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Anthropogenic influence 
on extremes and risk hotspots
Francisco Estrada 1,2,3*, Pierre Perron 4 & Yohei Yamamoto 5,6

Study of the frequency and magnitude of climate extremes as the world warms is of utmost 
importance, especially separating the influence of natural and anthropogenic forcing factors. 
Record-breaking temperature and precipitation events have been studied using event-attribution 
techniques. Here, we provide spatial and temporal observation-based analyses of the role of natural 
and anthropogenic factors, using state-of-the-art time series methods. We show that the risk from 
extreme temperature and rainfall events has severely increased for most regions worldwide. In some 
areas the probabilities of occurrence of extreme temperatures and precipitation have increased at 
least fivefold and twofold, respectively. Anthropogenic forcing has been the main driver of such 
increases and its effects amplify those of natural forcing. We also identify risk hotspots defined 
as regions for which increased risk of extreme events and high exposure in terms of either high 
Gross Domestic Product (GDP) or large population are both present. For the year 2018, increased 
anthropogenic forcings are mostly responsible for increased risk to extreme temperature/precipitation 
affecting 94%/72% of global population and 97%/76% of global GDP relative to the baseline period 
1961–1990.

Understanding how extreme events are changing in a warming world is important from a scientific perspective 
and for their societal and political impacts1. High-impact extreme weather events can change risk perceptions 
faced by decision-makers and the public view about climate change. Hence, it can influence climate policy and 
foster more ambitious mitigation and adaptation goals2–4.

Changes in precipitation and temperature patterns and the frequency and magnitudes of extreme events 
are influenced by several thermodynamic and dynamic processes affected by climate change5,6. For instance, as 
warming increases, the capacity of the atmosphere to hold moisture increases and, accordingly, extreme rainfall 
can exceed past record levels. Estimated trends in daily extreme precipitation events agree with the theory stat-
ing that a 7% increase in atmospheric moisture is predicted per degree Celsius increase in global temperature7,8. 
Note that this relationship is not constant and can vary depending on the timescale9.From a dynamic perspective, 
differential warming across regions and feedback processes can have worldwide effects on regional weather and 
climate, including temperature and precipitation extremes5,10,11. For instance, warming in the Arctic is between 
twice and fourfold as the global average due to local and remote feedback processes broadly labelled as the 
Arctic Amplification (AA)12, while over the last three decades parts of the midlatitudes showed no-warming or 
even cooling13,14. This Warm Arctic Cold Continents/Eurasia (WACCE) pattern decreases the thermal contrast 
between the Arctic and mid-latitudes affecting the weather and climate of the northern hemisphere’s mid-lati-
tudes through changes in storm tracks, the jet stream and planetary waves13. These differences were associated 
with increases in the occurrence of severe winters, extreme heat in summers and record-breaking precipitation 
events in the northern hemisphere since the 1990s15. Several studies proposed that changes in the atmospheric 
circulation, in particular a weakening of the northern hemisphere’s jet stream, can produce stagnant weather 
patterns and more persistent weather extremes13,16. This induces higher probabilities of atmospheric blocking 
and the occurrence of persistent heat waves and extreme rainfall events16. A recent study linked WACCE to the 
spatial pattern of anthropogenic warming on temperature changes, providing an explanation for WACCE and 
the observed changes in extreme events in mid-latitudes17. Differential warming between hemispheres also has 
important implications on precipitation patterns in the tropics and changes in the frequency and magnitude of 
extreme events by changing key features of the intertropical convergence zone (ITCZ); e.g., location, width, and 
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circulation strength18. Changes in tropical cyclone activity and characteristics also have large impacts on total 
local rainfall and extreme precipitation events19. An event-attribution study of the 2020 North Atlantic hurricane 
season suggests that anthropogenic warming could account for 5%-10% increase in tropical storms and 8–11% 
in rainfall rates from hurricane storms and extreme 3-day accumulated rainfall amounts20.

The properties of extreme events make their study and characterization particularly challenging. First, by 
definition, they are rare and the processes are, generally, nonstationary21–23. Second, data limitations are present 
such as small samples, incomplete spatial coverage, as well as inhomogeneities, making difficult detecting, char-
acterizing and attributing trends and other features24–27. To address such problems, methods are being adapted 
and developed to analyze extreme events time series, including extreme value theory modelling8,28,29, trend 
testing and estimation28,30–32, and methods to detect structural breaks33. Approaches related to optimal finger-
printing techniques, combining physical models’ output and observations, were used to infer the contribution 
of anthropogenic factors to changes in extreme values6,34,35. Concerning data availability, increases in the spatial 
coverage and time span of observational records were obtained; e.g., the constant updating of international grid-
ded datasets that merge quality checked records from weather stations across the world36–38, and the growing 
availability of reanalysis datasets39,40.

The contribution of the Working Group I to the IPCC’s Sixth Assessment Report concludes that (a) the rise in 
weather and climate extremes already led to irreversible impacts on natural and human systems, (b) it is virtually 
certain that hot extremes have become more frequent and intense; (c) the same applies to heavy precipitation 
over most land area since the mid-twentieth century41. For temperature extremes, several studies showed that 
significant warming trends are widespread and attributable to anthropogenic warming, with conclusions robust 
to different datasets and methods32,42–45. Because of differences in local forcing factors like changes in land use 
(e.g., cropland and irrigation intensification) and aerosols, as well as in circulation patterns, temperature extremes 
vary across regions. These factors can alter the anthropogenic warming signal at local to regional scales46–48.

Changes in the total annual 1-day and 5-day maximum precipitation (Rx1day; Rx5day) are similar over the 
global, continental and regional scales with statistically significant increases over global land, North America, 
Europe and Asia28,31,41. Changes in heavy precipitation are likely dominated by anthropogenic forcing, although 
the sign and magnitude depend on location and timescales49. Accordingly, their spatial patterns are more het-
erogeneous compared to temperature changes5,6,41. This is partly due to a larger influence of local forcing factors 
like aerosols and land use change over extreme precipitation, notably in urban areas50,51. However, greenhouse 
gases are considered the dominant contributor to the intensification of extreme precipitation41,49. At the regional 
and local scales, attribution results are less robust because variability and local forcing factors induce a weak 
signal-to-noise ratio41,52.

Studies found evidence about greenhouse gases and aerosol forcing effects on extreme precipitation over 
North America, Eurasia, in the mid/high latitudes and the global dry regions, and that these effects are different 
for the two types of forcing34,53,54. Globally, minimum temperatures are warming faster than maximum ones; 
the coldest night increased about 4 °C since the mid-twentieth century, while the hottest day increased 1 °C, 
compared to the 1960s-1970s period31,36.

The attribution of changes in extreme temperature and precipitation mostly depends on climate models’ 
projections, making the results dependent on the models’ adequacy to reproduce climate and its extremes. The 
regional performance of global climate models significantly improved, but limitations persist at the regional 
level55,56. Moreover, there are differences between what extreme events represent at the grid-cell level in climate 
models compared to actual observations36. A recent study established the effects of anthropogenic climate change 
on extreme precipitation using global mean temperatures in an observation-based analysis28, suggesting attribu-
tion results are robust.

However, global temperatures are a composite response to changes in natural and anthropogenic forcing 
and the influence of natural variability oscillations, making difficult separating the effects of anthropogenic 
forcing57–59. We adopt an approach using total radiative forcing as covariate in a non-stationary generalized 
extreme value (GEV). The main contributions of this paper are that it allows for separation of the influence of 
natural and anthropogenic factors on extreme temperatures and precipitation, and that it documents how the 
changes affect the risk faced by population and Gross Domestic Product (GDP) metrics. We report maps showing 
how the risk from temperature and precipitation extremes faced by global population and GDP have changed. 
We separate these changes in their natural and anthropogenic components.

Results
Brief description of data and methods.  The data used are yearly series obtained from the HadEX3 
dataset: the temperature of the hottest day (TXx), the maximum precipitation in a given day (Rx1day) and over 
5 days (Rx5day). The data are for global land in a grid with a spatial resolution of 1.875° longitude and 1.25° 
latitude, for the period 1901–2018. See methods for details on the treatment of missing data and interpolations. 
The results for Rx1day and Rx5day are similar; hence, we report those for Rx1day only.

The main tool used is a GEV model with time-invariant shape and scale parameters and time-varying loca-
tion parameters. All parameters can change across grids. Preliminary statistical investigation showed a good 
approximation. The variation of the location parameter is a function of the main components of total radiative 
forcings: greenhouse-gases, anthropogenic aerosols and natural (solar and stratospheric aerosols). This allows 
for separation of the effect of each component on the measures investigated, namely: a) the probabilities that the 
values in 2018 exceeds the average of the reference period 1961–1990; b) the return level defined as the prob-
ability that the value in 2018 exceeds some threshold be 0.1, from which we can infer the highest value of TXx 
or Rx1day that occurs once in ten years, with some probability. We compute counterfactuals attributing changes 
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in probabilities according to anthropogenic and natural factors. See methods for details on the estimation and 
the definition of the forcing variables used.

Observed changes in the probabilities of occurrence and return levels of extreme events.  The 
first set of results are in Fig. 1; Panel A for temperatures (TXx) and Panel B for precipitation (Rx1day). Sub-
panels (i) show the probabilities in 2018 of exceeding the 90th percentile of the annual maximum values, 
Pr(xi,2018 ≥ q.9,1961−1990) minus 0.1 for the reference period 1961–1990. If TXx and Rx1day were stationary 
series, Pr

(

xi,2018 ≥ q.9,1961−1990

)

− 0.1 = 0 . However, the results show large increases in the risk of extreme 
temperature for most of the continent land with available observations. Areas in dark red depict where these 
probabilities have increased at least five-fold by 2018, relative to the base-period 1961–1990. These include most 
of South and Central America, southern and northern Mexico, central and west North America, Europe, Mid-
dle East, and East Asia. A few regions in North America (eastern Canada and northeast US), South America 
(Bolivia, Paraguay, and Uruguay), Russia and Southeast Asia have exceedance probabilities increasing by less 
than 50% or decreasing.

Anthropogenic forcing alone has increased the risk of extreme temperature in most land regions worldwide. 
For most of Europe, the Middle East, North and South Africa, Asia and Mexico, central and western US, most 
of South America and Australia, the probabilities of extreme temperature at least doubled with an increase of 
about 2 W/m2 by 2018 in anthropogenic forcing (subpanel (ii) of Fig. 1A). Over large areas of Russia and Canada, 
as well as in Norway, Sweden, Argentina and parts of Australia and China, the probabilities of exceeding the 
90th percentile in TXx over the reference period increased (in some cases nearly doubled) with anthropogenic 
forcing. Some exceptions with decreased probabilities induced by anthropogenic forcing include the central/
southeastern part of the US, particularly the “warming hole”, associated with the local effects of aerosols over 
the region60,61; others are parts of Eurasia, Southeast Asia and Argentina. Note, however, that the model’s coef-
ficients associated with radiative forcing in such regions are typically not statistically significant. In most regions, 
the contribution of natural forcing to changes in the risk of extreme temperature is weak, if any (subpanel (iii) 
Fig. 1A). Anthropogenic forcing is clearly the dominant component of total radiative forcing and the results 
using the latter are similar and not reported. Figure S1 shows the yearly change in the probabilities of extreme 
temperature for the period 1901–2018. Since the late 70 s, uninterrupted and widespread increases in the risk 
of extreme temperature in most land regions have occurred. This period is consistent with the dates previously 
identified for the climate system’s response to increases in anthropogenic forcing (particularly when natural 
variability is not filtered out)57,62.

Figure 1.   Changes in the risks of extreme temperature and rainfall and the contributions of natural and 
anthropogenic radiative forcing. Panels (A and B) show the results for extreme temperature and rainfall, 
respectively. Subpanels (i) show the change in the probabilities of exceeding the 90th percentile of the annual 
maximum values calculated for the reference period 1961–1990 and evaluated for 2018. Subpanels (ii) and (iii) 
show the contributions of such changes induced by anthropogenic and natural forcing, respectively. This figure 
was created using MATLAB R2020a (https://​www.​mathw​orks.​com/).

https://www.mathworks.com/


4

Vol:.(1234567890)

Scientific Reports |           (2023) 13:35  | https://doi.org/10.1038/s41598-022-27220-9

www.nature.com/scientificreports/

We now discuss results concerning extreme precipitation in Fig. 1 (Panel B). Increases in the risks of extreme 
precipitation are also widespread across all global land areas although the spatial patterns are more heterogene-
ous. In all continents with sufficient observations, the probabilities of Rx1day exceeding the 90th percentile of the 
reference period increased at least 50% by 2018, with many areas showing three-fold increases. Large decreases in 
the risk of extreme precipitation occurred in the central-southeast of Australia, where the probability of exceed-
ance is close to zero. The contribution of anthropogenic forcing to increasing the risks of extreme precipitation 
is particularly large (about three-fold) in northwestern Australia, some regions of South America (Colom-
bia, Ecuador, northwestern and southeastern Brazil, Bolivia, Paraguay and Uruguay), central and northwest of 
Mexico, Eastern Europe, and some parts of South Asia (subpanel (ii) of Fig. 1B). Increases in the probabilities 
of exceedance near 50% associated with the rise in anthropogenic forcing occurred for much of North America, 
Europe, Asia and Australia, with much larger increases in some parts. In contrast, important reductions occurred 
along the Pacific coast of South America. As in the case of extreme temperature, the contribution of natural forc-
ing to changes in the risk of extreme precipitation is small and mostly negative and the probabilities of extreme 
precipitation increased since the late 70 s in a widespread manner (Figure S2).

An important feature of these results is that due to nonlinear effects, the total changes in risk in both extreme 
temperature and precipitation is much larger than those attributable to anthropogenic and natural forcing alone. 
Hence, large changes in risk can occur with even small increases in anthropogenic forcing, which can amplify 
the effects of variations in natural factors. With a higher level of anthropogenic forcing, variations in natural 
factors can trigger even more extreme events.

Subpanels (i) of Fig. 2 shows the estimated return levels of extreme temperature and rainfall, defined as the 
highest value of TXx or Rx1day occurring once in ten years (see Methods). The highest return levels in TXx 
are mostly in tropical and subtropical regions of the northern hemisphere and in Australia, while in the case of 
Rx1day they occur in South America, tropical cyclone, and monsoon regions. The contribution of anthropogenic 
forcing (Subpanels (ii)) to these return levels is spatially heterogeneous, particularly in the case of rainfall. The 
largest increases in TXx associated with anthropogenic forcing (3–5 °C) are near the Amazon rainforest, Bolivia, 
Peru, and Brazil, as well as near the Arctic and in the high latitudes of North America. For Central and Eastern 
Europe, Northern Africa and some parts of Eastern Asia the evidence also shows important contributions of 
anthropogenic forcing to the return values of TXx (about 2.5 °C). For Rx1day, these occur in the northeastern 
part of Australia, Southeast Asia, South America, central and northern Mexico, the east of the US and Canada, 
and in Eastern Europe. The contribution of natural forcing to changes in the return levels of both types of 
extremes is near zero (Subpanels (iii)).

Figure 2.   Return levels of extreme temperature and rainfall and the contributions to natural and anthropogenic 
radiative forcing. Panels (A and B) show results for extreme temperature and rainfall, respectively. Subpanels (i) 
show the return levels for the annual maximum that occur once in ten years. Subpanels (ii) and (iii) show the 
contributions to these return levels in 2018 of the anthropogenic and natural forcing, respectively. This figure 
was created using MATLAB R2020a (https://​www.​mathw​orks.​com/).

https://www.mathworks.com/
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Hotspots of changes in risk of extreme temperature and precipitation and high levels of expo-
sure.  Of interest when studying how climate change alters extreme events are the societal impacts41,63,64. 
Changes in extreme events affect disaster risk, but the interaction with exposure and vulnerability patterns drives 
disasters and socioeconomic losses1. To better understand the potential consequences of the reported changes 
in the probabilities of extreme values of TXx and Rx1day, we use global population and GDP maps to represent 
exposure. We evaluate the locations of the socioeconomic indicators subject to increasing levels of risk associ-
ated to anthropogenic climate change (Table 1; see Methods). The population and GDP data used are for the 
year 2018.

In the case of extreme temperature (TXx), about 80% of the global population in 2018 (7380 million people) 
were located in grid cells with sufficient information to fit the GEV model. About 5,912 million people, 94.4% in 
2018 faced an increased risk from extreme temperature in comparison with the reference period (1961–1990), 
and about 72% in areas with increasing risk associated with rise in anthropogenic forcing. In contrast, only 26% 
of the population faced increased risk from temperature related to changes in natural forcing. About 89% of global 
GDP in 2018 was located in grid cells where the GEV model could be estimated. From this group, approximately 
97% were exposed to increasing risk from temperature, with about 77% and 23% of global GDP facing higher 
risk associated with changes in anthropogenic and natural forcings, respectively. The majority of global popula-
tion and the highest share of GDP experienced increasing risks from extreme rainfall. About 74% and 83% of 
global population and GDP in 2018 were located in grid cells that had sufficient Rx1day data for the analysis. 
About 72% and 76% of global population and GDP, respectively, faced higher risk from extreme precipitation 
in 2018 compared to the 1961–1990 reference period. The proportions of population and GDP with higher risk 
from extreme rainfall associated with anthropogenic forcing are 68% and 72%, respectively, with only 25% and 
23% related to natural forcing.

Figure 3 shows risk hotspots, defined as regions with large changes in the probabilities of both extremes 
and risk exposure. They consist mostly of large cities worldwide. They account for more than 50% of the global 
population and 80% of global GDP65,66. In the case of extreme temperature/population, hotspots are large cities 
in South America (Rio de Janeiro, Lima, Santiago), the US (California and Chicago), Europe (Paris, London), 
China (Shanghai), Japan and Indonesia. Hotspots of extreme temperature/GDP are more common and include 
most large cities in Europe, the US northeast and California, Japan, and Brazil. There are almost no hotspots 
with decreasing probabilities of extreme temperature. Extreme hotspots of rainfall population/GDP are mainly 
located in Mexico (Mexico City, Guadalajara), the US (California, Houston, and cities in the northeast), Europe 
(Amsterdam, Helsinki, Bucharest), and China (Shanghai). There are some locations with high levels of exposure 
for which the risk of extreme precipitation has decreased, such as in South America (Buenos Aires, Santiago), 
Europe (Madrid, London), Japan (Osaka), and Australia (Sydney).

Table 1.   World population and GDP with increasing risk of extreme temperature and rainfall. Sections A 
and B show the estimates of world population and GDP facing increasing risk from extreme temperature and 
rainfall, respectively. The first part in each panel shows the amount of population and GDP in grid cells for 
which there was sufficient data to perform the analysis. The second part summarizes the absolute numbers and 
the proportions of population and GDP exposed to higher risk from extreme temperature and rainfall. The 
third part presents estimates of the absolute numbers and the proportions of population and GDP with higher 
risk associated to natural and anthropogenic forcings.

Population (million) GDP (billion US dollar)

A. Temperature

World total 7380 – World total 92,835

Data available 5912 (100.0%) Data available 82,453 (100.0%)

Area of increasing risk from 1961–90: Area of increasing risk from 1961–90:

5584 (94.4%) 79,912 (96.9%)

Area of increasing risk by forcing: Area of increasing risk by forcing:

Total forcing 4281 (72.4%) Total forcing 63,337 (76.8%)

Natural forcing 1547 (26.2%) Natural forcing 18,562 (22.5%)

Anthropogenic forcing 4281 (72.4%) Anthropogenic forcing 63,337 (76.8%)

Population (million) GDP (billion US dollar)

B. Rainfall

World total 7380 – World total 92,835 –

Data available 5478 (100.0%) Data available 76,895 (100.0%)

Area of increasing risk from 1961–90: Area of increasing risk from 1961–90:

3958 (72.2%) 58,442 (76.0%)

Area of increasing risk by forcing: Area of increasing risk by forcing:

Total forcing 3719 (67.9%) Total forcing 55,030 (71.6%)

Natural forcing 1386 (25.3%) Natural forcing 17,273 (22.5%)

Anthropogenic forcing 3715 (67.8%) Anthropogenic forcing 55,003 (71.5%)
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Discussion
Anthropogenic influence with the climate system has already altered central characteristics of extreme events, 
including their frequency and intensity. Our results show that the risks of extreme temperature and precipita-
tion events has increased in most of land up to five- and three-fold in the case of TXx and Rx1day, respectively. 
Moreover, such increases in risks have risen since the late 70 s and very rapidly over the past three decades. 
Nonlinear effects characterize the total changes in risk in both extreme temperature and precipitation and can 
produce large changes in risk even for small increases in anthropogenic forcing or changes in natural factors. This 
is particularly worrisome since, as our results show, high population and GDP exposure areas tend to correspond 
with increases in risk from temperature and precipitation. Such areas are mainly urban where local factors such 
as the Urban Heat Island effect (UHI) are likely contributing to the increasing trends in extremes. The synergy 
between global and local (due to UHI) climate change in cities can exacerbate socioeconomic losses and con-
tribute to more severe heat waves and precipitation events50,51,67,68. Given the socioeconomic importance of these 
findings, it would be valuable to extend the proposed methodology to study the attribution of extreme events at 
the city scale and to evaluate the relative contribution of UHI effects69. The results presented here provide further 
support for adopting strategies to reduce the UHI effect, as they can be low-cost risk reduction instruments for 
large shares of global population and GDP with increasing risks from climate change.

Figure 3.   Risk hotspots of increased probabilities of exceedance in extreme temperature and rainfall and high 
population and GDP exposure. Bubbles are shown for grid cells for which large changes in risk and high levels 
of population and GDP are present. The size of the bubble represents the amount of population or GDP exposed 
in the grid, while the color depicts how risk has changed (probability in 2018 minus 0.1) with respect to the 
1961–1990 reference period. Panel (A) shows the results for extreme temperature, where light blue represents 
decreases in risk, while pink, red, and dark red indicate moderate (0–20%), high (20–40%) and extreme (> 40%) 
increases in risk, respectively. Panel (B) shows the results for extreme rainfall, where light blue represents 
decreases in risk, while pink, red, and dark red indicate moderate (0–10%), high (10–20%) and extreme (> 20%) 
increases in risk, respectively. This figure was created using MATLAB R2020a (https://​www.​mathw​orks.​com/).

https://www.mathworks.com/
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Methods
Data.  The extreme temperature and precipitation indices TXx, Rx1day and Rx5day were obtained from the 
HadEX3 dataset37 (available at https://​www.​metof​fi ce.​gov.​uk/​hadobs/​hadex3/). This dataset contains 29 indices 
of temperature and precipitation70 for global land in a grid with a spatial resolution of 1.875° longitude and 1.25° 
latitude, for the period 1901–2018. The indices were interpolated to a 0.5ºx0.5º grid that matches the population 
and GDP maps obtained from the CLIMRISK integrated assessment model71–73. These socioeconomic scenarios 
are consistent with the SSP5 scenario74 and the estimates used in this paper represent population and GDP 
(US$2005) in year 2018. Radiative forcing time series are from the Goddard Institute for Spatial Studies (GISS) 
and were produced for NASA’s CMIP6 simulations75 (https://​data.​giss.​nasa.​gov/​model​force/). All radiative forc-
ing variables are expressed in W/m2 and encompass the historical period (1850–2014) extended to 2018 using 
the SSP2-4.5 scenario. The dataset contains estimates of the well-mixed greenhouse gases (WMGHG; CO2, CH4, 
N2O, CFC-12, and CFC-11, plus a radiative equivalent of 38 other long-lived GHGs); natural forcing (NAT; 
solar, volcanic aerosols, orbital); the total radiative forcing (WMGHG, NAT, O3, the direct and indirect effects of 
aerosols, land use and irrigation). We define anthropogenic forcing as the sum of WMGHG and the direct and 
indirect effects of tropospheric aerosols.

Statistical methods for detection and attribution of climate change.  The use of observation-
based and time series methods in detection and attribution studies is frequent in the literature57,76–81. These 
methods do not depend on the accuracy and performance of complex climate models, but attribution does 
require invoking a physical model that may be implicit in the statistical framework used82. The present analysis is 
grounded on a zero-dimensional energy balance model57,83 and on the generalized extreme value (GEV) model 
to estimate the probabilities of extreme events21,84.

Previous work provided the basis for the use of time series models to analyze the relationships between radia-
tive forcing and temperature83,85. A basic representation of these time series models is:

where Tt is global temperature, Ft is a measure of the change in radiative forcing, α and γ are the intercept and 
slope parameters, respectively, and εt is a stochastic noise process that represents natural variability57. A simple 
two-compartment climate model57,83,86,87 can provide a representation of the structural model supporting Eq. (1). 
This climate model has an upper compartment (U) and a lower compartment (L). The first mainly represents 
the atmosphere and the upper ocean, and the latter the deep ocean. These components are thermally coupled 
as follows83:

where CU and CL represent the heat capacity of the upper and lower compartments, respectively, while �TU and 
�TL are the changes in temperature in the respective compartments. F is the external forcing, and � and β are 
the climate response and heat exchange coefficients. The heat capacities differ greatly between compartments, 
being much larger in the lower than in the upper compartment. This is also the case for the time constant of their 
responses to changes in radiative forcing. In the case of the upper compartment the time constant is about 4 to 
9 years, while for the lower compartment it ranges from 400 to 580 years83,86. A large fraction of time series and 
observational methods for attribution focus on the transient climate response (TCR) which characterizes the 
response of the upper compartment to sustained changes in the external radiative forcing. The TCR is defined 
by Str = (κ + �)−1 were κ is the heat uptake coefficient of the climate system. This coefficient relates the time-
dependent changes in surface temperature and external forcing via �T(t) = StrF(t) and it is represented by γ in 
Eq. (1)57. The response of surface temperatures to external radiative forcing is dominated in the observed period 
by the short time constant of the upper compartment and the TCR​81,83,87. This provides a physical explanation for 
why temperatures and external forcing share a common nonlinear trend and common features such as co-breaks.

Changes in global temperature have been linked to changes in extreme temperature and precipitation events 
by using global temperatures as a covariate in the location parameter of a GEV model as follows28.

where Tt is global mean temperature, and µi,t is the location parameter (see next subsection). As was proposed 
in previous studies using co-trending methods57,62,79,81, Ft in Eq. (1) provides a representation of the warming 
trend that is free from the high- and low-frequency natural variability. Imposing εt = 0 into Eq. (1) and substi-
tuting in (4), we have:

which is used in this paper to investigate the contributions of different components of Ft to changes in the prob-
abilities of extreme events.

Description of estimation of the generalized extreme value model.  We use the GEV model to 
estimate probabilities of extreme events for each geographical grid i in year t  . Under certain conditions, the 

(1)Tt = α + γ Ft + εt ,

(2)CU
dTU

dt
= F − ��TU − β(�TU −�TL)

(3)CL
dTL

dt
= β(�TU −�TL)

(4)µi,t = a0,i + b1,iTt

(5)µi,t = a0,i + b1,i(α + γ Ft) = µ0,i + µ1,iFt

https://www.metoffice.gov.uk/hadobs/hadex3/
https://data.giss.nasa.gov/modelforce/


8

Vol:.(1234567890)

Scientific Reports |           (2023) 13:35  | https://doi.org/10.1038/s41598-022-27220-9

www.nature.com/scientificreports/

sample maximum of continuous random variables has only three possible families of asymptotic distributions, 
Gumbel, Fréchet, and Weibull84. The standard stationary GEV distribution unifies these three families and pro-
vides a distribution function of the sample maximum x given by

defined on the set {x : 1+ ξ
σ
(x − µ) > 0} 88,89. The GEV distribution is characterized by three parameters: the 

location µ and the scale σ normalize x , the shape parameter ξ specifies the tail behavior. In this study, we assume 
that the scale and shape parameters, σi and ξi , are specific to the geographical grid i but are time-invariant. The 
location parameter µi,t is also specific to the geographical grid but may change over time in relation to the global 
level of total radiative forcing ( Ft t ) so that

where the total forcing is the sum of the natural ( NATt ) and anthropogenic forcings, the latter being the sum of 
the greenhouse gases ( GHGt ) and the effects of aerosols ( AERt ). Hence,

This is a typical formulation in the literature to account for the nonstationarity of the extreme values21. See 
Supplementary Information  for a more detailed description of the models and approach used.

Data availability
Data used are publicly available from the original sources https://​data.​giss.​nasa.​gov/​model​force/ and https://​
www.​metof​fi ce.​gov.​uk/​hadobs/​hadex3/.
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