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Activity networks determine 
project performance
Alexei Vazquez *, Iacopo Pozzana , Georgios Kalogridis  & Christos Ellinas *

Projects are characterised by activity networks with a critical path, a sequence of activities from start 
to end, that must be finished on time to complete the project on time. Watching over the critical 
path is the project manager’s strategy to ensure timely project completion. This intense focus on a 
single path contrasts the broader complex structure of the activity network, and is due to our poor 
understanding on how that structure influences this critical path. Here, we use a generative model 
and detailed data from 77 real world projects (+ $10 bn total budget) to demonstrate how this network 
structure forces us to look beyond the critical path. We introduce a duplication-split model of project 
schedules that yields (i) identical power-law in- and-out degree distributions and (ii) a vanishing 
fraction of critical path activities with schedule size. These predictions are corroborated in real 
projects. We demonstrate that the incidence of delayed activities in real projects is consistent with 
the expectation from percolation theory in complex networks. We conclude that delay propagation in 
project schedules is a network property and it is not confined to the critical path.

Delivering projects on time and on budget is necessary to improve human prospect1, with the World Bank 
stating that 22% of the world’s gross domestic product—about $48 trillion—relies exclusively on project-based 
delivery mechanisms2. Yet the majority of public and private large-capital projects are completed late and over 
budget3. An industry survey captures the scale of the problem—reviewing 10,624 projects from 200 companies 
in 30 countries and across a variety of industries, it concludes that only 2.5% of projects were completed on time 
and budget4. A recent review reaffirms the stubbornness of the challenge, with delays remaining at comparable 
levels even after 15 years of project management advancements (comparing projects started between 1998 and 
2003 vs. 2013–2018)4.

This consistency in poor performance suggests that the core method of evaluating delay risk is inadequate 
for the complex nature of modern projects. Known risk events can be identified, analyzed and responded using 
risk management plans during the planning phase. However, unknown risk events deteriorate the project 
performance.

Since the 1960s project managers have almost exclusively relied on monitoring the critical path as the means 
to manage delay risk. This path is essentially a sequence of activities from start to end that are executed without 
any slack time in between5,6. The critical path activities play a key role in the scheduling of limited resources and 
the delay risk analysis.

An increase in the duration of any activity in the critical path causes project end overrun. It is a simple con-
cept and it provides a simple solution: the critical path must be executed as planned at all costs. Yet, modern 
projects are more complex, with schedules that look like complex networks of activity dependencies7,8. Delays 
in activities outside the critical path can similarly cause project end overruns through domino-like cascades, 
similar to how viruses spread9.

Given the consistency in project delays over the past decades, we examine the limit of applicability for the 
critical path using both synthetic and real data. We find that, beyond a certain level of complexity, the critical 
path becomes irrelevant and project end overruns are primarily driven by activities that are outside of that path.

Results
Generative model of project schedules.  A project schedule is generated using a standardised proce-
dure. In that process planners take into account the state of the art of contractors operations. If specialization 
occurs and the work of a former contractor doing activity A is now carried on by two contractors doing activities 
A1 and A2, then we would experience a change of A to A1 and A2 when looking at schedules before and after 
this specialization.

The evolution of project schedules (or activity networks) in time can be seen as the outcome of a growth 
process, where a parent activity can be duplicated or split (Fig. 1A). Generic activities can be duplicated and 
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broken into two smaller activities that run in parallel, both inheriting all predecessors and successors of the par-
ent activity. Specialised activities can be split into two activities executed in sequence, such that one specialised 
contractor executes the first part and another the second.

Starting from two activities executed in sequence (Fig. 1B), we can grow the network by a stochastic sequence 
of duplication and split events, with a probability of duplication q. For small q, activities will be mostly split, 
generating a mostly linear activity network. For large q, most activities are duplicated, leading to a network with 
numerous parallel paths (Fig. 1).

Node duplication, also known as copying, has been studied in the context of web networks and protein inter-
actions networks10–13. It has been shown that node duplication generates networks with a power law probability 
distribution in the number of links associated to a node10–13. In the Methods section we demonstrate that this 
is indeed the case for our model of duplication-split activity networks, but with a twist. We can show that the 
distributions of the number k of predecessors and successors to an activity follow the same power law pk ~ k-1/q, 
where pk is the probability that an activity has k predecessors (or successors). Our calculations are validated by 
numerical simulations of the duplication-split model (Fig. 2).

Once we create activity networks, we can populate synthetic project schedules by assigning durations to each 
activity. We now have project schedules with a critical path, a sequence of activities from the start to the end of 
the project. The latter carry as a consequence that delaying the finish of any activity in the critical path delays 
the project end date by the same amount.

Shrinkage of the critical path.  Critical path is the perceived centrepiece in project management due to 
its sensitivity to delays. Yet, a look at the synthetic activity networks in Fig. 1C-E made us question whether that 
critical-path-centric view is valid for modern projects, given that modern projects have complex structures with 
many parallel paths of work happening at the same time6.

In cases where activity networks are quasi-linear, the critical path is indeed the dominating structural feature 
(Fig. 1C, q = 0.1). In contrast, in the q = 0.9 activity network we observe a large number of parallel paths with 
similar number of activities (Fig. 1E, q = 0.9). It is in these cases that the concept of the critical path may be of 
less relevance to manage the delay risk of the project.

Following these qualitative observations, we show that the larger the project network, the smaller the relative 
size of the critical path. Furthermore, the larger the duplication probability q, the smaller the relative number 
of activities in the critical path, in agreement with the visual inspection of the q = 0.1 and 0.9 synthetic activity 

Figure 1.   Duplication-split model. (A) Duplication and split rules acting on an activity (black). (B) Initial 
conditions where the duplication-split model is applied. (C) Examples of activity networks generated by the 
duplication-split model for three different values of the duplication probability q. Critical path is highlighted in 
red.
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networks in Fig. 1C,E. We determine the number c of critical path activities in a network of n activities and 
duplication parameter q. We estimate that c ~ n1-q and therefore the fraction of activities in the critical path 
decreases as c/n ~ n-q. Numerical simulations corroborate the c/n ∼ n−α(q) scaling, albeit with α(q) ≤ q (Fig. 3).

We note that the duplication-split networks are not small-world networks14,15. In small-world networks the 
typical distances between nodes scale logarithmically with network size (c ~ lnn)15. Duplication-split networks 
are a new class of networks with power-law degree distributions and power-law scaling of node distances with 
network size. In fact, these are fractal networks (c ~ n1/D), with a fractal dimension D = 1/(1− α(q)).

Vanishing critical path in empirical activity networks.  To demonstrate that our observations are 
representative of the real-world challenge, we shift our focus to empirical data for 77 construction projects (total 
value + $10bn), with activity networks representing different stages of the project lifecycle, adding up to 323 
project schedules. These activity networks vary in size, from 100 to 16,000 activities.

Figure 2.   Degree distributions. Distribution of the number of predecessors (in-degree) and successors (out-
degree) across activities in networks generated by the duplication-split model, using (A) q = 0.25 and B) q = 0.5. 
The dashed line highlights the power law tail predicted by our calculations.

Figure 3.   Relative size of the critical path. (A–C) The number of activities c in the critical path relative to the 
total number of activities n, for activity networks generated by the duplication-split model. The dashed line 
highlights the power law decay predicted by our calculations. (D) The scaling exponent of the power law decay 
c ~ n-α as a function of q (symbols), The dashed line is the theoretical upper-bound.
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Driven by our synthetic schedule analysis, our prediction that the relative size of the critical path decreases 
as the number of activities increases is further confirmed in the empirical data.

First, we corroborate the distribution of the number of predecessors (in-degree) and the number of successors 
(out-degree) to an activity are almost identical and they follow a power law decay (Fig. 4A). Assuming the power-
law decay of the duplication split model, we obtained a maximum likelihood estimate q from the distribution 
of the number of predecessors and independently from the number of successors. The duplication-split model 
predicts that the two should coincide. Indeed, the data for the construction projects fall at or in the vicinity of 
the equality line (Fig. 4B). Furthermore, the duplication q index of real projects is distributed between 0.1 and 
0.5, with most values between above 0.2 (Fig. 4C).

Second, we tested the c/n ∼ n−α scaling of the fraction of activities in the critical path. The fraction of activi-
ties in the critical path c of real activity networks decreases as the number of activities n increases (Fig. 4D, blue 
symbols). This decrease approximately follows the scaling c/n ∼ n−α with α = 0.79.

Network complexity drives delay risk.  Now we switch our attention to delay propagation in activ-
ity networks. Exogenous delays such as extreme weather events, pandemics or financial crises can cause some 
activities to be delayed beyond their planned finish date. When activity delays exceed the spare time between 
activities (free floats) they propagate downstream triggering a delay cascade. We view activity delays exceeding 
the free floats as microscopic events and the delay cascades reaching the project end as the macroscopic behav-
iour. The microscopic events are quantified by the probability p that an activity dependency will transmit a delay. 
The macroscopic behaviour is quantified by the fraction of activities where the activity delay exceeds its total 
float. We call the latter the delay incidence.

If the critical path is a key delay risk factor, then the incidence of delay across activities should increase with 
increasing p × c, where c is the critical path size as denoted above. However, when we plot the delay incidence vs 
p × c we actually observe a negative non significant correlation (Fig. 5A, Pearson correlation coefficient = − 0.1, 
significance = 0.7). Therefore, the delay risk is not determined by the critical path size.

Figure 4.   Empirical data analysed. (A) Distribution of the number of predecessors (in-degree) and successors 
(out-degree) across activities of a typical construction project. The dashed line highlights a power law fitting the 
data. (B) The exponents q obtained from the fit to the distribution of the number of predecessors q(in-degree) 
and successors q(out-degree). Each point represents a project schedule. The dashed line is the equality line. (C) 
The distribution of estimated duplication rate q across projects. (D) The fraction of activities in the critical path 
as a function of the number of activities. Different symbols represent a project schedule at different stages of 
completion. The solid background represents the [20,80]% confidence interval.
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If the critical path vanishes for large projects, and we know that almost all complex projects are delayed, 
where does this risk come from? After ruling out the standard hypothesis (critical path) we shift our focus to 
activities outside the critical path.

We use percolation theory as a framework to help us quantify the propensity of the project to exhibit a delay, 
driven by delays at the activity level16–18. Bond percolation indicates that when p exceeds a critical threshold pc 
delay cascades will take place with a finite probability. For directed networks with uncorrelated in-degrees and 
out-degrees pc = 1/ < k >18, where < k > is the average out-degree. Percolation theory predicts a phase transition 
from no macroscopic cascades when p < pc to a finite risk of macroscopics cascades for p > pc.

This is exactly what we observe for real project networks (Fig. 5B), highlighting that project end overruns 
are indeed a property of the whole network. For p < pc the delay incidence is below 1%, almost no risk of project 
delay. In contrast, for p > pc the delay incidence increases gradually, and in some cases impacting 15% of the entire 
project. We note that for some projects with p > pc the delay incidence is below 1% and the confidence interval 
reaches zero (Fig. 5B, orange band, p-pc > 0). This is expected from percolation theory. The occurrence of macro-
scopic events is probabilistic. What is different from zero is the probability that such macroscopic events occur.

Conclusions
We focus on activity networks that describe large-capital projects, showing that their broader structure contains 
information about their propensity for delays. Our first contribution is the introduction of the duplicate-split 
model, and the fact that the duplication index q is a core feature of activity networks. Networks with small q are 
indicative of quasi-linear topologies, and a good fit for using the critical path. Large q indicates a complex project, 
where the critical path is relatively small, and parallel paths tend to dominate the overall structure. We then use 
synthetic and empirical data to both validate the output of the duplicate-split model. Our second contribution is 
showing that the number of activities in the critical path decreases as n-α and therefore the critical path vanishes 
in the limit of large activity networks. As a result, the critical path is of limited applicability when it comes to 
large and complex projects. Our third contribution is the application of percolation theory in order to go beyond 
the limitations of critical path analysis, whilst showcasing that project end overruns are a network property.

Methods
Estimation of the degree distribution.  Let nk(n) the number of activities with k predecessors in the 
activity network. As new activities are added nk(n) changes according to the equation

The first term inside […] corresponds to activities with k-1 predecessors and the duplication of one predeces-
sor with probability (k-1)/n, moving to the k predecessors group. The second term inside the […] is the same but 
for activities with k predecessors, moving from the k predecessors group. The third term inside […] is the chance 
that an activity with k predecessors is duplicated, thus generating a new activity with k predecessors. Finally, the 
last term in (1) is the creation of a new activity with one predecessor following a splitting event, where δk1 = 1 if 
k = 1 and 0 otherwise (Kronecker delta symbol).

Assuming a steady state solution we obtain

We can iterate this equation to obtain an expression for all k > 1 as a function of p1

(1)nk(n+ 1) = nk(n)+ q

[

k − 1

n
nk−1(n)−

k

n
nk(n)+

1

n
nk(n)

]

+
(

1− q
)

δk1

(2)pk = q
[

(k − 1)pk−1 − kpk + pk
]

+
(

1− q
)

δk1.

Figure 5.   Delay incidence. (A) Observed delay incidence in construction projects as a function of p × c, control 
parameter associated with the critical path. (B) Observed delay incidence in construction projects as a function 
of p-pc, the control parameter of percolation theory. p is the fraction of delay transmissions along direct activity-
activity relations, c the number of activities in the critical path and pc is the critical threshold from percolation 
theory (pc = 1/ < k >).
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where Γ(x) is the gamma function. For k >  > 1 the later equation has the asymptotic behavior

The same reasoning can be repeated using k as the number of activity successors. That is, the distributions of 
the number of predecessors (in-degree) and successors (out-degree) are identical in the n → ∞ limit.

Estimation of the critical path size.  Consider a network schedule with n activities and c activities in the 
critical path. As new activities are added, the size of the critical path can increase if a task in the critical path 
is subject to the split rule. Since the split rule is executed with probability 1-q at each activity addition and the 
probability that the activity selected for splitting is in the critical path is equal to c/n, then

Integrating this equation we obtain

This result is an approximation. As the network grows there could be changes in what activities are in the 
critical path, making the critical path shorter. We conjecture the scaling c/n∼n-α(q), where α(q) ≤ q.

Python code for the duplication‑split model. 

import numpy as np
Import networkx as nx

def duplication_split_digraph(n,p):
np.random.seed(0)
G = nx.DiGraph()
G.add_nodes_from(range(n))
G.add_edge(0,1)
duplicate = np.random.random(n) < p
for i in range(2,n):

j = np.random.randint(i)
G.add_edges_from([(i,k) for k in G.successors(j)])
if duplicate[i]:

G.add_edges_from([(k,i) for k in G.predecessors(j)])
else:

G.remove_edges_from([(j,k) for k in G.successors(j)])
G.add_edge(j,i)

Generative model simulations.  Project schedules are generated in three steps. (1) We generate an activ-
ity network by successive application of the duplication/split rules up to we reach n activities. At each activity 
addition we select an activity with equal probability among all current activities in the network, execute the 
duplication rule with a probability q otherwise the split rule. (2) We assign a duration x to each activity from a 
distribution with probability density function f(x). Here we use an exponential distribution with mean 1 day. (3) 
We assume that all activity relations are of the standard Finish-Start type, that all activities with no predecessors 
start at day 0 and apply forward/backward passing6,7 to determine the early and late start and end dates for all 
other activities. Average statistics and distributions are estimated from 100 simulations of these steps for each 
set of parameters (n,q).

Critical path.  Once a schedule has been generated, we perform a second backward pass to calculate the total 
float of each activity. The total float is defined as the amount of time that the end date of an activity can be post-
poned without affecting the project end date6,7. The critical path is the set of activities with total float 0 and it will 
be denoted by C. The size of C, the number of activities in the critical path, is denoted by c.

(3)pk =
q(k − 1)
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Probability of delay transmission.  We estimate the probability p that an activity dependency will trans-
mit delays by looking at all completed activities, and computing the fraction of dependencies with slack time that 
is smaller than the delay at the parent activity, across all relations out-going from finished activities.

Control parameter of the critical path method.  The probability that there are no delay transmissions 
in the critical path is P(p,c) = 1 − (1 − p)c. For small p it can be approximated by P(p,c)≈1 − e−pc. This later equation 
shows that the delay risk associated with the critical path should decrease with increasing pc.

Empirical data of construction projects.  The dataset is composed of 77 construction projects, with 
multiple project schedules for each construction project, totalling 323 project schedules. The project schedules 
were generated by the project managers using an industry standard enterprise software package (Oracle Prima-
vera P6).

Data availability and code availability
All the data necessary to support our conclusions is reported in the figures. Code for the duplication-split model 
is provided in the methods. Raw data for construction projects has restricted access and can be provided upon 
consultation. Request for data should be directed to corresponding authors.
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