
1

Vol.:(0123456789)

Scientific Reports |          (2023) 13:244  | https://doi.org/10.1038/s41598-022-27189-5

www.nature.com/scientificreports

High‑resolution processing 
and sigmoid fusion modules 
for efficient detection of small 
objects in an embedded system
Mingi Kim 1, Heegwang Kim 2, Junghoon Sung 2, Chanyeong Park 2 & Joonki Paik 1,2*

Recent advances in deep learning realized accurate, robust detection of various types of objects 
including pedestrians on the road, defect regions in the manufacturing process, human organs in 
medical images, and dangerous materials passing through the airport checkpoint. Specifically, 
small object detection implemented as an embedded system is gaining increasing attention for 
autonomous vehicles, drone reconnaissance, and microscopic imagery. In this paper, we present a 
light‑weight small object detection model using two plug‑in modules: (1) high‑resolution processing 
module (HRPM ) and (2) sigmoid fusion module (SFM). The HRPM efficiently learns multi‑scale 
features of small objects using a significantly reduced computational cost, and the SFM alleviates 
mis‑classification errors due to spatial noise by adjusting weights on the lost small object information. 
Combination of HRPM and SFM significantly improved the detection accuracy with a low amount of 
computation. Compared with the original YOLOX‑s model, the proposed model takes a two‑times 
higher‑resolution input image for higher mean average precision (mAP) using 57% model parameters 
and 71% computation in Gflops. The proposed model was tested using real drone reconnaissance 
images, and provided significant improvement in detecting small vehicles.

Deep learning-based object detection is widely used in intelligent visual surveillance systems. Recently, deep 
object detection using a low-power embedded system is gaining increasing attention due to widespread smart-
phones and unmanned aerial vehicles (UAVs). Although state-of-the-art object detection models have recorded 
a significantly improved accuracy, the detection accuracy of small objects is usually lower than that of large 
objects. Detecting small objects, such as traffic signs acquired by a vehicle camera and a person acquired by a 
drone, is an open problem in object detection tasks. Major reasons for the difficulty in detecting small objects 
using a light-weight model include: 

1. The number of pixels representing a small object is so small that there are no sufficient features to be learned.
2. The feature information of a small object may be offset by that of large objects. Since deep learning-based 

object detection network is learned through convolution layer, semantic information is extracted while 
overlaying the network, which has a Encoder–Decoder with a U-Net structure to reduce the size of feature 
maps while increasing the number of channels. Therefore, it is highly probable to lose feature information 
on a small object.

3. A light-weight model usually takes a low-resolution input image to reduce the computational complexity, 
which makes small object detection difficult. For example, if a full-HD image of size 1920 × 1080 has a small 
object of size 1616, the size of the small object become 55 in the resized image of size 640,640.

4. It is unrealistic to apply various small object detection methods in a single network. In particular, most 
industrial applications requires a light-weight network in an embedded environment.

In this paper, we propose an efficient method to improve the performance of small objects detection by solving 
the above-mentioned problems. We first present an efficient method that handles high-resolution images to 
improve the detection performance of small object, and then present a sigmoid fusion method that overcomes 
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the difficulty in learning small small object with few-pixel information. The proposed method used YOLOX as 
the baseline  network1 with an anchor-free detection model.

Related work
Small object detection. Deep learning-based small object detection is one of the challenging tasks in 
the fields of computer vision because recognition of a small object requires a sufficiently high resolution image, 
which increases the computational load. Various convolutional neural network (CNN)-based object detection 
methods have recently been proposed in the literature. The well-known networks include a two-stage detector 
using region proposal called regions with convolutional neural networks (RCNN)2 and one-stage anchor-based 
detectors called YOLO  series3–5. However, these methods are not suitable for small object detection since their 
accuracy is guaranteed only when an object is sufficiently large. Variants of object detection methods were pro-
posed to solve the small object detection problem.

Using a convolutional backbone network, we can extract a higher-level feature map containing information 
of a small object at the cost of losing a lower-level feature map containing spatial information. To compensate for 
the trade-off, various methodologies have been proposed to combine the shallow feature with the deep  feature6–13. 
These approaches can make the deeper layer contain a sufficient amount of spatial information, which is helpful 
in detecting small objects.

The number of datasets containing small objects is much smaller than that of large objects. Even in the same 
dataset, the number of small objects in each category is not sufficient for balanced training. To compensate for an 
insufficient number of small objects, data augmentation techniques, which can artificially increase the number 
of data, play an important role in training small  objects14,15.

Finally, only anchors with a high intersection of union (IoU) score are regarded as positive samples, and 
the rest of them are negative. Small objects are often classified as negative samples because they are not likely 
to overlap with ground truth due to the small size. Therefore, the data imbalance problem arises because the 
number of negative samples are much more than that of positive samples. To solve this problem, several methods 
have been proposed to adjust weights based on the pre-trained machine learning model so that positive and 
negative samples have similar  numbers6,16–20. In addition, various types of loss functions have been proposed to 
reset weights between unbalanced positive and negative samples for each epoch when training the  network21,22.

Context information. Both global and local context information are widely used to improve the perfor-
mance of small object detection. In general, we can extract context information from both surrounding and 
spatial location information of the object. The context information is especially necessary to detect small and 
occluded objects with incomplete object shape information.

Local context information. To detect a small object, it is necessary to consider the neighbouring area of the 
object. Local context information plays a role in representing a visual context of the surrounding region of the 
object to be detected. Zagoruyko et al. proposed a multi-path network (MPNet) that includes a trained classifier, 
and utilizes four contextual regions consisting of a foveal  structure23. In addition, Zeng et al. proposed a bi-
directional CNN (GBDNet) that extracts features from multi-scale contextualized sub-regions surrounding the 
object to improve the detection  performance24. Li et al. proposed a novel attention to context CNN (ACCNN) to 
improve the object detection performance using both global and local context  information25. Zhu et al. proposed 
a fully convolutional network called CoupleNet with two branches, one of which captures the information of the 
local portion of the object, and the other encodes the global context information with ROI  pooling26. Guan et al. 
proposed a new semantic context aware network (SCAN) that includes a local fusion module that builds seg-
mented feature maps using top-down flow and lateral connection and context-aware feature maps by applying 
multiple pooling  operation27. SCAN combined context and precise location information to improve the object 
detection performance for occluded or small objects.

Global context information. Global context takes the overall structure in the image into account to learn from 
the scene-level context. Li et al. proposed a new pooling method with either row- or column-wise max pooling 
by introducing a global context module using a separate convolution  kernel28. Bell et al. proposed an inside-
outside network (ION) that uses both internal and external information of the  ROI29. The ION captures context 
information outside the ROI using the spatial current natural network. Chen et al. proposed WeaveNet which 
extracts context information from adjacent scales, and repeatedly weaves for more sophisticated context rea-
soning on multiple  scales30. DeepDNet proposed by Ouyang et al. used the classification score as a contextual 
feature for small object detection, and connects it with the object detection  score31. Li et al. proposed AC-CNN 
that uses several multi-stacked long short-term memory (LSTM) layers to capture the global  context25. Zhu et al. 
proposed SegDeepM that utilizes both existing segmentation and global context to improve the performance of 
small object  detection32.

Proposed method
We present a light-weight deep learning model for small object detection to obtain conflicting objectives, lighter, 
faster, and better, at the same time. Our prior study presented most affecting factors on the performance of small 
object detection, which can be supported through various experimental results. We designed the object detection 
network on the premise that the model should be implemented in a real-world embedded environment, which 
has limited computational capabilities. In that context, any sophisticated methods with large computational costs 
due to a large number of kernels and global average pooling cannot be implemented in an embedded environ-
ment, and the corresponding inference time may exponentially increases. To solve that problem, we present 
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two plug-in modules: (1) high-resolution processing module (HRPM) and (2) sigmoid fusion module (SFM), 
considering the embedded environment. The HRPM efficiently processes high-resolution image to learn feature 
information of small objects, and the SFM reduces mis-classification errors due to a limited number of pixels of 
a small object by concentrating weights on small object features. This paper presents an efficient object detection 
model that processes high resolution image by applying the proposed modules.

Prior study. Although there are various methods to improve the performance of an object detection model, 
there are three approaches that can improve the performance without changing the existing model structure: 

1. Depth-scaling makes the network learn more powerful semantic information by stacking the layers of the 
Baseline model deeper,

2. width-scaling increases the number of channels in each layer, called width, to learn more rich feature infor-
mation, and

3. resolution-scaling increases input resolution, where more pixel information can be used to learn more 
information about objects.

The method of scaling three factors is called the model-scaling33,34. Recent research argued that the method 
of improving performance by combining three factors results in the highest accuracy. In addition, there is a 
model scaling method considering the amount of  computation35. To determine which factor most affects small 
or tiny object detection, we selected  YOLOX1 as the baseline with an anchor-free model. We used Visdrone-
Det-2019 dataset for all performance evaluation, which is widely used for performance evaluation of small 
object  detection36.

Table 1 shows the performance of baseline models with a number of parameters that are determined by the 
depth and width of convolution kernels. It can be seen that the larger the size of the model, the higher the per-
formance is obtained. The parameters and Gflops of YOLOX-m and YOLOX-l differ more than twice, but the 
performance improvement is insignificant.

Table 2 shows the performance of YOLOX-s according to the input resolution when the depth and width of 
the model is fixed. The mAP significantly increases as the resolution increases.

Comparing Tables 1 and 2, YOLOX-s (Input_size 1536) has similar Gflops to YOLOX-l (Input_size 640), 
but has six times smaller number of parameters with higher accuracy in the sense of mAP_50 and mAP_5095. 
In addition, compared to YOLOX-l (Input_size 640), YOLOX-s (Input_size 896) has significantly lower Gflops 
and Parameters, but has higher performance. Based on that observation, it is natural to say that the input reso-
lution is the most important factor to determine the performance of small object detection. Small objects with 
a small number of pixels are difficult to learn, because they do not have a sufficient amount of learnable feature 
information. In addition, small object detection requires both spatial edge and robust semantic information. 
However, if the image is down-sized, a certain amount of pixel information is lost, and learning ability of the 
object is limited. On the other hand, if the model takes a high-resolution image as input, the learning feature 
information increases at the cost of increased complexity, computational load, and inference time. We use FLOPs 
and Parameters to measure the computational load and model complexity, respectively,

where k represents the number of kernels, w the number of channels, r the size of resolution, and d the depth. 
Flops, which determines the computational load or inference time, is defined as Parameters multiplied by squared 

(1)
Flops = k
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2
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2
d,

Parameters = k
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2
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Table 1.  Performance of baseline models according to the number of parameters.

Model Input_size Parameters (M) Gflops mAP_50 mAP_5095

YOLOX-s 640 8.94 26.65 0.321 0.189

YOLOX-m 640 25.29 73.53 0.342 0.205

YOLOX-l 640 54.15 155.35 0.348 0.216

Table 2.  Performance of YOLOX-s according to the input resolution.

Model Input_size Parameters (M) Gflops mAP_50 mAP_5095

YOLOX-s 640 8.94 26.65 0.321 0.189

YOLOX-s 896 8.94 52.24 0.371 0.219

YOLOX-s 1280 8.94 106.62 0.406 0.239

YOLOX-s 1536 8.94 153.53 0.416 0.249

YOLOX-s 1920 8.94 239.89 0.447 0.265
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resolution, r2 , as in (1). Therefore, increasing the resolution without any processing can lead to a large amount 
of computation. Based on the prior study, we found that the most efficient way to increase the performance of 
small objects is to increase the input resolution. In this paper, we propose a module that minimizes computa-
tion while learning feature information about small objects as much as possible while taking a high-resolution 
image as input. In particular, we propose a light-weight module that improves the performance of small object 
detection and has a small computation volume so that it can be implemented even in an embedded environment. 
The modules proposed in this paper are as follows.

High resolution processing module. Receiving high resolution images as input is followed by a large 
increase in computation. To learn the information of learnable objects in high resolution images effectively and 
prevent an significant increase in computation, we propose an efficient module called High Resolution Process-
ing Module (HRPM). In that context, HRPM processes high resolution images in a simple and effective manner. 
The HRPM is located immediately after the stem module which the input image is through as shown in Fig. 1. 
Therefore, HRPM is located in the position needed to handle a large amount of Tensor, so it is necessary to 
design a simple and efficient module. The HRPM is placed in front of the backbone network to learn the edge 
and color information of the image learned at the shallow level. HRPM amplify spatial information that can be 
learned at the shallow level quickly and efficiently in high resolution images.

Figure 2 shows the structure of the HRPM. The HRPM is divided into three paths, each learning information 
that fits its role.

Learning Local context information using dilated convolution. Small object detection requires context informa-
tion due to the lack of information on the object itself. In particular, local context information refers to a context 
around an object to be detected. This provides effective information for small object detection. On the first 
path of HRPM, local context information of small objects is learned through dilated  convolution37. The higher 
the resolution image, the greater the amount of tensor to be processed. Therefore, local context information is 
learned while simultaneously halving HWC through dilated convolution.

Figure 3 visualizes the feature map showing the difference between dilated convolution and base convolution. 
All visualizations of feature map presented in this paper represent the average value for the entire channel by 
normalizing the value of the tensor through the Min-Max Scaler. As can be seen from Fig. 3, dilated convolution 
learns more spatial information by increasing the receptive field. While reducing the amount of computation, 
it expands the learnable area. As a result, context information around a small object is learned. In addition, 
since it is possible to take a large amount of receptive field without using pooling operations, the loss of spatial 
dimension is alleviated and computational efficiency is elevated. In particular, it is possible to learn the spatial 
information required for small object detection by maintaining spatial features and is effective in processing 
high resolution feature maps.

Max pooling and max compression. On the second path, the powerful edge information is learned by max 
pooling and max compression. Among various pooling techniques, most commonly used methods are aver-

Figure 1.  Overall architecture of the proposed model.

Figure 2.  High-resolution processing module (HRPM).
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age pooling and global pooling. However, considering the embedded environment, we should not adopt global 
pooling, which is inefficient in computation. Average pooling is more suitable for small object detection than 
max pooling, because feature information of small objects is likely to be offset through max pooling. However, 
the reasons for adopting max pooling rather than average pooling in this paper are as follows. Since HRPM is 
located in front of the backbone network and learns the edge of the background as well as all objects in high 
resolution images, it learns together with the edge of the small object. In addition, large size of max pooling is 
not used because we aim to implement it in embedded environments. Therefore, we model the HRPM to learn 
edge information efficiently using max pooling of small size of kernel to obtain refined high resolution input 
image and robust edge information.

The following max compression pairs the feature maps from max pooling by channel, as shown in Fig. 4. 
Max compression has two roles. First, only the information of the strong Edge is integrated. Feature maps from 
max pooling learn various edges for each channel. However, feature information learned at the shallow level is 
stronger for the spatial edge information than Semantic information. Therefore, the information uniquely learned 
in each channel is also edge information. HRPM can learn more efficient edge information by integrating strong 
edge information through max compression.

As shown in Fig. 5, it can be seen that the feature map is created by max compression of two channels into one 
channel. Second, HRPM which processes the large amount of tensor makes the entire network be light-weight.

At this time, channels containing necessary information through max compression are selected and the 
remaining channels are removed to derive computational efficiency and speed. In particular, faster computa-
tional speed can be derived by reducing the exponentially increased output tensor volume due to using HRPM.

Multi‑scale integration and light‑weight module. As shown in Fig. 2, dilated convolution learns local context 
information, max pooling and max compression learn powerful edge information, and base convolution learns 
feature information of objects. Feature information through the max compression is concatenated into the local 
context information and feature information. Subsequently, base convolution for learning feature information 
of an object is performed in the feature map containing local context information, and dilated convolution is 
performed in the feature map containing feature information, so local context information and feature informa-

Figure 3.  Feature map visualization image comparing base and dilated convolution, left: original input image, 
middle: base convolution, right: dilated convolution.

Figure 4.  Max compression.
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tion are learned on the multiple scale. The change in INPUT and OUTPUT tensor size through HRPM is the 
width and height of the feature map, and the number of channels is the same. In addition, since we model HRPM 
as a plug-in, it is designed to have a structure that does not affect the internal structure of the model. When a 
high resolution image is received as an input, the information taken from the high resolution through HRPM is 
learned quickly and effectively by amplifying the spatial information of the object. In addition, for implementa-
tion in embedded environments, HRPM is designed with simple and small parameters, and a model with low 
computational capacity despite receiving high resolution images as input.

Sigmoid fusion module. In small object detection, there is a problem that pixel information is insufficient 
and background noise is easily confused with object information. Especially in a light-weight model with fewer 
parameters, there is a difficulty due to the lack of powerful semantic and spatial information of small objects. 
Therefore, small objects which are difficult to detect have a low confidence score and a high possibility of mis-
classification. In this paper, we propose a module that alleviates the mis-classification of objects by focusing the 
spatial information of the object through the Sigmoid Fusion Module (SFM). The SFM is located between the 
 PAFPN11 and HEAD as shown in Fig. 1. In addition, there is no change in the feature map size of INPUT and 
OUTPUT, and we model SFM in the form of plug-in. Each of the three OUTPUTs passing through PAFPN has 
a different feature map size, which is utilized to detect small, middle, and large objects.

Figure 6 shows the structure of the SFM, which does not have a layer to learn, and is designed to be performed 
only by simple computation. The SFM is as follows. PAFPN has robust results on the various scale by fusing the 
spatial feature information with the shallow level and semantic information with the high level. Conversely, SFM 
fuses only the spatial information of the high level and the shallow level, compensates lost spatial features for 
small objects and penalizes mis-learned spatial features for background.

Once the feature map passes through mean and sigmoid operations, attention map consists of only 1 channel 
is out as a result, which is multiplied by the input feature map to amplify the spatial information in all chan-
nels. The input feature map learns different feature information from each channel. Each learned information 
remains intactly, and makes a relative difference from noise by adding weight to the information on the object. 
As a result, it has an effect of being more concentrated on objects. In addition, it can be seen that the object that 
is mis-classified has a low weight by fusing the feature map of different levels. The reason is that the higher the 
feature level, not only has strong semantic information, but has powerful feature information strong in noise.

Figure 7 shows the visualization of the feature map of SFM compared to the model with only HRPM applied 
without SFM applied. It is clear that the addition of SFM is more focused on the object than on the original.

In this paper, we model a light-weight network for small object detection by processing high resolution images 
over HRPM. We also use SFM to reduce mis-classification of small objects and help the model focus high-weight 
feature information. The following sections show various comparative experiments between the original  YOLOX1 
and YOLOX applying the proposed method.

Figure 5.  Visualization of max compression features.

Figure 6.  Sigmoid fusion module (SFM).
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Experimental results
Experimental setup. The experiments in this paper were implemented in RTX 3090 (24G) environments. 
Comparative experiments of the  YOLOX1 applied with the two modules and the original YOLOX were learned 
and evaluated under the same conditions. Visdrone2019-DET36 was used as the dataset. Since this paper aims to 
implement in an embedded environment, it has been learned and evaluated with a light-weight models with a 
small computation amount and parameters. Table 3 shows the experimental detail parameters.

Comparison with baseline model. Table  4 compares our model, which applies HRPM and SFM to 
YOLOX-tiny with the original YOLOX-s model. As shown in Table 4, our network (Input_size 1280) has twice 
larger input than the YOLOX-s (Input_size 640). However, because of HRPM and SFM, it performs better 
despite smaller number of parameters and Gflops. Through HRPM, our model learns the feature information 
of small objects that appears at high resolution, and avoid exponentially increasing computations. In addition, 
the above results were shown by focusing the weights on the objects again through SFM. As the computation 
amount can be efficiently reduced by applying it to a model through the module presented in this paper, it can be 
sufficiently used even in a low power embedded environment with limited computation amount. Table 5 shows 
the difference between applying SFM and not doing it. It can be seen that the detection accuracy is improved by 
reducing the mis-classification of small objects through SFM.

Figure 8 shows the comparative detection result of Our Network (Input_size 1280) and YOLOX-s (Input_size 
640) under the same conditions. As the results show, Our Network (Input_size 1280) has more robust results 
in undetected and mis-classified objects than YOLOX-s (Input_size 640). In particular, tiny size objects such 

Figure 7.  Visualization of SFM features: (left) with SFM and (right) without SFM.

Table 3.  Experiment details.

Training hyper-parameter Argumentation parameter

Warm up_epochs = 5 Mosaic_prob = 1.0

Max_epochs = 100 Mixup_prob = 1.0

Min_lr_ratio = 0.05 hsv_prob = 1.0

EMA = true Flip_prob = 1.0

Batch_size = 8 Translate = 0.1

Weight_decay = 0.9 Shear = 2.0

Table 4.  Comparison of our network and YOLOX-s.

Model Input_size Parameters (M) Gflops Precision Recall mAP_50 mAP_5095

Our network (YOLOX-tiny + HRPM + SFM) 1280 5.05 18.92 0.228 0.450 0.332 0.192

Original Network (YOLOX-s) 640 8.94 26.65 0.219 0.418 0.321 0.189

Table 5.  Ablation study on our network with Input_size 1280.

Model Precision Recall mAP_50 mAP_5095

Our network (HRPM with SFM) 0.228 0.450 0.332 0.192

Our network (HRPM without SFM) 0.195 (− 0.033) 0.445 (− 0.005) 0.312 (− 0.2) 0.179 (− 0.13)
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as Pedestrian are confused with noise in the background and are difficult to detect. However, the Our Network 
(Input_size 1280) to which the presented modules are applied has an accurate result.

To validate the model, Table 6 shows the experimental results using the  UAVDT38 data set. As shown in the 
following table, the proposed method achieved higher performance with fewer parameters and Gflops. The result 
of mAP_5095 confirms that there is a 3% performance improvement.

Comparison with various object detection model. Table  7 compares the performance of various 
object detection models. Our model has the largest input and the smallest FLOPs. This means that our network 
(Input_size 1280) provides similar performance, but has significantly less FLOPs.

Figure 8.  Subjective comparison of small object detection performance: (left) original YOLOX-s model with 
Input_size 640, and (right) our network with Input_size 1280.

Table 6.  Experimental results of UAVDT.

Model Test_size mAP_50 mAP_5095 Parameter Gflops

Original model 640 0.2580 0.1544 8.94M 26.65

Our network 1280 0.2815 0.1618 5.05M 18.92

Table 7.  Comparison of performance by model with Visdrone2019-DET Test-dev.

Model BA Test_size FLOPs (G) Parameters (m) Recall mAP_5095 mAP_50

Faster-RCNN2 R-50 640 × 1024 121.1 41.7 21.24 13.19 23.54

YOLOv3-SPP39 R-53 640 × 640 168.7 62.6 20.71 19.25 34.84

RetinaNet40 R-50 640 × 1024 117.4 36.5 16.09 15.81 29.06

FCOS41 R-50 640 × 1024 103.3 10.4 12.96 20.55 38.35

FCOS41 R-18 800 × 1333 140.4 4.5 13.81 22.36 41.14

Our network CSP-D53 1280 × 1280 18.92 5.05 44.99 19.17 33.19

Table 8.  Comparison of performance by one-stage light-weight detection models with Visdrone2019-DET 
Val.

Model BA Test_size FLOPs (G) Parameters (M) Precision Recall mAP_5095 mAP_50

YOLOv5-n42 CSP-D53 640 × 640 4.2 1.77 36.9 28.2 13.1 26.2

YOLOv5-s42 CSP-D53 640 × 640 15.9 7.04 45.2 32.1 17.1 32.1

YOLOv4-s43 CSP-D53 640 × 640 20.5 8.08 29.9 38.2 18.1 33.0

YOLOv4-tiny43 CSP-D53 640 × 640 16.18 5.89 26.8 23.6 11.2 21.9

Our network CSP-D53 1280 × 1280 18.92 5.05 30.2 46.9 22.3 38.2
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Table 8 is a comparison by one-stage light-weight model with real time that can be implemented in an embed-
ded environment according to the purpose of this paper. Our model has similar FLOPs and Parameters, but has 
outstanding performance results.

As shown in the following Table 9, the proposed model recorded higher performance than the original net-
work for eight classes including Vehicles out of 10 classes. Our model also requires fewer parameters and Gflops 
than the original model.

This paper proposes a model specialized for small object detection. Table 10 shows the results of comparison 
with the latest small object detection algorithms. For a fair comparison, similar Gflops were matched by chang-
ing the Test_Size. As a result, the proposed with input size 1024 required a smaller amount of computation in 
Gflops than SF-YOLOv544 with input size 640, while the performance degradation was negligible. For a better 
performance, the proposed model with input size 1280 significantly outperforms SF-YOLOv5 with a slightly 
increased Gflops.

Experimental results in an embedded system. 
Table 11 shows the experimental results in Jetson Xavier. Experimental results record high performance with 
fewer parameters and Gflops. Although the inference time was slightly increased, the difference is trivial con-
sidering that the input size increases by four times. This result proves that the performance of the proposed 
method operating on an embedded device is the same as that of a general GPU. Finally, since the inference time 
is approximately 0.1 s, the proposed method can process 10 frames per seconds, which is close to the real-time 
processing speed.

Additional experimental results are shown in Figs. 9 and 10.

Conclusion and further work
We proposed high-resolution processing module (HRPM) that efficiently processes high-resolution images 
to improve the performance of small objects detection, and also proposed sigmoid fusion module (SFM) that 
alleviates mis-classification errors caused by insufficient pixel information when small objects are learned. The 
HRPM learns local context information of small objects that can be extracted at high-resolution, and compresses 
increased channels. The SFM fuses multiple features with weights using the sigmoid function. The proposed 
model combining the HRPM and SFM realizes a light-weight, accurate detection of small objects. The proposed 
method recorded a significantly improved performance than existing light-weight model such as YOLOX with 
fewer parameters and Gflops. Specifically, the proposed model produces higher Recall, which is a measure the 
performance of small object detection. The proposed method can be applied in a low-power embedded system 
in various industrial environments. In the future, we will provided plug-in functions of both HRPM and SFM 
for easy deployment in a real embedded system.

Table 9.  Experimental results for 10 classes of Visdrone2019-DET.

Class Pedestrian People Bicycle Car Van Truck Tricycle Awning-tricycle Bus Motor

Original network 0.2550 0.2078 0.1434 0.6913 0.3471 0.3569 0.2137 0.1916 0.4859 0.3162

Our network 0.2703 0.2070 0.1541 0.7054 0.3545 0.3584 0.2352 0.1855 0.5184 0.3307

Table 10.  Comparison with the latest small object detection algorithms.

Model Test_size mAP_50 mAP_5095 Parameter (M) Gflops

SF-YOLOv544 640 34.3 18.2 2.24 13.8

Our network 1024 32.4 17.6 5.05 12.11

Our network 1280 38.2 22.4 5.05 18.92

Table 11.  Experimental results using Jetson Xavier with Visdrone2019-DET Test-dev.

Model Test_size mAP_50 mAP_5095 Parameter (M) Gflops Inference time (ms)

Original model 640 0.3163 0.1989 8.94 26.65 91.57

Our network 1280 0.3301 0.2043 5.05 18.92 106.10
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Figure 9.  Subjective comparison of small object detection performance: (left) our network with Input_size 
1280, and (right) YOLOX-s with Input_size 640.

Figure 10.  Subjective comparison of small object detection performance: (left) our network with Input_size 
1280, and (right) YOLOX-s with Input_size 640.
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