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Experimental demonstration 
of classical analogous 
time‑dependent superposition 
of states
Kazi T. Mahmood  & M. Arif Hasan *

One of the quantum theory concepts on which quantum information processing stands is 
superposition. Here we provide experimental evidence for the existence of classical analogues to the 
coherent superposition of energy states, which is made possible by the Hertz‑type nonlinearity of the 
granules together with the external driving field. The granules’ nonlinear vibrations are projected into 
the linear modes of vibration, which depend on one another through the phase and form a coherent 
superposition. We show that the amplitudes of the coherent states form the components of a state 
vector that spans a two‑dimensional Hilbert space, and time enables the system to span its Hilbert 
space parametrically. Thus, the superposition of states can be exploited in two‑state quantum‑
like computations without decoherence and wave function collapse. Finally, we demonstrate the 
experimental realization of applying a reversible Hadamard gate to a pure base state that brings the 
state into a superposition.

The increased demand for quantum information science (QIS) and quantum  computing1–5 dictates a closer 
analysis of the topic and its methods. A quantum bit (qubit) is the essential component of QIS and a two-state 
quantum–mechanical system that can, most importantly, exist in superposition. A new, distinct state with specific 
quantitative connections to the first two given states is referred to as a superposition of the former two. In addi-
tion to providing superposition of states, the capacity to correlate between the subsystems through entanglement 
is what makes qubits so powerful for information processing. However, because of the environment’s fast ability 
to destroy the delicate coherence of these states, it is challenging to create and observe initially prepared quantum 
superposed states. As a result, particles and some microscopic objects that have been cooled to a temperature 
close to absolute  zero6–8 thus exhibit such quantum  superposition9,10. On the other hand, topological quantum 
computing (TPC), where the particle worldlines’ topological properties on a macroscopic scale are all that matter, 
uses non-Abelian forms of matter to store quantum information in an effort to construct a more robust qubit 11,12. 
However, according to Frolov’s commentary in Nature 13, the Majorana particle dispute is undermining the TPC 
field’s trust because it is very challenging to create a topological qubit.. Consequently, the research of superposi-
tions of other macroscopic states, or macroscopic superposition states, has been actively pursued over the past 
few decades and successfully experimentally demonstrated in a variety of systems, including trapped  ions14, 
Bose–Einstein  condensates15,16, and atomic  systems17. Additionally, by driving the qubit  monochromatically18 
or by detecting the two-phonon interaction between a mechanical oscillator and a spin  qubit19, the macroscopic 
quantum superposition in a qubit-oscillator system has also been explored. Very recently, Wood et al. suggested 
a platform to create macroscopic superpositions and a plan to place a 250 nm diameter diamond into a super-
position in order to investigate the macroscopic boundaries of quantum  mechanics20.

Additional perspectives for QIS and quantum mechanics applications and technological advancements are 
provided by the establishment of acoustic analogues of quantum  phenomena21. One notable instance is the 
linear elastic field, which has been shown to theoretically and experimentally produce coherent superpositions 
of classical harmonic waves that are analogous to spin states in quantum  mechanics22. Nevertheless, in order 
to observe true quantum-like phenomena, the mechanical system’s nonlinearity is necessary. The creation of 
mechanical non-Gaussian states with a negative Wigner function is one such example. It has been suggested that 
 dissipation23–26, quantum tunneling with a double-well optomechanical  potential27,28, periodic qubit  flipping29, 
quantum interference  effects30, optical field conditional  measurement31–33, and modulated photon-hopping 
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interaction between two cavities in an optomechanical  system34,35 can produce macroscopic non-Gaussian super-
position states. These methods are based on the nonlinear interaction between optical and mechanical degrees of 
freedom. In the same direction, in Ref.36, an experimental generation of the macroscopic superposition state was 
made possible by the Kerr-type nonlinearity by varying the driving field’s amplitude. To our knowledge, however, 
no comparable work has been done in nonlinear classical elastic systems where nonlinearity has been exploited to 
create a superposition of states. An elastic bit in a nonlinear classical system can create a superposition of states 
that is stable at ambient temperature and decoherence-free. Furthermore, since it represents an actual amplitude 
rather than a probability amplitude, it can be measured directly in the absence of wave function collapse. These 
characteristics make it possible for an elastic bit to be realized experimentally, providing a revolutionary new 
way to accomplish some of the objectives of quantum information technology utilizing materials-based quantum 
analogues. The present study’s objective is to experimentally demonstrate the possibility of preparing acoustic 
analogues of superposition states in a nonlinear acoustic granular medium and manipulating the superposi-
tion of Bloch states. More specifically, by harmonically driving a nonlinear system composed of two spherical 
granules, we experimentally demonstrate that the nonlinear normal modes can be expressed on a linear normal 
mode orthonormal basis with time-dependent amplitudes. These amplitudes form the components of a state 
vector that spans a two-dimensional (2D) Hilbert space parametrically with time. Thus, they serve as analogues 
of the qubit-like time-dependent coherent superpositions of states. In addition, we experimentally demonstrate 
that the frequency and amplitude of the external drivers applied to the nonlinear system are essential factors 
in navigating the elastic Bloch sphere. Most profoundly, since the system under consideration is nonlinear, we 
experimentally show that time permits the parametric exploration of the superposition of Bloch states.

Results
Experimental preparation and manipulation of classical coherent superpositions. To prepare 
and navigate classical analogous superposition of states using a nonlinear medium, we designed an experimental 
fixture consisting of a one-dimensional (1D) system of two homogeneous spherical elastic granules under exter-
nal harmonic loading (details can be found in the “Methods” section). To minimize the error in the experimental 
results, the oscilloscope records the response signals and averages them over 256 times. Additionally, the soft 
plastic material employed in the vise jaw that holds the transducers reduces vibration transmission to the sup-
porting experimental setups. Moreover, the masses and transducers’ center-to-center alignment was guaranteed 
with human-precision accuracy. Finally, we ensured the experiment was carried out over a short interval to 
avoid the couplant becoming contaminated with moisture and dust particles, which might impact the damping 
property.

To experimentally observe various nonlinear responses in such a damped-driven, essentially nonlinear granu-
lar system, we fix the amplitudes of external excitations by tuning peak-to-peak voltage. The frequency of the 
external driver ( ωD ), however, varies from 100Hz to 20kHz with an increment of 10Hz with a resting period for 
obtaining a steady state. For different combinations of driving conditions (frequency and amplitude), we experi-
mentally obtain Fig. 1a that shows the time series of the transmission amplitudes recorded by the detecting 
transducers of each granule at a steady state. The transmission amplitude field in Fig. 1a is the Fourier sum of 
the linear and nonlinear modes, each with its characteristic frequency. This is revealed in Fig. 1b through the 
temporal Fourier transform (fft) of the granule’s amplitude. To identify the dominant characteristic frequencies 
in the system, we set a threshold of 1% of the maximum amplitude to eliminate noise (dashed line in Fig. 1b). 
Moreover, we calculate the phase difference between granules for each dominant characteristic frequency. For 
example, in Fig. 1c left panel, we see that for the lowest dominant characteristic frequency of ω = ωD = 9.85kHz , 
corresponding to the driving frequency, the phase difference between granules is close to zero. This implies that 
at the characteristic frequency ω = ωD = 9.85kHz , the amplitude field of the granules’ system can be described 

by the state: E1 = 1√
2

(
1
1

)
 . On the contrary, if we change the driving frequency to ωD = 9.05kHz; for such, at 

the lowest dominant characteristic frequency, ω = ωD = 9.05kHz , we observe in Fig. 1c right panel that the 
phase difference between granules is close to π . Hence, at this characteristic frequency, the amplitude field can 

be described by the state: E2 = 1√
2

(
1
−1

)
 . Next, at the second and third higher harmonics, 2ωD and 3ωD , we 

observe in Fig. 1c left and right panel that the phase difference between granules is neither 0 nor π , and hence 
the states can be described by a combination of  E1 and E2.

The E1 = 1√
2

(
1
1

)
 and E2 = 1√

2

(
1
−1

)
 states are the corresponding in-phase and out-of-phase eigenmodes 

of the linearized granular system (details are provided in the “Methods” section). It is emphasized that even 
though nonlinear modes do not possess orthogonality properties (as do the linear normal modes) 37–39, the 
combinations of  E1 and E2 form a complete orthonormal basis for the two-mass granular system. Therefore, we 
can form a basis for the states of the granular system in the form of E1 and E2 . In this basis, for any specific char-
acteristic frequency, ω, the amplitude field can be written as:

Here, Cu1 ,Cu2 are the amplitudes and ϕu1 ,ϕu2 are the absolute phases of the granule amplitudes at the specific 
characteristic frequency ω . Through the detecting transducers, Cu1 ,Cu2 ,ϕu1 , and ϕu2 are experimentally 

(1)
( ∣∣Cu1

∣∣eiϕu1∣∣Cu2

∣∣eiϕu2

)
e
iωt ≡

1√
|α|2 + |β|2

(αE1 + βE2)e
iωt
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measurable quantities (Fig. 1b,c). Here, E1 = 1√
2

(
1
1

)
 and E2 = 1√

2

(
1
−1

)
 form a complete orthogonal basis 

for the system. Moreover, the amplitudes, α and β , are complex quantities, since simplifying Eq. (1), we find

Using Eq. (2), we can calculate E1 and E2 states amplitude coefficients. Hence, similarly to a quantum system, 
after normalization Eq. (1), a unit vector can be used to describe the state of the granular system in a complex 
vector space, known as state space or Hilbert space. Moreover, the vectors E1 and E2 are two mutually orthogonal 
eigenstates of the system and therefore, form an orthonormal basis for a 2D Hilbert space. Therefore, using an 
analogy with a quantum system, we use the Dirac notation for vectors and apply it to the elastic states of the 
system by writing vectors in state space as:

(2)

( ∣∣Cu1

∣∣eiϕu1∣∣Cu2

∣∣eiϕu2

)
e
iωt ≡

1√
2
(
|α|2 + |β|2

)
(
α + β

α − β

)
e
iωt .

(3)
( ∣∣Cu1

∣∣eiϕu1∣∣Cu2

∣∣eiϕu2

)
e
iωt ≡

1√
|α|2 + |β|2

(
|α|eiφα |E1 � + |β|eiφβ |E2 �

)
e
iωt ,

Figure 1.  Measurement and tunability of classical analogue to superposition of states. (a) Amplitude versus 
time recorded by the detecting transducers of each granule at steady state, revealing rich nonlinear responses of 
the system. Left panel: driving frequency ωD = 9.85kHz and driving amplitude 100Vp−p ; Right panel: driving 
frequency ωD = 9.05kHz and driving amplitude 100Vp−p . (b) Temporal Fourier transform of the granules 
amplitudes, and (c) phase differences between granules; revealing the combinations of  E1 and E2 eigenstates 
associated with each characteristic frequency. In (b), the dashed horizontal line indicates the amplitude 
threshold for the selection of dominant characteristic frequencies. (d) Time evolution of the modules of the 
complex amplitudes, α̃(t) and β̃(t) , of two mutually orthogonal states |E1 � and |E2 � . In (d), the vertical lines 
labeled (i), (ii), and (iii) correspond to three different time instants: (i) = t1, (ii) = t2, and(iii) = t3, where 
t3 > t2 > t1.
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where φα = tan−1
(

ηω

mω2
1−mω2

)
 and φβ = tan−1

(
ηω

mω2
2−mω2

)
; m is the mass of the granule, η is the system damp-

ing, and ω1 and ω2 are the eigen frequencies of the in-phase and out-of-phase modes of the eigen vectors of the 
linearized granular system (refer to the “Methods” section for details). The vibrations of the granules are repre-
sented by Eq. (3) projected into the two possible modes of vibration. The components of Eq. (3) are dependent 
on each other through the phase and form a coherent superposition of states in the space of two possible forms 
of vibration; since in-phase (E1) and out-of-phase (E2) vibration modes are physically distinguishable independ-
ent states. Moreover, the components of Eq. (3) physically correspond to superposed states, i.e., the characteristics 
of a pure in-phase eigenstate for φβ − φA = 0 and the characteristics of a pure out-of-phase eigenstate for 
φβ − φA = π . In contrast to classical mixed states or classical nonseparable combinations of longitudinal and 
torsional/shear modes, the superposition of states of Eq. (3) is coherent through the phase. We defined coherent 
states as states that retain their superposition characteristic, such that, the E1 and E2 eigenstates have a constant 
phase and exhibit interference for a given time instant. Moreover, over time, the coherent state stays coherent, 
but its phase relation evolves in time. The superposition of states of Eq. (3) is also different than the problems 
that fall into a class that is nonseparable classically, where the nonseparability stems from media corners and 
crack  edges40.

Hence, the total displacement amplitude field of the nonlinear granular system (Fig. 1a) can be written as 
the linear combination:

where α̃(t) =
(∑

n

1√
|αn|2+|βn|2

αne
iωnt

)
 and β̃(t) =

(∑
n

1√
|αn|2+|βn|2

βne
iωnt

)
 . Here, u1, u2 denote the displace-

ments of the granules center from its equilibrium position. The total displacement field is therefore expanded 
on the basis of E1 and E2 with time-dependent complex coefficients, α̃(t)andβ̃(t) , where αn,βn; n = 1, 2, . . . are 
the n-th complex amplitudes of the n th dominant characteristic frequency identified in Fig. 1b for the mutually 
orthogonal eigenstates E1 and E2 . On that basis, the modal contribution in the mode superposition of the total 
displacement field can be written in the form of a column displacement state vector, |ψ�:

This two-level subsystem represents an elastic bit and is isomorphic to a qubit. Here the coefficients of the 
superposition of states α̃(t) and β̃(t) are time dependent. To demonstrate, let us focus on the specific driving 
condition and system parameters of Fig. 1b left panel. We see that by keeping the first two dominant character-
istic frequencies, we find

From the fft plot of Fig. 1b left panel, we see that the amplitude α1 of frequency ω is the dominant term, and 
it corresponds to pure |E1 � eigenstate since at that frequency the phase difference is almost zero (cf. Figure 1c left 
panel). Hence, in Eq. (6), we expect that the coefficient α̃(t) will be dominant in comparison to the coefficient 
β̃(t) , as is also confirmed in Fig. 1d left panel. In Fig. 1d, we observe the time dependencies of the modules of 
the complex amplitudes, α̃(t) and β̃(t) , of two mutually orthogonal states |E1 � and |E2 � . Next, if we move to a 
different driving frequency, we observe from Fig. 1d right panel that it is possible to vary the coefficients of the 
coherent superposition of states significantly. In Fig. 1d right panel, we see that for the case of driving frequency 
ω = 9.05kHz , the coefficient β̃(t) dominates, which can be inferred from the right panels of Fig. 1b,c since E2 
eigenstate dominates at the first dominant characteristic frequency. Hence, the elastic bit states live in a 2D 
Hilbert space, and through the driving parameters, we can navigate the Hilbert space significantly. An elastic 
bit is, therefore, a classical analogue with respect to superposition of a qubit-the critical component of quantum 
computing platforms.

Experimental realization of Hadamard gate
As seen in Fig. 1d, time allows the system to tune the superposition of states created by the two eigenmodes. 
Hence, the passage of time is therefore equivalent to applying a unitary transformation to the superposed states. 
To illustrate this point, let us focus on time instant t1 labeled (i) in Fig. 1d right panel. For such an instant, using 
Eq. (5), the modal contribution in the mode superposition of the displacement state vector can be written as:

However, in the above equation, α1 ≈ 0 , since the phase difference between granules is close to π at the lowest 
dominant characteristic frequency ωD , as illustrated in Fig. 1c right panel. Hence, at this characteristic frequency, 

(4)
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(
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)
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the amplitude field can be described by the state: E2 = 1√
2

(
1
−1

)
 . Therefore, the superposition of states can be 

written as:

with an estimated uncertainty of π20 in θ and 3π50  in φ , which depends on the amplitude threshold value used for 
selecting dominant characteristic frequencies (cf. Figure 1b). The state corresponds to time instant t1 of Fig. 1d 
right panel (Eq. (7)) is also depicted in Fig. 2a on a Bloch sphere. A Bloch sphere is a useful tool for visualizing 
superposition states. A linear combination of the |E1 � and |E2 � states with complex coefficients is represented by 
a point on this sphere (Fig. 2a). Similarly, the state corresponds to time instant t2 of Fig. 1d right panel (labeled 
(ii)) can also be written as:

and the state is again represented in Fig. 2b on a Bloch sphere. A Hadamard gate ‘rotates’ the initial state of 
Eq. (7) (labeled (i)), which is almost a pure state |E2 � , to a superposition state of the form Eq. (8) (labeled (ii)) 
through the transformation:

The transformation matrix 1√
2

(
1 1
1 −1

)
 is the usual Hadamard  gate41. If we apply the Hadamard gate on the 

state (ii), we return to the initial pure state |E2 � at time instant t3 (labeled (iii)).

Discussion
We have demonstrated the preparation and manipulation of classical analogous to a quantum superposition of 
Bloch states via a controllable, essentially nonlinear granular system. In the current setup, a Hertz-type non-
linear interaction among granules is induced by harmonically driving the granular system. By expressing the 
modes of vibration of the granules on a linear normal mode orthonormal basis, we have shown that we can 
create a classical wave function that consists of a superposition of energy states. In addition, the amplitudes of 
the coherent states are complex. One notable feature of the current study is that since classical wave functions 
are amplitudes, they do not collapse upon measurement like quantum wave functions (probability amplitude). 
We have explored different ways of manipulating the complex amplitude coefficients of these coherent super-
positions of states by varying the external driver’s parameters. Since the granular system under consideration 
is nonlinear, we have observed that not only the frequency of the external driver is an essential parameter for 
navigating the complex amplitudes of the superposition of states but also the amplitude of the external driver. 
One distinguishing and most crucial feature of the current study compared to  work42 in a linear system is that 
in the previous study, the authors showed that the modulus of the complex amplitudes of the superposition of 
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Figure 2.  Classical analogue of Hadamard gate on Bloch sphere. The Hadamard gate ‘rotates’ the initial pure 
state of |E2 � (a) (also labeled (i) in Fig. 1d right panel) to a superposition of states (b) (also labeled (ii) in Fig. 1d 

right panel) through a unitary transformation 1√
2

(
1 1

1 −1

)
.
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states could only be tuned by varying the amplitudes of the external driver. To adjust the phase of the complex 
amplitudes of the superposition of states, the authors changed the phase of the external  driver42. In contrast, in 
the current work, we have revealed that since the granular system is an essentially nonlinear system, by tuning 
either the frequency or amplitude of the external driver, it is possible to tune both the modulus and the phase 
of the coherent superposition of states. Hence, nonlinear elasticity is a potential design parameter in extending 
the range of the elastic superposition of states that can be explored via an external driver. Moreover, we have also 
observed that the coefficients of the complex amplitudes are time dependent. When the external driver is used 
to prepare the two orthogonal states of the nonlinear granular system into a coherent superposition, they are in 
a state of superposition with the time evolution. After a full period, the superposition states disappear, and the 
mechanical modes become pure eigenstates.

We have demonstrated how to manipulate the coherent states in time without tuning the external driver’s 
amplitudes and frequency, which is equivalent to applying gate operations. In particular, we have focused on the 
Hadamard gate, a single qubit operation in quantum computing. Quantum gates on a Josephson junction qubit 
are carried out by electromagnetic impulses sent to the qubits at microwave frequencies 43. On the contrary, in our 
nonlinear classical system, time permits the parametric exploration of the superposition states, i.e., the external 
driver’s frequency, amplitude, and a particular duration determine the angle of rotation of the superposition of 
states around a particular axis of the Bloch sphere. The prepared and transformed superpositions of states are 
classical in nature and allow for experimental analysis (preparation, manipulation, and observation) without 
the additional quantum gate operations required in a true quantum algorithm. One can, for instance, operate on 
stable, non-decoherent, directly measurable, coherent superpositions of states of the elastic bit system without 
the wave function collapse. In a true quantum algorithm, however, the logic gates act on a superposition of qubit 
states to produce a predictable output state. Due to the probabilistic nature of the quantum wave function, many 
measurements are therefore required to determine a quantum superposition of states.

Finally, using a two-granule system, the current paper focuses on a single two-level elastic bit analogous 
to a single qubit. Moreover, it has been theoretically demonstrated that depending on the different ordered 
arrangements of the granules, the three-granule system supports four nonlinear normal modes (NNMs), and 
the four-granule system supports eight NNMs 44,45. Hence, it is possible to extend this work to create analogous 
multi-level quantum states such as qudits. Further, coupling multiple elastic bits through classical entanglement 
or, more precisely, through non-separability is essential for implementing information processing platforms that 
can take on the exponential complexity associated with the non-separability of states in coupled systems. In this 
direction, additional future work will investigate the possibility of achieving non-separability between different 
possible degrees of freedom in a coupled granular system. For instance,  in46, we have shown that the modes of 
a coupled granular network can be decomposed across and along the network, forming an orthonormal basis 
for two two-dimensional Hilbert spaces. This is analogous to two qubits; thus, creating two-qubit Controlled 
NOT-type gates will be possible. It is true that in such a setting, time will permit the parametric exploration of 
the superposition of Bloch states. Therefore, creating a sequence of single or two-qubit analogue gates might be 
challenging because, as described  by47, cascading two unitary transformations in a quantum harmonic oscillator 
produces a new transform with unrelated eigenvalues. However, in a coupled granule system, the coupling can 
be easily manipulated and tailored through choices of materials and fabrication to create strong correlations 
between the subsystems. Hence, we can create operations that can be carried out without breaking them down 
into a series of smaller steps.

Methods
Design of the experimental setup and theoretical model. The schematic illustration to experimen-
tally realize classical time-dependent superposition of states is depicted in Fig. 3. Here, we seek to experimentally 
explore the response of two contacting granules (304 Stainless Steel: McMaster-Carr 9291K54, 1/2 inch diam-
eter, Young’s modulus 193GPa , and density 7958 kg/m3 ) that are initially in contact with each other. A single 
transducer (V133-RM—Olympus IMS) drives the system at one end. Through PD200 amplifiers (PD200 is a 
high bandwidth, low-noise linear amplifier), the driving transducer is coupled to a waveform generator (B&K 
Precision 4055B). The waveform generator is set to vary the driving frequency in the system in a fixed excita-
tion amplitude. The transducers and granules are connected center to center to detect the response in perfect 
alignment. To measure the signal generated in the system, the three recording transducers are connected to a 
Tektronix oscilloscope (MDO3024) and averaged across 256 time series, resulting in the response signals. Both 
the waveform generators and the oscilloscopes are connected to digital computers so that the experiments can 
be controlled, and the data can be processed. This is done with a custom algorithm created and implemented in 
the programming language MatLab. The experimental setup is devised to explore only longitudinal modes in the 
system. By limiting the translational motion of the granular system, it was experimentally feasible to neglect the 
rotating degrees of freedom of the granules due to their small relative displacement. Through the transducers, we 
are able to measure the amplitude field of the granules in the transverse direction, which maps the elastic field of 
longitudinal modes. The use of D12 ultrasonic couplant (gel type from Olympus-IMS) in conjunction with the 
longitudinal wave transducers suppress all nonlongitudinal modes (torsional, transversal, etc.) of the granules. 
Uniform compression force, F0 , is provided to both ends of the system using a bench vise to fix the initial dis-
placement δ0 between the granules centers (Fig. 3).

Accordingly, the general mathematical expression of the nonlinear granular system (Fig. 3), restricted to 
1D, reads:
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In the theoretical model (10), we neglect the effects of gravity; however, the dissipative effect is considered 
since dissipation is an integral part of any physical system. In Eq.  (10), (α)+ = α for α ≥ 0 and 
(α)+ = 0 for α < 0 and H(·) is the Heaviside function. The static Hertz law, which assumes that the characteristic 
time scale of granule-to-granule Hertzian interaction under compression is significantly higher than the char-
acteristic time scale of elastic stress wave propagation inside a granule, has been experimentally verified for 
dynamic problems of spherical granules 48. Here, kNL = E

√
2R

3(1−ν2)
 , m = 4

3πR
3ρ is the mass of the granules, R is 

the radius, and ρ is the density of granule material. The damping coefficient η models the dissipation during 
Hertzian interactions between adjacent granules. The static overlap δ0 due to the applied static load simulates 
the applied pre-compression of the system scaled by the common granules’ radius, and the base periodic excita-
tion Asin(ωDt) is applied to the first mass of the system to model the excitation delivered by the excitation 
transducer.

If we perform a power series expansion of the forces of Eq. (10), and in the case of dynamical displace-
ments significantly smaller in amplitude than the static overlap δ0 , i.e., |�u|

δ0
≪ 1 , where �u = u1 − u2 or 

�u = Asin(ωDt)− u1 or �u = u2 , in Eq. (10), only the harmonic term of the expansion is retained. For such, 
the granular system can be considered as a linear lattice, and the equations of motion are reduced  to49,50:

Here, kL = 3
2kNLδ

1/2
0  is the equivalent linear spring constant. The sound velocity of such a 1D monoatomic 

granular system has been confirmed experimentally 51. Since the coupling stiffness of Eq. (11) is linear, the 

eigenstates of the linearized granular system should be E1 = 1√
2

(
1
1

)
 and E2 = 1√

2

(
1
−1

)
 ; the corresponding 

in-phase and out-of-phase modes. These orthogonal states are mutually exclusive. As a result, for a linearized 
granular system with the presence of an external driver, we can write the displacement field similarly to Eq. (3) 
as follows:

(10)

mü1 = kNL[Asin(ωDt)− u1 + δ0]
3/2
+ − kNL(u1 − u2 + δ0)

3/2
+

+ η[A1ωcos(ωt)− u̇1]H(Asin(ωDt)− u1 + δ0)− η(u̇1 − u̇2)H(u1 − u2 + δ0)

mü2 = kNL[u1 − u2 + δ0]
3/2
+ − kNL(u2 + δ0)

3/2
+

+ η[u̇1 − u̇2]H(u1 − u2 + δ0)− η(u̇2)H(u2 + δ0)

mü1 = kL[Asin(ωDt)− u1]− kL(u1 − u2)+ η[A1ωcos(ωDt)− u̇1]− η(u̇1 − u̇2)

(11)mü2 = kL(u1 − u2)− kL(u2)+ η(u̇1 − u̇2)− η(u̇2)

Ultrasonic 
transducers 

1 2

0 0

Wave  
generator 

Voltage  
amplifier Oscilloscope

Controller and  
data acquisition  
system 

Figure 3.  Experimental realization of time-dependent superposition of states. Schematic illustration of the 
experimental instrumentation used for the two-granule nonlinear system. The system is longitudinally driven 
by a single transducer at one end, and a set of transducers are utilized to detect the longitudinal modes of the 
granules.
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For a linearized granular system, the amplitudes, α and β , can theoretically be estimated as α =
1√
2

(
1
1

)
.

(
A

0

)

mω2
1−mω2−iηω

 

and β =
1√
2

(
1
−1

)
.

(
A

0

)

mω2
2−mω2−iηω

 , where ω1 and ω2 are the eigen frequencies of the in-phase and out-of-phase modes of 
the eigen vectors of the linearized granular system. Hence, through an external driver, it is possible to create a 
two-level acoustic analogue of a qubit. These coherent states are however time independent as time does not 
explicitly affects the amplitudes of each coherent states.

If the granular system is weakly compressed and if the granule displacements are either comparable or greater 
than the initial relative displacement δ0 arising from the static compression, then a very intriguing wave behavior 
develops for such a nonlinear regime. In 1D monoatomic granular crystals, this dynamical domain has received 
the majority of research  attention49,52,53. In particular, in Refs  44,45,54,55. the authors demonstrated that such non-
linear systems possess standing modes (referred to as nonlinear normal modes), and numerous subharmonic 
responses satisfying general m : n rational granule frequency relationships. Note that in these studies, the authors 
have focused on a conservative system. In practice, dissipation needs to be considered.

Data availability
The data that support our findings of the present study are available from the corresponding author upon rea-
sonable request.
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