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A new dataset for mongolian online 
handwritten recognition
Yuecai Pan , Daoerji Fan *, Huijuan Wu  & Da Teng 

This paper introduces a new traditional Mongolian word-level online handwriting dataset, MOLHW. 
The dataset consists of handwritten Mongolian words, including 164,631 samples written by 200 
writers and covering 40,605 Mongolian common words. These words were selected from a large 
Mongolian corpus. The coordinate points of words were collected by volunteers, who wrote the 
corresponding words on the dedicated application for their mobile phones. Latin transliteration 
of Mongolian was used to annotate the coordinates of each word. At the same time, the writer’s 
identification number and mobile phone screen information were recorded in the dataset. Using 
this dataset, we propose an encoder–decoder Mongolian online handwriting recognition model 
with a deep bidirectional gated recurrent unit and attention mechanism as the baseline evaluation 
model. Under this model, the optimal performance of the word error rate (WER) on the test set was 
24.281%. Furthermore, we present the experimental results of different Mongolian online handwriting 
recognition models. The experimental results show that compared with other models, the model 
based on Transformer could learn the corresponding character sequences from the coordinate data of 
the dataset more effectively, with a 16.969% WER on the test set. The dataset is now freely available 
to researchers worldwide. The dataset can be applied to handwritten text recognition as well as 
handwritten text generation, handwriting identification, and signature recognition.

Pattern recognition has contributed greatly to machine vision applications. Handwriting recognition falls under 
the umbrella of pattern recognition. Handwriting recognition is the technique by which a computer system can 
recognize characters and other symbols written by individuals using natural  handwriting1. With the popular-
ity of mobile phones and digital devices, more applications of handwriting recognition have emerged, such as 
the handwriting input method, signature recognition, and business card recognition. In the Inner Mongolia 
Autonomous Region, China, about 4 million people speak and write the traditional Mongolian language. How-
ever, owing to the lack of datasets, the development of Mongolian online handwriting recognition has been 
slow. Even though there are some reports on Mongolian online handwriting recognition, the relevant datasets 
have not been published, making the comparison and evaluation of different models or algorithms impractical. 
Undoubtedly, the performance of training and recognition highly depends on the quantity and quality of train-
ing samples through deep neural  networks2. Thus, it is necessary to build a large online handwritten Mongolian 
word database for all researchers in this area.

The main features that distinguish Mongolian from other languages are as follows: as an agglutinative lan-
guage, its vocabulary is vast, including millions of words, and letters are seamlessly connected from top to bottom. 
In Mongolian online handwriting recognition, to our knowledge, MRG-OHMW3 is the first publicly available 
database for online handwritten Mongolian. The main shortcoming of this dataset is that the vocabulary only 
covers 946 Mongolian words, which is too small for Mongolian, and the handwriting trajectories were collected 
by an Anoto pen on paper, making them different from trajectories written with fingers on a touch screen. Thus, 
we aim to build a large Mongolian word-level online mobile handwritten database to promote the development 
of related research and applications.

Therefore, this paper proposes a comprehensive Mongolian online handwritten dataset called “MOLHW”, 
which may be used as a benchmark dataset for the Mongolian online handwritten recognition task. The dataset 
was written by 200 people in total, and the data in it were collected by mobile phone application. The words were 
written using a finger on a touch screen. The vocabulary contained in MRG-OMHW3 consists of 946 words, while 
that in MOLHW is much larger, at 40,605 words. Considering that there are many ways to split and segment 
Mongolian words for analysis, in this paper, we choose the grapheme code as the Mongolian alphabet because it 
splits Mongolian in the most detailed way and carries no grammatical information. The grapheme code is shown 
in Fig.1 and contains 51 characters.
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The MOLHW dataset is now freely available to researchers for various Mongolian online text-related appli-
cations, such as Mongolian online text recognition, handwritten text generation, writer identification and veri-
fication, and signature recognition. The main contributions of this paper can thus be summarized as follows.

• The creation of an open vocabulary benchmarking dataset of a Mongolian online handwritten dataset, 
MOHLW, which includes 164,631 samples written by 200 writers and covers 40,605 common Mongolian 
words.

• The development of tools, techniques, and procedures for Mongolian online text collection, verification, and 
transliteration.

• The development of a proposed benchmark model for recognition of online Mongolian handwritten words 
using the encoder–decoder model.

• A comparison of the performance of different models on this dataset.

The rest of the paper is organized as follows. “Related work” presents a literature review of Mongolian online 
text datasets. In “Overview of MOLHW”, we present the data collection steps used in this study and the dataset 
statistics. “Benchmark evaluation” details the data preprocessing and framing process. Additionally, this section 
presents three trained and validated models and the experimental results of Mongolian online character recogni-
tion algorithm using the MOHLW dataset. Then, for the experimental results of our baseline model, we provide 
the error analysis of the test set. Finally, we present the conclusions of this study in “Conclusion”.

Related work
Currently reported Mongolian text recognition research can be divided into three categories: optical character 
recognition (OCR), historical document recognition, and handwriting recognition.

The segmentation method was adopted in the earliest Mongolian OCR. In the first step, the glyph is segmented 
from the image, then the feature of each glyph is extracted, and finally the glyph is classified and recognized by 
matching with the  template4. In short, Mongolian characters are seamlessly connected, so the segmentation of 
glyphs is a difficult and challenging task. Therefore, the segmentation of characters will greatly affect the accu-
racy of recognition. Due to the above special nature of Mongolian, in recent years, many scholars have adopted 
the non-segmentation  strategy5–7. Datasets for studying Mongolian OCR are relatively easy to obtain. Zhang 
et al.5 proposed a model based on sequence to sequence with an attention to recognize non-segmented printed 
Mongolian text in 2017, and the recognition accuracy of this experiment has reached 89.6%. The dataset used in 
this experiment belongs to the author and contains about 20,000 words and a total of 80,000 samples. In 2019, 
Wang et al.6 proposed end-to-end printed Mongolian text recognition based on bidirectional long short-term 
memory (BiLSTM) and connectionist temporal classification (CTC). The problem of Mongolian characters seg-
mentation was not handled, but the author focused to the problem of sequence to sequence. The dataset consists 
of 800,000 samples collected from the dictionary and covers 20,250 words. In 2021, Cui et al.7 proposed a triplet 
attention Mogrifier network (TAMN) for irregular printed Mongolian text recognition. The TAMN network 
uses a special spatial transformation method to correct the distorted Mongolian image.The recognition accuracy 
reached 90.30% on their own dataset, which includes 98,085 Mongolian pictures from the China Mongolian 
News Network and covers 6538 words.

Research on the recognition of historical Mongolian documents has been conducted around Mongolian 
Kanjur—a Mongolian encyclopedia—the content of which involves religion, history, and literature. The main 
research point has been keyword spotting and the holistic recognition of the Woodblock–Print  word8–10. The 
dataset used in Mongolian historical documents recognition is from scanned Mongolian Kanjur images, span-
ning about 200 pages.

The research on Mongolian handwriting recognition can be divided into two categories: offline and online 
handwriting recognition. The publication of online or offline handwriting datasets in various languages has 
contributed to the development of their respective handwriting techniques. For example, in the research of 
offline handwriting recognition, English has the  CENPARMI11,  CEDAR12, and  IAM13 datasets; Chinese has the 
 HCL200014, CASIA Offline  datasets15, and HIT-MW16 datasets; Japanese has the  Kuchibue17 and  Nakayosi18 
datasets; and Arabic has IFN/ENIT19 and KHATT 20. In Mongolian offline handwriting recognition, a word-level 
traditional Mongolian offline handwriting dataset (MHW) was developed by  Daoerji21. The MHW dataset is 
divided into a training set and two test sets, including nearly 120,000 samples written by 200 different writers. The 
size of the training set, test set I, and test set II is 5000, 1000, and 939 words in the MHW dataset, respectively. The 
vocabularies of the training and testing set have a few intersections. Fan and  Gao22 developed a hidden Markov 
model and deep neural network hybrid system to recognize offline handwritten Mongolian text, with an accuracy 
of 97.61% on MHW Test set I and an accuracy of 94.14% on MHW Test set II. In this work, the post-processing 
stage used the Viterbi algorithm on a dictionary that only contains a subset of the vocabulary of MHW that 

Figure 1.  Grapheme code.
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includes approximately 6734 words, and searched for the maximum possible result. Therefore, out-of-vocabulary 
(OOV) words could not be recognized. A lexicon-free conversational Mongolian offline handwritten recognition 
system with a two-dimensional recurrent neural network with CTC was proposed  in23. The sub-word language 
model they used can recognize any word and showed the best performance, with word error rates (WERs) of 
18.32% and 23.22% on MHW of the two test sets.  In24, an encoder–decoder with an attention mechanism model 
for Mongolian offline handwritten recognition was proposed. The model consists of two LSTMs and one attention 
network. The first LSTM is an encoder that consumes a frame sequence of a one-word image. The second LSTM 
is a decoder that can generate a sequence of letters. The attention network is added between the encoder and 
decoder, which allows the decoder to focus on different positions in a sequence of frames during the decoding. 
The best accuracies on the two testing sets of MHW were 90.68% and 84.16%, respectively.

In the research of online handwriting recognition, a lot of online handwritten datasets have been published in 
various languages. For example, Arabic has the  ADAB25,  AltecOnDB26, and Online-KHATT 27 datasets; Chinese 
has the CASIA Online  datasets15; Mongolian has the MRG-OHMW3 datasets. In the development of Mongolian 
online handwriting recognition, Ma et al.3 published a database called “MRG-OHMW” for online handwritten 
Mongolian in 2016. There are 282,954 Mongolian word samples in the database, and their 300 writers come 
from a Mongolian ethnic minority. The vocabulary of this database covers 946 Mongolian words, with the word 
lenghth from one to fourteen Mongolian characters. The comparison between the MRG-OHMW database and 
our database is given in Table 1.

Ma et al. proposed a recognition model based on a CNN network and tested it on their own database with the 
91.2% test accuracy. In 2016, Liu et al.28 proposed an online handwritten Mongolian word recognition method 
based on MWRCNN and position maps. On MRG-OHMW database, the method of combining multiple clas-
sifiers achieved the highest recognition accuracy of 93.24%. In 2017, Liu et al.29 proposed a five-bidirectional 
hidden-level deep bidirectional long short term memory (DBLSTM) network for online handwritten Mongolian 
word recognition. The best performance of the model adopted a noval sliding window method with the decoding 
method adopted the optimal path decoding is the word level recognition rate of 90.35% on the MRG-OHMW 
subset. In 2020, a new method, CMA-MOHR, for online handwritten Mongolian character recognition was 
proposed by Fan Yang et al.30. To evaluate the performance of the model, they carried out experiments of dif-
ferent models on their own dataset and got the best performance of 76.23% on their model. So far, however, 
their datasets have not been made public. Recently, the transformer network was proposed by  Devlin31, which 
is completely based on the attention mechanism and recurrence and convolutions are not required in the whole 
network model. It is proved to be very effective in the field of handwriting recognition. In the field of online hand-
writing recognition,  Matteo32 carried out experiments on an online handwritten dataset, released by STABILO, 
and the recognition model was based on transformer structure. The experimental results show that transformer 
is a significant breakthrough in the sequence to sequence problem.

Overview of MOLHW
Mongolian vocabulary selection. Like English, traditional Mongolian is a phonetic script, with 35 let-
ters. Unlike letters in the Latin alphabet, Mongolian letters have different shapes depending on the position and 
context in a word. In Mongolian Unicode encoding, only 35 basic letters, called the Nominal Forms, are encoded, 
and there is no independent encoding for the different forms of each letter, called the Presentation Forms. There-
fore, the text processing engine needs to display the correct glyphs according to the context. Because Mongolian 
Unicode encoding cannot represent unique glyphs, a Mongolian grapheme code set containing 51 elements was 
proposed by Fan et al.22. Compared to Unicode, grapheme codes have shown better performance on Mongolian 
handwritten recognition tasks. Therefore, in the MOLHW dataset, we provide both Unicode and grapheme 
codes labels at the same time.

Mongolian is considered to be one of the most morphologically complex languages. Mongolian words are 
formed by attaching suffixes to stems. One stem, especially a verb stem, can be used to generate dozens or hun-
dreds of words by connecting different suffixes to it. According to incomplete statistics, the Mongolian vocabulary 
can reach one million words. Thus, it is impossible to cover all Mongolian words when building Mongolian-
language datasets. To include all grammatical phenomena in Mongolian, we counted the word frequency from a 
Mongolian corpus containing more than 3 million words and selected 40,605 words as the vocabulary set of this 
dataset. The vocabulary set contains words with Unicode lengths from 1 to 20. We have counted the number of 
words of different lengths, and Fig. 2 shows the specific results It can be seen from the figure that the length of 
frequently used Mongolian words was concentrated in the range of 6–12 characters.

Data collection. Owing to the popularity of smart phones, we decided to use a mobile phone touch screen 
to collect handwritten trajectories. Thus, a dedicated data collection application was developed. This application 
mainly enables the following tasks: data preparation, the real-time updating of data statistics, and data collection. 
The application is mainly divided into two parts: a background system and a user front end. The background sys-

Table 1.  Statistics of MRG-OHMW and MOLHW.

Database Writers Words Maximum word length Total size Collection method

MRG-OHMW 300 946 14 282,954 Using Anoto pen on paper on paper

MOLHW 200 40,605 20 164,631 Writing with fingers on the touch screen
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tem is mainly responsible for providing a Mongolian text template, collecting the user’s handwriting trajectory, 
and tracking the time of writing and the manual inspection results of each sample of text. The user front end is 
responsible for providing users with a handwriting environment and an environment for the manual inspec-
tion of text samples in the background. The overall architecture of the system is shown in Fig. 3. The role of the 
mobile phone is to act as the front-end environment for the system, divided into two main parts, one providing 
the writing environment for the users and the other providing the checking environment for the reviewers. Two 
different servers act as the back-end of the system, the computer sever provides the volunteers with samples to 
write, and the data sever provides the storage and reading of the writing traces.

When the user opens the Mongolian handwriting input application, they click the login button to access 
the handwriting interface shown in Fig. 4. The background assigns a target sample Mongolian word to the user. 
The text at the top left is the template word provided to the user. The user writes the corresponding word in the 
white area, and if the screen is not large enough to write the word, the user can use the scroll bar on the right to 
scroll down the drawing area. If the user is dissatisfied with their current writing sample, the user can use the 
clear button on the left to clear the writing area and rewrite the word. After writing, the user can click the submit 
button on the right to submit the written handwriting track to the data server. After submission, the application 
provides a new Mongolian word for the user to write.

Data verification. To ensure the writing quality of Mongolian words, we set up several special expert 
reviewers who are native speakers of Mongolian. The goal of this operation was to delete misspelled or non-
standard writings. When an expert reviewer logs in to the application, the background sends a Mongolian text 
track written by the user to them for their manual inspection and approval. The application redraws the correct 
template word and the track written by the user on the screen. The reviewers choose to accept or reject the tra-
jectory based on human eye comparison. Figure 5 shows the system operation diagram for the reviewers. The 
image in the top left corner of the Fig. 5 shows the standard writing method corresponding to the trajectory. 
When the reviewer determines that a sample meets the standard, select the check box option in the bottom left 
corner of the screen and the system will include this sample in the data set, otherwise select the fork option and 
the system will automatically jump to the review screen for the next sample. This system significantly reduces 
the cost of the inspection process.

We initially obtained about 210,000 handwritten trajectory samples, and after expert review, more than 
160,000 samples remained. A large number of samples were deleted because, firstly, the volunteers had not 
been trained in writing standards and, secondly, they were uncomfortable with writing in Mongolian on mobile 
phones, resulting in sloppy or incomplete writing, thus causing some of the samples to be of poor quality.

Figure 2.  Word frequency statistics of different lengths.

Figure 3.  Architecture diagram of the handwriting trajectory acquisition system.
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Figure 4.  Main page of app.

Figure 5.  Review page of app.

Figure 6.  Some handwriting samples in MOLHW.
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Dataset statistics. The MOLHW dataset is now publicly available at https:// www. kaggle. com/ fanda oerji/ 
molhw- ooo to all researchers, and some examples of handwriting samples are shown in Fig. 6.

We show examples of different styles of writing in Fig. 7.
The MOLHW dataset contains a total of 16,4631 handwriting samples and no separation of training and test 

sets. In this study, we randomly selected 70% as the training set, 20% as the test set, and the remaining 10% as the 
validation set. Users could divide the test set and training set according to their own needs. As multiple people 
were working in parallel, the words in the vocabulary were not written equally. The statistics of the handwriting 
sample collection of words are shown in Fig. 8.

It can be seen that 11,262 words were written three times, which was the most common frequency. The 
MOLHW dataset contains 40,605 words in total, which ensures that each word has at least one handwriting 
sample, the maximum number of collections is 14, and an average of four handwriting samples are collected per 
word. All 200 writing volunteers were freshmen in college, with ages ranging from 18 to 20, and the proportion of 
males and females was almost equal. The volunteer who wrote the most wrote 3374 samples, the one who wrote 
the second most wrote 2265 samples, the one who wrote the third most wrote 2246 samples, and the average 
number of writing samples per volunteer was 823.

The MOLHW dataset includes seven files: “MOLHW.txt”, “MOLHW_preprocess.txt”, “MOLHW_graph-
eme.txt”, “MOLHW_preprocess_grapheme.txt”, “ASCII2Unicode.txt”, “dict.txt”, and “grapheme_code.png”. The 
“MOLHW.txt” file is an original dataset file in text format, and each line is a handwriting sample in the format 
[Label, Author ID, Screen width, Screen height, Screen pixel density, Writing track coordinates]. 

1) Label: Mongolian word in Latin transcription (case sensitive). The correspondence between Latin and Mon-
golian Unicode is explained in ASCII2Unicode.txt. For example, the label “abaci” can be converted to to 
“0x1820 0x182a 0x1834 0x1822” according to ASCII2Unicode.txt. The Mongolian word is .

2) Author ID: Writer md5 encrypted ID.
3) Screen width: Mobile phone screen width.
4) Screen height: Mobile phone screen height.
5) Screen pixel density: Mobile phone screen pixel density.

Figure 7.  Some different handwriting style samples in MOLHW.

Figure 8.  Word sample statistics.

https://www.kaggle.com/fandaoerji/molhw-ooo
https://www.kaggle.com/fandaoerji/molhw-ooo
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6) Writing track coordinates: The coordinate data arc is organized as [[x,y],[x,y],....,[x,y]]. The format of one pair 
of coordinates is “[x, y]”, where “x” represents the coordinate of the X-axis, and “y” represents the coordinate 
of the Y-axis. The upper left corner of the screen is marked as the origin of the coordinate system, moving 
the x-axis to the right and moving the y-axis down. The [ −1,−1 ] in coordinates represents lifting a pen.

The “MOLHW_preprocess.txt” file is the dataset where the trajectory has been preprocessed, and the others are 
the same as “MOLHW.txt”. The file “MOLHW_grapheme.txt” is the dataset labeled grapheme codes, and the 
others are same as “MOLHW.txt” too. The file “MOLHW_preprocess_grapheme.txt” is the preprocessed data-
set labeled grapheme codes, and the others are same as “MOLHW_preprocess.txt”. The file “dict.txt” is a Latin 
transliteration of Mongolian to grapheme code in the Mongolian dictionary file. The file “grapheme_code.png” 
is the grapheme code definition file.

Benchmark evaluation
Mongolian online handwriting recognition can be considered a mapping process from a text trajectory sequence 
to a character sequence. In the Mongolian recognition task of this paper, based on the online Mongolian hand-
writing track data, the neural network recognizes the corresponding text, which can be considered as a sequence 
to sequence learning process. In the end-to-end task of variable-length sequences, the most widely used frame-
work is encoder-decode structure, which is why in this paper we choose the encoder-decode framework structure 
to build the learning network as our baseline model. Another way of dealing with the variable length sequence 
problem is to use the CTC model, so in this paper we also combine the CTC network with the long short-term 
memory (LSTM) network in a comparative experiment. In total, three types of models were trained and validated. 
These are two encoder–decoder architectures. In the baseline model, we constructed an encoder–decoder33 
based on an online Mongolian handwritten recognition model with an attention  mechanism34. The second 
is a Transformer-based model, and the third is a LSTM with a CTC-based model. A full description of these 
three architectures is given in "Details of models" section. Finally, all the models were evaluated with a WER 
and character error rate (CER), where the CER is expressed as the average edit distance of words. Edit distance, 
also known as Levenshtein distance, is a quantitative measurement of the difference between two strings. It is 
measured by calculating how many times it takes to change one string into another.

Preprocessing and framing. To obtain a better recognition effect, the original writing track information 
needs some preprocessing operations. Owing to variations in writing speed, the acquired points were not dis-
tributed evenly along the stroke trajectory. Interpolation and resampling operations were used to recover miss-
ing data or force points to lie at uniform distances. Note that the image in the Fig. 9a was drawn from an original 
trajectory data. The detailed preprocessing steps are as follows: 

1. Interpolation. Piecewise Bezier interpolation was used in the present study because it helps to interpolate 
points among a fixed number of points. This further helps distance the points at an equal interval. Figure 9a,b 
shows a comparison between the original trajectory data and the result of Bezier interpolation.

2. Resampling. After inserting the points, we resampled the samples according to the Euclidean distance 
between two adjacent points defined as the sampling distance. Figure 9b,c shows a comparison between the 
Bezier interpolation data and the trajectory data after resampling. The sampling distance is a parameter that 
needs to be adjusted.

3. Deletion. By screening the dataset for samples with less than a certain number of sampling points, a final 
threshold of 50 points was selected as the criterion for distinguishing whether a sample passed or failed, as 

Figure 9.  Trajectory data preprocessing.
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we found that 50 points could be used as a threshold to screen out as much unqualified text as possible while 
removing as few correct samples as possible. We deleted the samples whose sampling point length was less 
than 50 after sampling.

4. Normalization. After the central axis of the sample data was translated to the X-axis, we normalized the 
sample on the XY-axis to ensure that the sampled handwritten text was in the center of the canvas. The final 
trajectory data are shown in Fig. 9d.

The preprocessed text trajectory is a series of two-dimensional coordinates along the writing order. We used 
a sliding window to move along the writing order and concatenate all the coordinates within the window into 
a frame of data. A certain overlap was maintained when the window slid, and the framing process is shown in 
Fig. 10.

Both the sliding window size and the overlap length are in units of trajectory points, which are model hyper-
parameters that need to be tuned.

The top row of data in Fig. 11 represents a sample trajectory, which identifies the range of a frame and the 
starting position of the next frame after a certain amount of offset. This figure is a diagram of framing for a 
window size of 4 and an overlap of 3. The matrix in Fig. 11 is the result of framing the sample, where each row 
represents a frame of data. This matrix is also the input data that is fed into the model.

Details of models. Baseline model. The proposed model was designed as a sequence-to-sequence archi-
tecture with an attention mechanism. This model is composed of a multi-layer BiGRU-based encoder and a 
GRU-based decoder, and a attention network is adopted to connect between the encoder and the decoder. De-
tailed diagram of the model for the specific encoder and decoder implementations of baseline model is shown in 
Fig. 12. The architecture is shown in Fig. 13.

The encoder is responsible for compressing the input sequence into a vector of a specified length, which 
can be regarded as the semantics of the sequence, while the decoder is responsible for generating the specified 
sequence according to the semantic vector. In this model, the sequence of frames from the handwritten trajec-
tory is passed to the encoder and converted into hidden states of the corresponding encoder. Then, the last two 
hidden states of BiGRU are added up as the decoder’s initial hidden states. Next, at each step of the decoding 
process, the hidden states and encoder outputs are fed into the attention layer, in which an attention weight vec-
tor is calculated. Finally, the decoder receives the previous prediction output (initially, it feeds the start symbol 
SOS) and the attention context to generate a sequence of letters as the output of the model. The attention layer 

Figure 10.  Trajectory image framing example.

Figure 11.  Trajectory data framing example.
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Figure 12.  Architecture of the GRU based model.

Figure 13.  Architecture of the encoder–decoder model.
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plays an important part in the proposed model because it allows the decoder to focus on different positions in 
a sequence of frames during decoding. In this model, the hidden layer size of GRU and the layer count of the 
encoder are hyperparameters that need to be tuned. The last layer of the decoder is a softmax classification layer, 
and the number of neurons depends on the number of target characters. When the Mongolian grapheme code 
is used as the target sequence, it contains a total of 52 neurons, and when Unicode is used, it contains a total of 
36 neurons, including the end symbol EOS. In each step of decoding, the character with the highest probability 
is selected as the current output, and the decoding is stopped when EOS is encountered.

Transformer model. Similar to the proposed baseline model, the recognition model based on the transformer 
can also be regarded as being composed of an encoder and decoder and has been shown to be effective in numer-
ous sequence-to-sequence problems. Thus, we built a Transformer model whose architecture is shown in Fig.13, 
and measured its performance on our dataset.

Vaswani et al.35 gave a specific description of the working principle of the transformer, which is not repeated 
here. Next, we focused on aspects related to understanding implementation of the transformer, and based on 
this, we built a simple model based on the transformer. Detailed diagram of the model for the specific encoder 
and decoder implementations of transformer model is shown in Fig. 14. Different from the baseline model, in 
the transformer, there are multiple sub-encoders with the same structure in the encoding module, and the input 
of each sub-encoder is the output of the previous sub-encoder. Each sub-encoder is composed of a self-attention 
mechanism and a feedforward neural network. The decoder has a structure similar to its encoder. In addition 
to the two sub-layers in each encoder layer, the decoder also inserts a third sublayer, which performs multiple 
attention on the output of the encoder stack. The experimental results of the baseline model confirm that the 
data characteristics contained in the raw data without any processing are insufficient. Therefore, the track data 
are divided into frames to make the characteristic information of the data more obvious. Then, the frame data 
are embedded, position-encoded, and sent to the encoder. After the transformer network, we predict one label 
at a time, while the cross-entropy loss function is applied in these situations.

Figure 14.  Architecture of the transformer model.
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LSTM‑CTC model. LSTM is a type of recurrent neural network. LSTMs were developed to solve the vanishing 
and exploding gradient problems that plague many RNNs. Because LSTMs are much better at dealing with these 
two issues than earlier RNNs have been, LSTMs are suitable for tackling tasks that involve long-range depend-
encies in sequential  data32. CTC is widely used in speech recognition, text recognition, and other fields to solve 
the problem where the lengths of input and output sequences are different and cannot be aligned. In our model, 
the CTC is actually our loss function. The LSTM with the CTC-based model consists of an LSTM network and 
a CTC network, as shown in Fig. 15. The LSTM network consists of a bidirectional LSTM (BiLSTM) layer with 
a 20% dropout rate to avoid overfitting. After the preprocessed frame data are sent to the BiLSTM layer, and this 
layer is followed by a fully connected layer and then a fully connected output layer of 52 classes, depending on 
the grapheme code classes, which has 51 letters and an empty character blank. After being normalized by the 
softmax layer, the output is sent to the CTC layer to calculate the loss with real labels of the grapheme code.

Experimental results. Below, we give the experimental results of the optimization process of tunable 
parameters of the baseline model. The comparison results of the optimal performance of the three models are 
given at the end of this section. From the preprocessed MOLHW dataset, we randomly selected 70% as the train-
ing set, 20% as the test set, and the remaining 10% as the validation set. In all subsequent experiments, grapheme 
codes were used as target labels, but finally, we compared the performance of grapheme codes and Unicode 
under the same model. The cross-entropy loss function was used during the encoder–decoder training, and the 
training was stopped when the loss on the validation set was no longer reduced. Then, the epoch with the small-
est loss on the validation set was selected as the optimal model. Each training epoch took nearly 270 second on 
the GPU NVIDIA Quadro P5000.

Before the model tuning, we carried out experiments with the same baseline model on the original data and 
the preprocessed data, with the fixed parameters selected as the sliding window size was 1, the overlap was 1, 
the hidden layer size was 64, and the number of encoder layers was 1. The corresponding experimental results 
are shown in Table 2 . The results in the table show that the preprocessed data performed better under the same 
model, so we carried out subsequent experiments on the preprocessed data.

As mentioned above, the sampling distance, sliding window size, overlap, hidden layer size, and number of 
encoder layers are all hyperparameters that had to be tuned. The tuning of hyperparameters adopted a simple 
search strategy. The first hyperparameter to be tuned was the sampling distance, and the search range was 3, 4, 
5, and 6. When tuning, the other hyperparameters selected empirical values, and the sliding window size was 50, 
the overlap was 10, hidden layer size was 128, and the number of encoder layers was 1. The results are shown in 
Table 3. It can be seen from the table that the model had the best effect on the test set with a sampling distance 
of 4, so our subsequent experiments all sampled the dataset with a sampling distance of 4.

The second hyperparameter to be tuned was the sliding window size, and the search range was 15, 20, 30, 40, 
50, and 60. When tuning, the other hyperparameters selected empirical values, the overlap was 20, the hidden 

Figure 15.  Architecture of the LSTM-CTC model.



12

Vol:.(1234567890)

Scientific Reports |           (2023) 13:26  | https://doi.org/10.1038/s41598-022-27267-8

www.nature.com/scientificreports/

layer size was 64, and number of encoder layers was 1. The experimental results are shown in Table 4. The 
experimental results show that the performance was best when the sliding window size was equal to 20. Next, 
we tuned the overlap hyperparameters, and compared the results when they were set to 4, 10, and 20. The results 
are shown in Table 5; the encoder–decoder network worked best when the overlap was 10.

The optimal values of the three hyperparameters of sampling distance, sliding window size, and overlap in 
the data preprocessing process were determined, and their values were 4, 20, and 10, respectively. In the follow-
ing experiments, we searched hidden layers of sizes 64, 128, and 256, and searched encoder layers 1, 2, 3, and 4 
simultaneously. The results are shown in Table 6. It can be seen that with the increase of the number of layers, the 
recognition effect gradually improved, but after reaching four layers, the increase was no longer obvious. When 
the number of layers was one and two, as the size of the hidden layer increased, the recognition performance 
also improved, but when the number of layers was three, the performance decreased when the size of the hidden 
layer reached 256. The best performance was achieved when the number of layers was three and the hidden layer 
size was 128, with a CER of 0.471 and a WER of 24.281% on the test set.

At the end of the experiment, we compared the performance of grapheme codes and Unicode. We used Uni-
code as the label and repeated the experiment, in which the model parameters selected the optimal parameters 
of the grapheme code, and the results are shown in Table 7. It can be seen that the performance of grapheme 
code was much higher than that of Unicode encoding, in which CER was reduced by 0.309, and WER is reduced 
by 17.437% on the test set.

With the preprocessed data, the first three rows of Table 8 shows the recognition accuracy based on three 
models. In terms of WER and CER, the transformer model performed much better than our baseline model, with 

Table 2.  Original and preprocessed data experiment result. Significant values are in [bold].

Data Train Test

CER WER (%) CER WER (%)

Preprocessed data 0.863 40.780 0.903 43.635

Original data 5.989 98.013 5.681 98.721

Table 3.  Sampling distance tuning experiment result. Significant values are in [bold].

Sampling distance Train Test

CER WER (%) CER WER (%)

3 0.810 39.096 0.996 46.546

4 0.730 35.013 0.936 44.602

5 0.698 31.204 0.965 44.959

6 0.909 42.905 1.113 51.326

Table 4.  Sliding window size tuning experiment result. Significant values are in [bold].

Model parameter Train Test

Window size Overlap Num layer Hidden size CER WER (%) CER WER (%)

15

10 1 64

1.361 58.044 1.375 60.219

20 1.054 47.134 1.129 51.096

30 1.105 48.893 1.184 52.538

40 1.194 51.580 1.261 54.769

50 1.120 49.582 1.190 53.439

60 1.289 55.283 1.332 58.233

Table 5.  Overlap tuning experiment result. Significant values are in [bold].

Model parameter Train Test

Overlap Window size Num layer Hidden size CER WER (%) CER WER (%)

10

20 1 64

1.054 47.134 1.129 51.096

5 0.849 39.291 0.925 43.200

2 0.899 41.600 0.935 44.076
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a 7.312% increase in the WER rate and a 0.098% increase in the CER on the test set. Our results again confirm 
the excellent performance of the Transformer structure-in-sequence to sequence problem. We tested the per-
formance of the original data with the three models, and the results are shown in the last three rows of Table 8 . 
In overall comparison, the preprocessed data showed strong learnability for all three models which shows that 
our pre-processing was very effective.

Error analysis. For the experimental results of the our baseline model, we give the error analysis on the test 
set. The number of samples in the test set was 32,926, and the WER was 24.81%; that is, 8168 samples had rec-
ognition errors. Figure 16 shows the images with recognition errors caused by different error types. Figure 16a 
shows that the corresponding true label is ‘s az jz iz gzz lz az s ix’, and owing to the insertion of ‘hes bax’, the 
wrong decoding result of the model is ‘s az jz iz gzz lz az s hes bax ix’. Figure 16b shows that the corresponding 
true label is ‘a o iz gzz hes box c iz hes bax hes box’, and because of the lack of ’gzz,’ the wrong decoding result of 
the model is ‘a o iz hes box c iz hes bax hes box’. Figure 16c shows that the corresponding true label is ‘n az iz iz 
lz az hes box lz c iz bos bax lx’, and because ‘hes’ replaces ‘bos’, the wrong decoding result of the model is ‘n az iz 
iz lz az hes box lz c iz hes bax lx’.

For the above three errors, the statistics of recognition errors are shown in Table 9. As we can see from 
the table, the most common occurrence in the recognition process is repalce errors, meaning that a correct 
character is replaced by another incorrect character. This is followed by deletion errors, where a character is 

Table 6.  Num layer and hidden size tuning experiment result. Significant values are in [bold].

Model parameter Train Test

Window size Overlap Num layer Hidden size CER WER (%) CER WER (%)

20 5

1

64 0.849 39.291 0.925 43.200

128 0.641 31.566 0.811 38.756

256 0.595 29.611 0.767 37.005

2

64 0.434 23.296 0.591 29.934

128 0.404 21.751 0.578 29.237

256 0.366 19.729 0.569 28.508

3

64 0.303 16.857 0.472 24.862

128 0.232 13.515 0.471 24.281

256 0.286 15.926 0.506 25.436

4 64 0.341 18.790 0.486 25.406

Table 7.  Experimental results of Unicode and grapheme code comparison. Significant values are in [bold].

Label Train Test

CER WER (%) CER WER (%)

Grapheme code 0.232 13.515 0.471 24.281

Unicode 0.580 32.787 0.780 41.718

Table 8.  Experimental results of different model comparison. Significant values are in [bold].

Data Model Train Test

CER WER (%) CER WER (%)

Preprocessed data

Baseline model 0.232 13.515 0.471 24.281

LSTM-CTC 0.347 21.432 0.528 30.161

Transformer  0.171  8.170 0.373 16.969

Original data

Baseline model 0.796 36.048 0.884 40.533

LSTM-CTC 0.915 48.884 1.048 51.836

Transformer 2.485 91.056 2.583 91.486
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not recognised, resulting in a character being missing from the recognition result, and finally insertion errors, 
where a single character is incorrectly recognised as more than one character, resulting in an extra character in 
the recognition result.

We analyzed the most common errors, replace error. The statistics of the test set replace error results are 
given in Table 10.

As can be seen from the table, the character that was most likely to be replaced and replaced was ‘ax’. Because 
of its simple structure, it is easily confused with other similar characters in the case of uneven data coordinates.

Conclusion
A dataset (MOLHW) consisting of handwritten Mongolian words was described in this paper. The dataset 
contained 164,631 samples of Mongolian online text with 40,605 Mongolian words written by 200 writers. 
To evaluate the MOLHW dataset, we outlined, implemented, and trained three models. An attention-based 
encoder–decoder model used for an online handwritten Mongolian character recognition model network was 
used as the baseline model to make a preliminary evaluation of our dataset. The experiment results show that 
our model could effectively recognize the corresponding grapheme code sequences from the continuous coor-
dinate sequences of Mongolian words handwritten online, which can effectively solve the problems of primitive 
segmentation and OOV word recognition, which are caused by Mongolian being an agglutinative language. 
Subsequently, experiments were carried out on our dataset based on LSTM-CTC and the Transformer model. 
Our results confirm the excellent performance of the transformer structure in sequence to sequence problem, 
which obtained the best experimental results, with a 16.969% WER on the test set. Thus, we believe that the 
MOLHW dataset can be used as a benchmark dataset for studies related to Mongolian online handwriting rec-
ognition, writer identification, handwritten text generation, and related areas. This database is freely available 
upon request for interested researchers.

Figure 16.  Incorrectly recognized images.

Table 9.  Incorrectly recognized images.

Error classification Times

Replace 4242

Delete 2367

Insert 1559
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Data availability
All relevant codes included in this study are available upon request by contacting with the corresponding author. 
And the MOLHW dataset is now publicly available at https:// www. kaggle. com/ fanda oerji/ molhw- oooto allre 
searc hers.
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