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On the role of tail in stability 
and energetic cost of bird flapping 
flight
Gianmarco Ducci 1*, Gennaro Vitucci 1,2, Philippe Chatelain 1 & Renaud Ronsse 1

Migratory birds travel over impressively long distances. Consequently, they have to adopt flight 
regimes being both efficient—in order to spare their metabolic resources—and robust to perturbations. 
This paper investigates the relationship between both aspects, i.e., energetic performance and 
stability, in flapping flight of migratory birds. Relying on a poly-articulated wing morphing model and 
a tail-like surface, several families of steady flight regime have been identified and analysed. These 
families differ by their wing kinematics and tail opening. A systematic parametric search analysis has 
been carried out, in order to evaluate power consumption and cost of transport. A framework tailored 
for assessing limit cycles, namely Floquet theory, is used to numerically study flight stability. Our 
results show that under certain conditions, an inherent passive stability of steady and level flight can 
be achieved. In particular, we find that progressively opening the tail leads to passively stable flight 
regimes. Within these passively stable regimes, the tail can produce either upward or downward lift. 
However, these configurations entail an increase of cost of transport at high velocities penalizing fast 
forward flight regimes. Our model-based predictions suggest that long range flights require a furled 
tail configuration, as confirmed by field observations, and consequently need to rely on alternative 
mechanisms to stabilize the flight.

Biological fliers are a source of inspiration for the scientific community. Their capacity to travel over long dis-
tances during migrations, their responsiveness to environmental perturbations, and their maneuvering skills are 
intriguing and inspiring biologists and engineering advances. A particularly outstanding capacity is how they can 
robustly react to gusts and other  perturbations1,2. A foundational study by  Smith3 developed a theory of evolu-
tion of instability, establishing how inherently unstable flight regimes might have provided a selective advantage 
for fliers through evolution. Indeed, passively unstable systems are more responsive to changes in command, 
and this might have facilitated maneuverability for birds. This had to come in parallel with the development of 
sensory-driven neural circuitries to actively control the flight in order to display stable closed-loop behaviour.

Over the last couple of decades, several studies have investigated how such stability might be achieved, with 
a specific focus on the gliding regime. Thomas and  Taylor4 studied gliding flight and showed that birds use a 
combination of passive stability—alleviating perturbations without active control—governed by their morphol-
ogy, and active stabilization from neural pathways to regulate their flight. For example, in gliding gulls, static 
longitudinal stability is achievable by actively modulating the opening of the elbow joint over a large  range5–7. 
Cheney et al.1 investigated the role of wing compliance and tail actuation in order to alleviate perturbations. 
Ajanic et al.8 conducted a dedicated study on wing morphing and the mechanism of wing sweep on a propelled 
gliding robot. For each morphological configuration, the authors estimated the required power to fly. They 
showed that increasing the tail surface was beneficial for longitudinal passive stability, although at the cost of 
increasing parasitic drag and thus decreasing energetic performance.

Gliding is a flight regime that does not produce the thrust needed to maintain flight altitude over long dis-
tances. This is instead possible with the flapping regime. However, studying passive stability of flapping flight 
requires a dedicated framework to handle the periodic nature of this locomotion regime, and thus the existence 
of limit cycles instead of fixed equilibrium points. In particular, such a framework must capture the periodic 
kinematic-dependent nature of aerodynamic forces. Taylor and  Thomas9 pioneered the development of such 
a mathematical framework for studying longitudinal stability in flapping flight. They extended the concept of 
the so-called static margin to flapping flight. They stated that—similarly to gliding—the location of the mean 
aerodynamic forces with respect to the body center of mass would affect significantly the longitudinal stability. 
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Taylor and Żbikowski10 re-defined stability of flapping flight as the asymptotic orbital stability of a limit cycle in 
the phase space. Following this approach, Dietl and  Garcia11 used for the first time Floquet  theory12 to study the 
phase space limit cycle described by the equations of motion of an artificial flying device, namely an ornithopter. 
We recently leveraged the same formalism to characterize the passive stability of large migratory  birds13. Our 
framework builds upon a morphing quasi-steady lifting line model to compute the aerodynamic forces, and 
a multiple-shooting algorithm to identify limit cycles. The aerodynamic effects induced by the tail were not 
captured within this previous work, and the flight was consequently characterized by an unstable mode in pitch 
whatever the wing configuration.

Moreover, in flapping flight, the wing kinematics has an important impact on power consumption. In an 
analysis on pigeons,  Parslew14 suggested that particular kinematics modes might be selected in specific flight 
regimes for energy-saving purposes. Colognesi et al.15 also showed a dependency between power requirement 
and key parameters of the wing kinematics, specifically the wingbeat amplitude.

Although the role of the tail has been studied in gliding regimes, and the influence of wing kinematics has 
been studied to assess the performance in flapping regimes, no study to date combined both in a whole body 
characterization of flapping gaits. The objective of this paper is to provide such a complete modeling of flapping 
flight that can simultaneously assess the influence of wing kinematics and tail morphology in stability and ener-
getic performance. Such a framework would be of direct relevance to challenge biological hypotheses suggesting 
an evolution towards passively unstable flight regimes for enhancing manoeuvrability.

Flying animals in the wild can be observed furling their tails, if they possess any, while travelling long dis-
tances (e.g.,  see16). This constitutes quite a conundrum for biologists. On the one hand, basic aerospace engi-
neering teaches us that an auxiliary surface aft of the center of mass contributes to static stability. On the other, 
behavioural biology hints at a cognitive costs entailed by an intrinsically unstable flight  regime3. To add to the 
debate, experiments performed on birds flying in wind tunnels over a wide range of speeds have shown that 
the tail spread significantly decreases with speed, i.e. with increasingly demanding power requirements, both in 
gliding and flapping  regimes17–19. This is likely due to a larger wetted area, causing an additional contribution of 
parasitic drag which, at high velocity, may influence the energetic performance of the flier. These elements are 
conducive to the hypothesis that tail spreading inherently leads to passively stable flight regimes, at the price 
of an increased energetic cost. The present work aims at testing that assumption by means of theoretical and 
numerical frameworks.

Finally, for completing our framework, we need to introduce tail aerodynamics and morphing, whose mod-
elling is a debated topic in literature. In the seminal comprehensive study on tail aerodynamic  functions20, 
slender delta wing theory, i.e. the theory for low aspect ratio thin bodies, was prospected as a simplistic though 
effective model of tail as a lifting surface. This aerodynamic coupling between wings and tail allowed predict-
ing an energetically convenient sequence of quantitative bird morphology modifications as a function of flight 
speed, specifically wings and tail openings and tail angle of attack under the assumption of minimum power 
consumption as main gait modulation goal. These considerations were challenged  by19 via comparisons with 
in vivo wind tunnel measurements. Whereas in the experiments the total lifting surface, i.e. wings plus tail areas 
total planform, decreased with airspeed, the quantitative  measurements19 did not support the estimates  of20. 
Birds appear to change morphology more gradually than according to the algorithm set  in20. One year later, a 
direct empirical test on the delta wing modelling appropriateness was carried out  in21. Wind tunnel aerodynamic 
force production was measured on frozen birds in gliding posture. Tail pitch and spread space was explored and 
compared to an artificial delta wing. It turned out that the tested tails actually did behave like the artificial delta 
wing, but the slender wing theory traditionally used for simulating its delta wing like response has limitations. 
Namely, as for most linearised theories, its fidelity decreases with tail pitch because of stall due to flow separation 
and must therefore be used with caution. Further evidence about the applicability of the theory was provided 
 by22, who measured shed vorticity in the wake of birds in bound posture, i.e. furled wings. Flow visualization 
techniques demonstrated that the vorticity is concentrated at the lateral tail tips, as predicted by slender wing 
theory as opposed, for instance, to the lifting line model, in which case a continuous vortex sheet is expected. In 
that paper it was also confirmed that lift increases monotonically with tail surface. All this considered, it seems 
widely accepted that spread tails do produce lift and in this work we rely on delta wing theory, but limit tail tilt 
and spread in order to include the aforementioned considerations.

Materials and methods
In this section, we introduce flapping flight dynamics and describe the bird model used in our computational 
framework. Furthermore, we describe how such a dynamical model is used in order to identify steady and level 
flapping flight regimes, study their stability, and assess their energetic performance.

Equations of motion modelling flapping flight. Flight dynamics is restricted to the longitudinal plane 
and thus the bird main body is captured as a rigid-body with three degrees of freedom, i.e. two in translation 
and one in rotation. This model preserves symmetry with respect to this plane, without any lateral force and 
moment. The aerodynamic model of the wing relies on the theory of quasi-steady lifting  line23. Additionally, the 
present work does not account for the inertial forces due to the acceleration of the wing, and thus also neglect-
ing the so-called inertial power. This inertial power was shown to be negligible in fast forward flight conditions, 
in comparison to the other contributions to actuation  power24, and is thus systematically neglected in similar 
 work10,11,25 since wing inertia is neglected.

The body is thus modelled with a mass mb and a rotational inertia Iyy about its center of mass. The equations 
of motion are expressed in the body frame G(x′, y′, z′) with unit vectors (êx′ , êy′ , êz′) , and an origin located at the 
center of mass, as pictured in Fig. 1a. The state space vector is thus



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22629  | https://doi.org/10.1038/s41598-022-27179-7

www.nature.com/scientificreports/

where u and w are the body velocities along the x′− and z′−axis and θ and q are the pitch angle and its time 
derivative about the y′−axis, respectively. Consequently, the equations of motion  read11,13,26

The forcing terms in Eq. (1) are the aerodynamic forces and moments applied to the wing (namely Fx′ , Fz′ , 
and My′ ) and to the tail ( Fx′ ,t , Fz′ ,t , and My′ ,t ). The whole drag is captured by an extra force D that sums con-
tributions due to the body Db , the skin friction of the wing (wing profile) Dp,w , and the skin friction of the tail 
(tail profile) Dp,t . These terms are described in detail in the next sections. Importantly, we accounted for the 
drag acting purely along x′ direction, after proving that the projection of the drag forces along z′-axis is between 
two and three orders of magnitude smaller with respect to the aerodynamic forces produced by two other main 
lifting surfaces. This assumptions holds for the fast forward flight regime that are subject of our study, but such 
components of drag along z′ axis should be accounted for other flight situations.

x = {u,w, q, θ}

(1)

u̇ = −qw − g sin θ +
1

mb

(

Fx′(x(t), t)

+ Fx′ ,t(x(t), t)+ D(x(t), t)
)

ẇ = qu+ g cos θ +
1

mb

(

Fz′(x(t), t)+ Fz′ ,t(x(t), t)
)

q̇ =
1

Iyy

(

My′(x(t), t)+My′ ,t(x(t), t)
)

θ̇ = q

Figure 1.  (a) Bird model for describing the flight dynamics in the longitudinal plane. The state variables are 
expressed with respect to the moving body-frame located at the flier’s center of mass G(x′, z′) . These state 
variables are the component of forward flight velocity, u, the velocity component of local vertical velocity, w, the 
orientation of this body-centered moving frame with respect to the fixed frame, θ and its angular velocity, q. A 
second frame O(x′w , z′w) is used to compute the position of the wing, relative to the body. The wings (dark gray) 
and the tail (red) are the surfaces of application of aerodynamic forces. (b) Top view of the bird model. The left 
wing emphasizes a cartoon model of the skeleton. The shoulder joint s connects the wing to the body via three 
rotational degrees of freedom (RDoF), the elbow joint e connects the arm with the forearm via one RDoF and 
the wrist joint w connects the forearm to the hand via two RDoF. Each feather is attached to a bone via two 
additional RDoF, except the most distal one ”1” which is rigidly aligned with the hand. The right wing further 
emphasizes the lifting line (red) which is computed as a function of the wing morphing. The aerodynamic forces 
generated on the wing are computed on the discretized elements Pi . The tail is modelled as a triangular shape 
with fixed chord ct and maximum width bt that can be morphed as a function of its opening angle β . (c) Wing 
element i between two wing profiles, identifying a plane � containing the lifting line (red). (d) Cross section of 
the wing element, containing the chord point Pi where the velocities are computed (Color figure online).
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Wing model. The bird has two wings. Each wing is a rigid poly-articulated body, comprising the bird arm, 
forearm and hand, as pictured in Fig. 1b. Each segment is actuated by a joint to induce wing morphing. We refer 
 to13,15 for a complete description of this wing kinematic model.

Each joint is kinematically driven to follow a sinusoidal trajectory specified as:

with ω = 2π f  and f being the flapping frequency which is identical for each joint, q0,i being the mean angle over 
a period (or offset), Ai the amplitude, and φ0,i the relative phase of joint i. A complete wingbeat cycle is therefore 
described through a set of 19 kinematic parameters, including the frequency f.

We assume that the wing trajectory is rigidly constrained, and therefore we do not need to explicitly solve 
the wing dynamics. Under this assumption, the motion generation does not require the computation of joint 
torques. The model further embeds seven feathers of length lki in each wing. The feathers in the model have to 
be considered a representative sample of the real wing feathers. They thus have a limited biological relevance; 
their number is chosen so as to interpolate the planform satisfactorily and to smoothly capture the morphing 
generated by the bone movements. These feathers are attached to their respective wing bones via two rotational 
degrees of freedom allowing them to pitch and spread in the spanwise direction. These two degrees of freedom 
are again kinematically driven by relationships that depend on the angle between the wing  segments13. This 
makes the feathers spreading and folding smoothly through the wingbeat cycle. In sum, the kinematic model of 
the wing yields the position of its bones and feathers at every time step. This provides a certain wing morphing 
from which the wing envelope (leading edge and trailing edge) can be computed (see Fig. 1b). From the wing 
envelope, the aerodynamic chord and the lifting line are computed. The lifting line is the line passing through 
the quarter of chord, which is itself defined as the segment connecting the leading edge to the trailing edge and 
orthogonal to the lifting line (Fig. 1b). This extraction algorithm is explained in detail  in15.

In order to calculate the aerodynamic forces, the angle of attack of the wing profile has to be evaluated. Each 
wing element defines a plane containing the lifting line and the aerodynamic chord as pictured in Fig. 1c. The 
orientation of the plane is identified by the orthogonal unit vectors (ên, êt , êb) , where ên is the vector perpen-
dicular to the plane and êt is the tangent to the lifting line. To compute the effective angle of attack, the velocity 
perceived by the wing profile is computed as the sum of the velocities due to the body and wing motion, and the 
velocity induced by the wake. The first contribution, U , accounts for

where U∞ = uêx′ + wêz′ is the actual flight velocity, vkin is the relative velocity of the wing due to its motion, 
and vq is the component induced by the angular velocity of the body q and calculated as

This velocity vector U defines the angle α , as pictured in Fig. 1d.
The second contribution is due to the induced velocity field by the wake, i.e. the downwash velocity wd , and 

acting along the normal unit vector −wd ên . The resulting effective angle of attack, αr , is thus

The downwash velocity wd is computed according to the Biot-Savart  law23, assuming the wake being shed 
backwards in the form of straight and infinitely long vortex filaments at each time step of the  simulation13,15. 
This quasi-steady approximation is justified a posteriori by ensuring that our reduced frequency, inversely pro-
portional to the unknown airspeed, never exceeds the value of 0.2, below which the effects of time-dependent 
wake shapes on wing circulation are negligible (e.g. see discussion  in27). Once the downwash is evaluated, it is 
possible to evaluate the circulation, and consequently the aerodynamic force and moment acting at the element 
Pi , i.e. Fx′ ,i(x(t), t), Fz′ ,i(x(t), t),My′ ,i(x(t), t) , as explained in detail  in13. We use the thin airfoil theory for the 
estimation of the lift coefficient, with a slope of 2π that saturates at an effective angle of attack αr of ±15◦.

Drag production by body and wing. The main body and the wings induce drag that should be accounted 
for in a model aiming at characterizing energetic performance. Body-induced drag is named parasitic because 
the body itself does not contribute to lift generation, and only induces skin friction and pressure drag around its 
 envelope28. The total body drag is

where ρ is the air density. We implemented the model described by  Maybury28 to compute the body drag coef-
ficient Cd,b . This depends on the morphology of the bird and the Reynolds number Re according to

with Sb and FRt are respectively the frontal area of the body and the fitness ratio of the bird, and both of them 
can be estimated from other allometric formulas i.e.28,29.

(2)qi(t) = q0,i(t)+ Ai sin(ωt + φ0,i)

U = U∞ − vkin − vq

vq = qêy′ ∧ (Pi − G)

αr = α −
wd

|U|

(3)Db =
1

2
ρCd,bSb|U∞|2

(4)Cd,b = 66.6m−0.511
b FR0.9015

t S1.063b Re−0.197

(5)Sb =0.00813m
2/3
b
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The Reynolds number Re = ρ|U∞|c/µ is calculated with the reference length of the mean aerodynamic 
chord c , with µ being the dynamic viscosity. This model is found to be suitable for Reynolds number in the 
range 104 − 10528. Another source of drag is the profile drag due to friction between the air and the feathers on 
the wings. It is the sum of the profile drag at each section along the wingspan, i.e.

with ci the chord length, dsi the length of the lifting line element along the wingspan, and Ur,i the velocity at the 
wing section i accounting for the body velocity, the kinematics velocity of the wing and the downwash velocity 
(Fig. 1c,d). We used a value of profile drag of Cd,pro = 0.02 and this is assumed to be constant over the wingspan 
and throughout the flapping  cycle30. In reality, due to the wing motion, this value should be gait dependent. 
However, the aforementioned assumption has been largely used in previous  works31,32.

Tail model. Since the span of the tail is of the same magnitude as its aerodynamic chord, here the lifting 
line approach cannot be  used23. Therefore, the tail is modelled according to the slender delta wing theory, as a 
triangular  planform33. Its morphology is illustrated in Fig. 1b and characterized by the opening angle β and the 
chord ct . This latter parameter is kept constant, thus the tail span is controlled via β from the trigonometrical 
relationship

The main limitation of this framework is the low range of angles of attack ( αtail < 5
◦ ) within which it provides 

accurate  results34. This limitation is valid in our context of fast forward flight, where the bird flight is straight, 
horizontal, and the forward velocity u is much larger than the vertical one w. The velocity component acting on 
the tail-like surface is

where the term vw→t
ind  is the velocity acting on the tail, induced by vortex filament shed by the wing. This velocity 

is calculated according to Biot-Savart  law23, and

is the velocity induced by the body rotation, with (G−N) the vector between the center of mass of the body ( G ) 
and the point of application of the forces on the tail ( N ) taken at two third along the tail chord, as illustrated 
in Fig. 1b. Furthermore, our tail spread takes 45◦ as upper value, i.e. a maximum aspect ratio of 1.65 for our 
triangular tail. The tail tilt relative to the body is constrained to 0◦ , so that the tail pitch is the same as the body’s. 
Furthermore, as the tail kinematic velocity stays far lower than in the wing sections, the stall zone is avoided.

The forces generated by the tail are computed according  to33

These forces are applied at point N . In addition, adding this tail-like surface introduces another source of 
drag that needs to be accounted for. This parasitic drag contribution is, according  to33

where St is the tail planar surface and CD,f  the dimensionless friction coefficient.

Numerical framework. Due to the fact that Eq. (1) are driven by time-varying forces and periodic actua-
tion, they do not converge to steady equilibrium  points11,35. Instead, the steady condition corresponds to a limit 
cycle of this model, and its stability can be assessed via dedicated tools. The numerical identification of such 
a periodic orbit and the characterization of its stability are challenged by the fact that this orbit is unknown 
a priori. In previous work, we developed a method to achieve both at the same time via a multiple-shooting 
algorithm. This framework has been released as a Python toolbox called multiflap13. It takes as input a set of 
ordinary differential equations (ODE) like (1), i.e. of the form

with x being the state variables, v a vector field describing the system dynamics, t the time and ν a set of configu-
ration parameters. A periodic orbit is thus a particular solution of this set of ODE such that

(6)FRt =6.0799m0.1523
b

(7)Dp,w =
1

2
ρCd,pro

n
∑

i=1

ci|Ur,i|
2dsi

bt = 2ct tan
β

2

(8)Ut(t) = U∞ + v
w→t
ind + vind,b

vind,b = qêy′ ∧ (G− N)

(9)
Fx′ ,t =

(π

4
ραt |Ut |

2b2t

)

· êx′

Fz′ ,t =
(π

4
ραt |Ut |

2b2t

)

· êz′

(10)Dp,t =
1

2
ρ|Ut |

2StCD,f

(11)ẋ = v(x, t, ν)

x(t, ν) = x(t + T , ν)



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:22629  | https://doi.org/10.1038/s41598-022-27179-7

www.nature.com/scientificreports/

with T being the cycle period. Such a periodic solution, defines a steady flight regime.
The stability of such closed orbits can also be assessed through the long-term response to a perturbation: if 

the perturbed trajectory converges back to the orbit, then it is stable, and vice-versa. We perform this stability 
analysis via the Floquet  theory12. Stability of the set of equations is governed by the eigenvalues of the so-called 
Floquet matrix J , also known as Floquet multipliers, �i . This Floquet matrix maps perturbations within an 
infinitesimal sphere around a point of the limit cycle (x0, t0) into an ellipsoid after a time T equal to the period of 
the orbit. Stretching or contracting ratios of the principal axes of this first order transformation are governed by 
the Floquet Multipliers. Floquet multipliers have the property of being invariant along the limit cycle, whereas 
the Floquet matrix and its eigenvectors depend on it. Concretely, the Floquet matrix J can be calculated as the 
solution of the variational equation:

where the matrix

is called the Stability  Matrix36 and is T-periodic on the limit cycle. If the absolute values of all Floquet multipliers 
�i are smaller than one, the corresponding periodic orbit is stable. Conversely, if the absolute value of at least 
one multiplier is larger than one, the corresponding orbit is unstable and the perturbation spirals out of the limit 
cycle along the corresponding eigendirection(s). This framework provides another important feature, namely 
the stretching/contracting rate per unit of time, or Floquet exponent, �i36,37

Application to steady and level flight. In the present study, we leverage the aforementioned multiple-
shooting algorithm, for seeking steady flight regimes within the following parametric space

where β is the tail opening angle, ψs,z is the shoulder sweep offset, As,x is the wingbeat amplitude, and qw,y is the 
mean rotation angle of the wing profiles of the forearm about the axis y, see Fig. 2. The other parameters defining 
the wing kinematics are kept fixed to values similar to those reported  in13.

Previous studies have shown that these four parameters decisively govern the flight regime in bird flapping 
and gliding modes. The tail opening β and shoulder sweep offset ψs,z influence flight stability, since these are the 
parameters having a paramount influence on the generation of pitching moment. Then, the shoulder wingbeat 

(12)

dJ

dt
(x0)

∣

∣

∣

t

t0
= A(x, t)J(x0)

∣

∣

∣

t

t0

J(x0)

∣

∣

∣

t0

t0
= I

(13)A(x, t) = ∇v(x, t)|x=x∗

(14)�i =
1

T
ln |�i|

(15)ν = (β ,ψs,z ,As,x , qw,y)

Figure 2.  (a) Front view of the bird model. The wingbeat amplitude As,x about the x′-axis is the main kinematic 
parameter governing the wing amplitude of movement. (b) Top view of the bird model. The shoulder sweep 
offset ψs,z captures the average angle of the arm bone with respect to x′w over the period. The angle β captures the 
magnitude of tail opening. (c) Section of the wing. It highlights the wing rotation angle governed by the wrist 
degree of freedom qw,y.
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amplitude As,x has a direct impact on thrust production and therefore on airspeed and power  consumption38. 
The last parameter qw,y modulates the generation of  lift13,15.

On top of seeking for steady flight regimes, it is important to identify those corresponding to level flight, i.e. 
with the bird flying at a constant altitude. This level flight condition thus corresponds to an average mean vertical 
velocity being equal to zero over the period, in a fixed reference frame. Figure 1 shows that this instantaneous 
vertical velocity can be computed as

Concretely, satisfying the level flight condition isolates a three-dimensional manifold within the four-dimen-
sional parametric space of Eq. (15). Finding this manifold is done by searching the value of the parameter qw,y 
that corresponds to level flight for all possible combinations of the three other parameters β , ψs,z and As,x . In 
other words, we report here only the limit cycles that belong to the manifold satisfying

with ǫ = 5× 10−3 ms−1 , which corresponds to a maximum vertical deviation of 1 mm per flapping cycle.

Power consumption and cost of transport. Each limit cycle corresponds to a particular flapping gait 
with its own mechanical power consumption and the corresponding cost of transport.

Since inertial power for accelerating and decelerating a wing is neglected, the actuation power produced by 
the wing joints is exactly equal to the power transferred by this wing to the environment, i.e.

where vkin,i(t) is the velocity of the lifting line computed at the discretized point Pi and time t, and Faero,i(t) is 
the corresponding aerodynamic load on the wing element i, computed by the quasi-steady lifting line model. 
The mean power consumption over one flapping period is thus

Another important metric to assess locomotion performance is the so-called Cost of Transport (CoT), i.e. a 
dimensionless ratio equal to the mechanical work produced by the actuators to transport a unit of body weight 
across a unit of  distance39. Here, it is thus defined as

with |U∞| being the magnitude of the flight speed of the corresponding limit cycle, averaged over one period.

Parametrization of bird morphology and wing kinematics. The above framework and concepts are 
here embodied in a model of the northern bald ibis (Geronticus eremita). This species does not only display 
features at the origin of possible conflict between energetic and stability demands (continuous flapping propul-
sion and long migratory flights), but it is often studied by biologists because of its endangered status. The length 
of bones and feathers are set up accordingly. To the best of our knowledge, the precise wingbeat kinematics of 
this particular bird have not been reported in the literature. Consequently, we follow the same approach as  in13, 
consisting in scaling up the detailed kinematic pattern of another  bird40 to the morphology of ours. This scaling 
process, and the parameter tuning are extensively detailed in the Supplementary Material S1. The morphological 
and kinematic parameters used to describe the bird are reported in Table S1 and the resulting flapping gait is 
illustrated in Figs. S1, S2 and S3.

This study is performed within the following parametric space: tail opening β ∈ [0◦, 45◦] , wingbeat amplitude 
As,x ∈ [29◦, 45◦] and sweep offset ψs,z ∈ [9◦, 15◦] . The parametric space is meshed with an uniform grid spaced 
along ψs,z and As,x with a step size of 0.5◦ , and a step size of 1◦ along β . This resulted in 19,734 possible flight 
configurations. In the results, we report all solutions satisfying Eq. (17), with the addition of two exclusion cri-
teria. First, we excluded limit cycles that do not correspond to fast forward flight.  In41, this corresponds to flying 
modes 4 and 5 and requires the body pitch angle to stay close to the horizon tail configuration. Concretely, we 
excluded from the results limit cycles corresponding to a mean body pitch angle larger than 6◦ in absolute value. 
Second, we excluded limit cycles corresponding to biologically incompatible kinematics. This was implemented 
by excluding limit cycles with a mean rotation angle of the wing qw,y larger than 12◦ in absolute value. Indeed, 
remembering that the related amplitude of this joint was fixed to 30◦ (Table S1 in the Supplementary Material), 
this criteria excluded solutions corresponding to geometrical rotation of the forearm larger than ±42◦ in absolute 
value, which we considered to be not physiologically consistent.

Results
In this section, we report the results of the systematic exploration of the gait parametric space. First, the locus of 
the solutions is reported, i.e. the set of parametric values for which a limit cycle has been identified. Next, three 
representative limit cycles are analysed in detail: the first one with a completely furled tail ( β = 0 ), and the both 

(16)Wff = −Ż = u sin θ − w cos θ

(17)
∣

∣Wff (β ,ψs,z ,As,x , qw,y)
∣

∣ < ǫ

(18)Pact(t) =

n
∑

i=1

Faero,i(t) · (−vkin,i(t))

(19)Pact =
1

T

∫ T

0
Pact(t)dt

(20)CoT =
Pact

mg|U∞|
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other ones with an open tail ( β = 40◦ ). Finally, these solutions are assessed in terms of energetic expenditure, 
quantified by the CoT.

Locus of solutions. Among the 19,734 possible parametric configurations, our algorithm detected 5604 
steady level limit cycles which do not violate the exclusion criteria listed above. The locus of these identified 
solutions is pictured in Fig. 3.

Figure 3a shows the CoT at equally-spaced planes of tail opening angle β , projected in the parameter space. 
The CoT progressively increases as the tail spreads out. It further displays a higher gradient with respect to both 
other parameters for a given opening angle. This reveals that this cost of transport is sensitive to the kinematic 
parameters governing wing movements. Figure 3b illustrates the stability transition that occurs as a function of 
the tail opening. The bifurcation point happens for a value around β = 25◦ . The largest Floquet multipliers in 
the stable region are however never smaller than about 0.96, corresponding to a largest stable Floquet exponent 
being equal to (see Eq. (14))

Solving Eq. (14) for t, the time taken for halving a perturbation is therefore

which corresponds to about 17 flapping periods.
As revealed by the quasi-horizontal stripes of uniform colours in Fig. 3b, the shoulder amplitude has a mar-

ginal effect on stability—because of its marginal role on the distribution of nose up/down pitching moment—in 
contrast to the tail opening and sweep angle.

Comparison between furled and open tail solutions. In this section, three representative limit cycles 
are further investigated: one corresponding to a tail completely furled ( β = 0 ) and the other ones to a tail open-
ing of β = 40◦ . These reference limit cycles are selected to have the same resulting forward flight velocity, i.e. 14 
ms−1 . The whole set of corresponding parameters is reported in Table 1.

The free-body diagram of these configurations is illustrated in Fig. 4-top panel. The actual pitching moment 
characterizing the limit cycle solutions is reported in Fig. 4-middle panel. In case (a) (furled tail), the wing must 
guarantee that the time integral of moment over one flapping cycle is equal to zero in order to assure the existence 
of a limit cycle. Both open-tail configurations corresponds to different configurations of momentum equilib-
rium. In case (b), the wing contributes for nose-down moment (on average) balanced by the nose-up moment 
(on average) of the tail. On average, the body pitch angle over one flapping cycle is about −0.2◦ . Conversely, in 
the case (c), the wing contributes for nose-up moment (on average) balanced by the nose-down moment (on 

(21)�max = −0.16s−1
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Figure 3.  Locus of the steady and level solutions in the gait parameter space. Coloured surfaces are 
representing slices of this locus, at every 5◦ of tail opening. (a) Cost of Transport. (b) Stability indicator captured 
via the largest Floquet multiplier. Unstable limit cycles are represented with different shades of yellow-to-red, 
and stables ones are in green; the transition appears around β = 25◦ (Color figure online).

Table 1.  Parameters for the three representative limit cycles studied in more detail, corresponding to one 
unstable and two stable flight regimes, respectively, at a forward flight velocity of 14 ms−1.

(a) (b) (c)

β[◦] 0 40 40

ψs,z [
◦] 10.5 14.5 13.5

As,x[
◦] 39.5 42 44

qw,y[
◦] 2.3 −5.5 −9.67
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average) of the tail. On average, the body pitch angle over one flapping cycle is about 1.3◦ . All these configura-
tions exhibit a similar limit cycle regarding the phase space trajectory, although the former has one unstable 
mode in pitch stability governed by a Floquet multiplier equal to � = 1.33 . The open tail cases are both stable 
since their largest multiplier has a magnitude equal to about � = 0.96 . All multipliers are pictured in the inset 
plot of the middle panel of Fig. 4.

The power required to achieve level flight in the furled tail case (a), averaged over one wingbeat cycle, is equal 
to 15.4 W. In case (b), it is equal to 16.7 W with a contribution to the tail-parasitic drag of about 0.4 W, while in 
case (c) it is equal to around 17.9 W with a power dissipated by drag-induced forces in the tail of about 0.4 W. This 
power assessment is pictured adimensionally in the bottom panel of Fig. 4, where the red stripes corresponds to 
the power dissipation from the tail. There is thus a trade-off between robustness to perturbations—characterized 
by passive stability—and performance—characterized by the required mechanical power.

These three representative limit cycles have been perturbed by an upward gust along the local z′-axis. The 
gust is modeled as a Gaussian signal wg in the form:

with tp = 0.25s and σ = 0.05s . The intensity of the gust was tuned in order to observe comparable effects in phase 
space. In the unstable case (a), w0 = 0.1 ms−1 , whereas in the stable cases (b) and (c) w0 = 1 ms−1 . The dynamic 
response of these three configurations is captured by the black solid lines in Fig. 5. Figure 5a shows a quick sepa-
ration from the limit cycle condition (red curves), driven by the unstable Floquet multiplier. Figure 5b,c show a 
passively stable response to the perturbation as all the Floquet multipliers are smaller than 1 in both cases. This 
attraction is dominated by two characteristic times, depending on the absolute value of the Floquet multipliers. 
A rapid response happens for w and q, while a slower response resembling a phugoidal  mode26,42, with period 
of about 8 s, characterizes the trends of u and θ.

Trade-off between CoT and flight stability. Figure 6 further illustrates a trade-off between stability 
and CoT associated with tail spread. Figure 6a, illustrates the lowest achievable CoT as a function of the forward 

(23)wg (t) = −w0 exp
(

−
1

2

( t − tp

σ

)2)

êz′ ∀t > 0

Figure 4.  Characterization of three representative limit cycles: one with furled tail (a), and two with a tail 
opened with an angle β = 40◦ (b, c). The upper panel represents the free-body diagram of the three different 
flight configurations. Case (a): The pitching moment is only due to the wing movement, and averages at zero. 
This flight regime is characterized by an unstable mode, highlighted by an eigenvalue larger than 1 (inset middle 
panel). The bottom panel gives the CoT for this flight configuration. Case (b): The average pitching moment 
Mw due to the wing lift ( Lw ) is negative (nose down) and the average moment due to the tail lift, Mt , is positive 
(nose up). This solution is stable as all the eigenvalues are smaller than 1 in absolute value (inset middle panel). 
The CoT is quantified in the bottom panel, and with the contribution due to dissipative forces acting on the 
tail being highlighted in red. Case (c): The average pitching moment due to the wing lift ( Lw ) is positive (nose 
up) and the average moment due to the tail lift is negative (nose down). This solution is also stable as all the 
eigenvalues are smaller than 1 in absolute value (inset middle panel).
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flight velocity. This is represented at four different values of tail opening, namely β = [0, 15, 30, 45]deg. The 
minimum of the four curves is around 0.085 and corresponds to forward flight velocities of approximately 11 
ms−1 . The steepness of the curve at increasing velocities monotonically increases with the tail opening. For the 
same values of β , Fig. 6b reports the Pareto front of the largest Floquet multiplier � and CoT. This front captures 
the optimal solutions for which one of these features could not be more favorable without negatively affecting 
the other. The transition between stable and unstable flight regimes is highlighted by the vertical purple line.

Discussion and conclusion
We performed a four-dimensional bifurcation study in the parametric space of flapping gaits. Our numerical 
analysis highlights the existence of two sets of solutions as a function of the tail opening, with their respective 
stability properties.

Figure 3 shows that steady level flight can be achieved for a large set of parameter combinations. Such com-
binations have to balance the pitching moment generated by the wing and the tail. This condition is mainly 
driven by the sweep offset of the wing and the angle of tail opening. Both of these parameters indeed modulate 
the distribution of nose-up and nose-down moment, and thus play a fundamental role in the limit cycle stability. 
The shoulder amplitude only marginally affects stability, confirming the results reported  in13. This is due to the 
fact that it does not have an effect in moving the aerodynamic forces forward or backwards—on average—with 
respect to the center of mass, and thus in altering the pitching moment distribution.

Figure 5.  Dynamic response of the three representatives limit cycles, to a Gaussian-like upward gust. Case (a) 
Separation of the perturbed solution along the unstable eigendirection (black) from the periodic orbit. Case (b) 
and (c) Passively stable response. After a transient, the perturbed trajectory (black) tends to converge back to the 
level steady flight condition (red) (Color figure online).

Figure 6.  Trade-off between CoT and stability. (a) Lower envelope of the CoT as a function of the forward 
flight velocity of four evenly-spaced β-planes. We report all the possible solutions, from which the lower 
envelope is extracted, with transparent points, coloured accordingly with the respective tail opening. (b) Pareto 
front of the CoT as a function of the largest Floquet multiplier of four evenly-spaced β-planes. We report all 
the possible solutions, from which the Pareto front is extracted, with transparent points, coloured accordingly 
with the respective tail opening. The stability transition is highlighted with the purple vertical line (Color figure 
online).
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Two profiles of pitching moments that guarantee a passively stable limit cycle have been found. One configu-
ration is similar to those guaranteeing static pitch stability in aircraft and in bird  gliding5,26, i.e. with the wings 
generating nose-down moment on average, and the tail generating nose-up moment on average (Fig. 4b). The 
second configuration guaranteeing stable limit cycles produces a nose-up moment on average with the wing, and 
nose-down moment with the tail. These two stable configurations, previously described in  gliding8, are shown 
here to also apply to flapping of medium to large-size birds.  In3, Smith stated a biological intuition that birds 
lost the capacity to rely on passively stable configurations while developing sensory-driven neural circuitries to 
actively control their flight over the course of evolution. However, this has been recently challenged for gliding 
 flight5,7. It was shown that, in gliding regimes, birds can modulate the elbow sweep to achieve passive stability. 
Here, we extend this promising thesis to flapping regimes, showing that passive stability can also be achieved with 
appropriate wing kinematics, and tail opening. However, opening the tail comes with an important additional 
energetic cost. A power analysis revealed that this additional energetic cost is due both to overcome the extra 
drag produced by the tail, but also to the intrinsic efficiency of the adopted wing kinematics leading to the same 
flight velocity. Figure 4, indeed shows that the extra power required to operate with the open tail conditions, 
is not only due to drag forces produced by the tail itself, but also to a more costly kinematics adaptation of the 
gait to level the flight.

The stability of these three conditions has been analysed under a Gaussian-like gust perturbation. The unstable 
case shows a quick separation from the limit cycle condition. In the stable solutions, two characteristic times 
appear: a fast mode of response, affecting the variable w, q, and a slow phugoid-like mode that affects u and θ.

The energetic cost of flapping flight has been repeatedly estimated in literature either by measurements of 
metabolic proxies such as oxygen consumption and gas exchange (power input) or, directly, via analyses of muscle 
and wake (power output). Out of comparative analyses, optimal speeds require metabolic costs of transport of 
the order of 100 if normalised as in Eq. (20). Nevertheless, it remains challenging to quantitatively convert these 
measurements into power outputs, i.e. the power injected into the airflow. This is because energy conversion 
efficiency represents a debatable quantity. It is however believed that, for birds, efficiency lies between 10 and 
20% (see discussion  in30,43). Therefore, our model estimates must be increased accordingly. All considered, we 
show optimality at cost of transport of about 10−1 , which, multiplied by a factor of 5–10, reconduces to previously 
mentioned observations. Interestingly, according to the allometric formula obtained  in44,45 by analysing a large 
number of species, the optimal cost of transport is expected to scale with body mass as

which returns in our case CoT=0.107, very close to the optimal values shown in Fig. 6. The trade-off between sta-
bility and energetic performance —associated with tail spread—is highlighted in Fig. 6. The lower envelope of the 
CoT shows a monotonic increase of curvature with the tail opening. For forward flight velocities of 14 ms−1 , the 
saving in terms of CoT between a furled tail configuration and a full open tail is of about 10% . This is comparable 
to the energetic advantage drawn from formation flight with respect to solo flight, according  to46. CoT curves 
with small curvatures are crucial for long range flights, as it allows to modulate the velocity at a lower energetic 
cost. Figure 6b shows the Pareto front of the CoT with respect to the largest Floquet multiplier. The Pareto front 
of the stable solutions (black and green) is very steep, suggesting that little advantages of stability gain come 
with a disproportionate energetic cost. We infer the existence of a close interplay between stability and energetic 
cost of flapping for medium to large size birds in steady flight. Indeed, whereas the absolute minimum CoT only 
marginally changes as a function of the tail opening, its large variation with respect to the forward velocity does 
vary as a function of this angle. Put differently, the typical U-shaped curve characterizing the CoT as a function 
of the forward flight velocity is found at each tail opening angle, but its asymptote is smaller for smaller angles.

In this study, we focused on wing and tail contributions to the longitudinal dynamics. To increase the model 
fidelity, it will be necessary to account for other morphological and biological elements that may contribute to 
stabilize the flight. These would need a substantial adaptation of the equations of motion used in the current work. 
Moreover, in the current version of our model the wings are assumed to be rigid and no kinematic adaptation is 
implemented to react to a perturbation and thus the potential implication on the stability. This should be relaxed 
in a more bio-compatible version of the model, that should account for the intrinsic joint compliance due to 
actuation by muscle-tendon units. This will definitively influence the dynamics of the response to perturbation 
such as during gust alleviation. Including these effects would necessarily imply to account for the wing dynam-
ics—and the related inertial effects—in the body model. Given the complexity of the wing poly-articulation, this 
would require a substantial extension of our framework, and a new derivation of the equations of motion which 
are left as perspectives of the present work. Aeroelasticity along the wingspan, descending from realistic feathers 
and tendons mechanical response to aerodynamic loads should have a similar influence on stability and will be 
studied in future  work47. Similarly, a parametric analysis on the wing flexion during upstroke—a well-observed 
mechanism used by birds and bats to reduce the exposed wing surface and minimise the  drag41—has not been 
tackled in the present study, but could reveal important insights from an energetic point of view.

We used a carefully formulated framework to study steady flight stability, i.e. Floquet theory combined with a 
multiple-shooting algorithm. We concluded that in spite of the gain in stability, having a tail-like surface induces 
an increase of steepness of the CoT with respect to the forward flight velocity, that limits the authority of the bird 
to modulate the flight speed. This suggests an explanation for the field observation that birds flap with furled 
tails during long  flights20, i.e. that a loss of dynamic stability might be traded-off in exchange for the freedom 
of modulating velocity at lower energetic expenditure. This might prove to be a crucial factor, for instance, in 
seasonal migrations, where the time of arrival at foraging, breeding and wintering sites is naturally constrained 
by environmental factors such as daylight duration, food availability or social reasons. However, our results show 

CoT = 0.109M−0.122,
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that birds still have the authority to select passively stable modes—i.e. with an open tail—that may prevail in 
certain circumstances, such as flying while  sleeping48.

Our present analysis concerns flight regimes characterised by high aspect ratio wings, moderate reduced 
frequency, and continuous flapping gaits. Those traits are generally shared among a few migratory species, 
e.g. cranes, ibis, and geese. A wider generalization to smaller bird scales of our theoretical conclusions would 
require including features that are not explored in this work, such as different wing kinematics, more tailored 
aerodynamic models capturing wake unsteadiness and leading vortex separation among others. Despite these 
inevitable modifications at the underlying physical level, the kernel of the proposed framework, i.e. Floquet 
dynamic stability applied to equations of motion forced by aerodynamics, proves to be a highly valuable option 
for the study of morphology and gait tuning in avian flight.

Data availability
All data generated or analysed during this study are included in this published article, and available as sup-
plementary files.
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