracy of 0.732 on our test sets. Relative to psRNATarget, 
our “Plant only” P-TarPmiR predictor dramatically improved prediction recall (0.993) with minimal reduction 
in precision (0.984). Similarly, PTarPmiR outperforms TAPIR and Targetfinder in terms of recall. TAPIR and 
Targetfinder resulted in average recalls of 0.264 and 0.374 and average precision of 0.999 and 1.0 respectively 
on our test sets.

To explore the ability of our plant-specific PTarPMir model to recover atypical miRNA–mRNA interactions, 
a subset of miRNA–mRNA interactions was extracted from TarDB to test the performance of psRNATarget and 
PTarPmiR, specifically on non-canonical interactions. 371 interactions were determined to be atypical since 
they do not follow the definition of a canonical interaction34. Among this subset, psRNATarget resulted in a 
recall of only 0.108 at the default threshold of an expectation of 3, while PTarPmR resulted in a recall of 0.958 
at a similar threshold. The high overall precision and low general recall highlight the fact that ab initio miRNA 
target predictors can only recover canonical interactions, as discussed by Dai et al.12.

Conclusion
In this paper, we adapted TarPmiR, an animal miRNA target predictor, for use on plants. TarDB, a new plant 
miRNA–mRNA interaction database, was used to create plant-specific training sets for the miRNA target pre-
dictor. We demonstrated that an animal-based target predictor cannot adequately perform on plant data. We 
determined that a significant amount of plant interaction data could significantly improve the target predictor. 
Surprisingly, we discovered that a plant-only dataset consistently performed better than the multi-kingdom 
training sets. P-TarPmiR, the final plant-based miRNA target predictor, is available for use at ptarp​mir.​cu-​bic.​ca.

Future work will examine the use of a reciprocal perspective (RP) to improve plant-specific miRNA target 
predictions. Although RP, a cascaded semi-supervised machine learning method, was first developed to enhance 
protein–protein interaction prediction, it has shown great promise in other pairwise prediction tasks, including 
miRNA target prediction in animals35.

Future work will also apply P-TarPmiR to soybean to discover miRNA that may play a role in early flowering 
and resistance to pathogens. miRNA-mediated gene regulation plays an important role in many animal and plant 
processes. Plants can alter their gene expression in response to stressors36,37. However, several studies have indi-
cated that, in addition to intra-species gene regulation, miRNA can be transmitted between species and inhibit 
another species’ gene expression38–42. Inter-species miRNA targeting has been reported in several plant–pathogen 
relationships where pathogen miRNA target host genes or host miRNA target pathogen genes43–48.

In soybean, the differential expression of many miRNAs has been linked to the presence of the soybean cyst 
nematode (SCN)37,49. Additionally, the differential expression of exocyst genes in soybean has been tied to the 
facilitation or suppression of SCN parasitism in the plant50. Soybean is a major legume crop in North America, 

Figure 5.   A screenshot of example results of a job submission on P-TarPmiR web server. The results page 
includes the predicted binding of the seed location, the index of the predicted seed location on the miRNA and 
mRNA, the miRNA and mRNA seed sequences, and the prediction confidence of the miRNA–mRNA pair.

http://ptarpmir.cu-bic.ca
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resulting in billions of dollars of revenue51. SCN, a highly specialized plant-parasitic nematode, is a major patho-
gen of soybean worldwide, causing both significant yield and grain quality losses51. While no direct evidence 
has been identified thus far, the possibility of cross-kingdom interaction between SCN miRNAs and soybean 
mRNA was recently investigated using a predictor-based approach52. Future work will examine animal-based, 
plant-based, and multi-kingdom classifiers to determine which approach is most useful for cross-kingdom 
host-pathogen miRNA target prediction. More broadly, PTarPmiR could also be applied to other plant species 
to further elucidate plant gene regulation as it relates to all kinds of biological processes, such as development, 
yield maximization, and stress adaptations36.

Methods
Data retrieval.  All the plant miRNA–mRNA interactions listed in the TarDB database30 were downloaded. 
TarDB is a recently released database of high-confidence plant miRNA–mRNA interactions, including binding 
site information, as determined by miRNA-triggered phasiRNA loci, cross-species conserved targets, and degra-
dome/PARE (Parallel Analysis of RNA Ends)30. The miRNA and mRNA sequences of 42,692 interactions could 
be retrieved. Additionally, 70 of the miRNA and mRNA listed in the Arabidopsis thaliana miRNA–mRNA inter-
actions from German et al. were also retrieved53. The A. thaliana data serves as the source of plant interaction 
data for the minimally augmented multi-kingdom classifier discussed further in “Discussion” section. Lastly, the 
miRNA and mRNA of 18,514 of the Homo sapiens miRNA–mRNA interactions listed in the Human CLASH 
dataset originally used to train TarPmiR were also retrieved miRBase and NCBI GenBank54. These three sources 
resulted in the TarDB, A. thaliana, and H. sapiens positive datasets, respectively.

Negative miRNA–mRNA interaction examples were created using the methodology described in Ding et al. 
to form the corresponding TarDB, A. thaliana, and H. sapiens negative sets8. In brief, the negative examples were 
selected by examining potential negative sites on an mRNA from a documented positive interaction that did not 
overlap with the positive site and had a similar CG dinucleotide frequency to the positive site. For each mRNA, 
the negative site exhibiting the lowest folding energy was used as the final negative exemplar8.

Feature extraction.  The TarPmiR8 software package was modified to extract 11 features from the miRNA 
and target site pairs, including folding energy, seed match, accessibility, AU content, m/e motif, the total number 
of paired positions, length of the target mRNA region, length of the largest consecutive pairings, the position 
of the largest consecutive pairings relative to the 5 ′ end of the miRNA, the number of paired positions at the 
miRNA 3 ′ end and the difference between the number of paired positions in the seed region and in the miRNA 
3 ′ end. TarPmiR utilizes the miRanda software9 to find and extract features from seed regions on the miRNA 
and mRNA sequences.

Training set development and experimental set‑up.  For each test species, the following steps were 
used to create the training sets and the test sets, such that none of the training data shared significant sequence 
identity with any of the evaluation data from the test species. The plant training sets were used to train one of 
the four classifiers during the four experiments. The test set was used to determine the performance of each 
classifier. For each plant test species, the training set contained all examples from the TarDB dataset excluding 
those involving miRNA exhibiting greater than 70% sequence identity with any miRNA from the test species. All 
TarDB examples from the target organism formed the test set. Examples with miRNA sharing sequence identity 
with any examples from the A. thaliana dataset miRNA were also excluded from the test set. Test examples with 
duplicate features were also removed.

All classifiers used Random Forest models with 13 trees (from Ding et al.). The first experiment replicated the 
original TarPmiR classifier where the Random Forest classifier was trained on the Human CLASH positive and 
negative data. The second experiment consisted of training the model on a training set including the H. sapiens 
and the A. thaliana positive and negative sets. A third experiment trained the model on the H. sapiens dataset 
along with the plant positive and negative datasets for that experiment. The training sets in experiments two and 
three contain different proportions of plant interaction data. This will test how much plant data is required to 
perform well. In the fourth experiment, the model was trained on only the plant training sets in each experiment.

Web server.  The miRNA Target prediction web server was developed using the Node.js Express framework. 
Common JavaScript libraries were used to develop a user-friendly interface. The web server runs with the sup-
port of Digital Research Alliance of Canada, a remote cloud-based compute resource that allows the submission 
of multiple concurrent jobs. The web server was containerized using Docker to ensure the portability and scal-
ability of the web server. The web server is freely available for use at ptarp​mir.​cu-​bic.​ca

P‑TarPmiR applied to soybean.  A model trained on the entirety of the TarDB database was applied to 
all 756 mature miRNA available for soybean (Glycine max) in miRBase55 and all 88647 transcripts available 
in version Wm82.a2 of soybean from Soybase56. The threshold to determine high-confidence interactions was 
determined using fivefold cross-validation of the soybean interactions extracted above. GO term enrichment 
analysis was applied to all high-confidence interactions predicted for each mature miRNA using PANTHER31,32.

Data availability
All sequence and interaction data used to train and test the methods are available from public repositories (see 
details in the manuscript).

http://ptarpmir.cu-bic.ca
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