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Features from the  
photoplethysmogram 
and the electrocardiogram 
for estimating changes in blood 
pressure
Eoin Finnegan 1*, Shaun Davidson 1, Mirae Harford 1,2,3, Peter Watkinson 2,3, 
Lionel Tarassenko 1 & Mauricio Villarroel 1

There is a growing emphasis being placed on the potential for cuffless blood pressure (BP) 
estimation through modelling of morphological features from the photoplethysmogram (PPG) and 
electrocardiogram (ECG). However, the appropriate features and models to use remain unclear. We 
investigated the best features available from the PPG and ECG for BP estimation using both linear 
and non-linear machine learning models. We conducted a clinical study in which changes in BP ( �BP) 
were induced by an infusion of phenylephrine in 30 healthy volunteers (53.8% female, 28.0 (9.0) years 
old). We extracted a large and diverse set of features from both the PPG and the ECG and assessed 
their individual importance for estimating � BP through Shapley additive explanation values and a 
ranking coefficient. We trained, tuned, and evaluated linear (ordinary least squares, OLS) and non-
linear (random forest, RF) machine learning models to estimate � BP in a nested leave-one-subject-out 
cross-validation framework. We reported the results as correlation coefficient ( ρp ), root mean squared 
error (RMSE), and mean absolute error (MAE). The non-linear RF model significantly ( p < 0.05 ) 
outperformed the linear OLS model using both the PPG and the ECG signals across all performance 
metrics. Estimating �SBP using the PPG alone ( ρp = 0.86 (0.23), RMSE = 5.66 (4.76) mmHg, MAE = 4.86 
(4.29) mmHg) performed significantly better than using the ECG alone ( ρp = 0.69 (0.45), RMSE = 6.79 
(4.76) mmHg, MAE = 5.28 (4.57) mmHg), all p < 0.001 . The highest ranking features from the PPG 
largely modelled increasing reflected wave interference driven by changes in arterial stiffness. This 
finding was supported by changes observed in the PPG waveform in response to the phenylephrine 
infusion. However, a large number of features were required for accurate BP estimation, highlighting 
the high complexity of the problem. We conclude that the PPG alone may be further explored as a 
potential single source, cuffless, blood pressure estimator. The use of the ECG alone is not justified. 
Non-linear models may perform better as they are able to incorporate interactions between feature 
values and demographics. However, demographics may not adequately account for the unique and 
individualised relationship between the extracted features and BP.

Changes in the cardiovascular and autonomic nervous systems are reflected in changes in signals such as the 
photoplethysmogram (PPG) and the electrocardiogram (ECG). These physiological signals are ubiquitous in a 
clinical setting and increasingly in an out-of-clinic setting due to the development of wearables such as smart-
watches. As a result, recent advances in non-invasive, cuffless estimation of blood pressure (BP) have been 
focused on utilising the PPG and the ECG signals. For example, pulse arrival time (PAT), computed as the time 
difference between two fiducial points in the ECG and PPG waveforms, has been shown in certain studies to 
have strong correlations with  BP1. However, measuring PAT requires two synchronous devices, both of which 
are susceptible to independent sources of noise such as motion artefacts. Additionally, factors such as the pre-
ejection period (PEP) (the time delay between the electrical depolarisation of the heart’s left ventricle and the 
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opening of the aortic valve) may impact PAT estimates independently of  BP2. A summary of BP estimation 
methods using PAT can be found  in3–5.

Driven by modern techniques, research on cuffless BP estimation has increasingly focused on relating mor-
phological features of the PPG and the ECG waveforms to BP (or changes in BP, �BP) using data-driven models. 
However, the optimal features and models required for accurate BP estimation remain unclear. In this paper, we 
implemented linear and non-linear machine learning (ML) models to estimate � BP using a large and diverse 
cohort of features from the PPG and the ECG waveforms. In addition to features commonly used in the literature, 
we proposed new features from both signals and assessed their individual importance for estimating � BP using 
Shapley additive explanation values. We compared our results to those estimating changes in BP using PAT, and 
evaluated the PPG and ECG as potential single source devices for BP estimation. This work was carried out using 
data from a clinical study involving 30 healthy volunteers. Changes in BP were induced by the administration of 
phenylephrine, a vasoactive medication that causes arterial and venous vasoconstriction and increases cardiac 
preload (initial stretching of cardiac muscles).

Relationship between changes in BP and changes in the PPG. The pulsatile PPG waveform is 
related to changes in blood volume over time in a bed of  tissue6. The PPG signal is typically recorded by a pulse 
oximeter placed on the index finger. Methods using the PPG have been proposed as a continuous, non-invasive, 
cuffless approach to estimate  BP7. The PPG–BP relationship is driven, in part, by the theoretical relationship 
between changes in pressure and volume of blood in a localised region of the  arteries7, as well as the impact of 
reflected pressure  waves8. Reflected pressure waves result at points of significant impedance mismatch further 
down the arterial tree and travel back to the point of PPG measurement. The first reflection site is at the junc-
tion of the renal arteries resulting in a reflected pressure wave (known as the tidal wave) that is typically present 
in late  systole9. The second reflection site is at the junction of the iliac arteries resulting in a reflected pressure 
wave (known as the dicrotic wave) that is typically present in early  diastole10. Changes in arterial stiffness are 
thought to have a significant impact on the timing, amplitude, and morphology of the reflected pressure waves 
and therefore may significantly impact the shape of the PPG  waveform8. The PPG offers significant benefits for 
BP monitoring over conventional cuff-based measurements. Most notably, the PPG can be recorded by a sin-
gle, unobtrusive optical sensor which also has the potential to be implemented on a wearable device such as a 
 smartwatch11,12. However, there is no generally accepted method relating changes in the PPG waveform to � BP 
and, as a result, a variety of different approaches are proposed in the literature. A summary of BP estimation 
algorithms using the PPG waveform can be found  in7,13,14.

Much like  PAT1, features extracted from the PPG waveform are thought to be subject-specific requiring 
calibration for accurate mapping to BP  values7. Mukkamala et al.7 splits calibration strategies into three groups: 
individual, hybrid and population. In individual calibration, all model parameters are determined by multiple 
paired recordings of BP and PPG from a single individual. This approach may be feasible for BP estimation 
using PAT (where typically only two parameters are required for  modelling1), however it becomes intractable 
for multi-parameter ML models often employed for PPG-based BP estimation. In hybrid calibration, only one 
calibration BP data point is required for a single individual. The remaining model parameters are estimated using 
the individual’s demographics and a training set comprised of multiple BP-PPG pairs from a cohort of differ-
ent individuals. In population calibration, no calibration recordings are required and all calibration is handled 
using the individual’s demographics and a similar training set. Certain dependencies on the morphology of the 
PPG waveform have been previously reported for  age15,  sex16 and body mass index (BMI)17, however these are 
often not strong enough to allow for good accuracy when using population calibration strategies. As a result, the 
majority of studies proposing PPG-based BP estimation opt for a hybrid calibration strategy.

Sun et al.18 evaluated the use of a linear regression model for estimating systolic blood pressure (SBP) meas-
ured by a commercial Portapres device (Finapres), using the volume-clamp method. Nineteen subjects underwent 
an exercise test followed by a posture change test. Nineteen features were extracted from the PPG. Using a hybrid 
calibration strategy, the authors reported a root mean squared error (RMSE) of 8.99 mmHg and Pearson’s correla-
tion coefficient ( ρp ) of 0.85 during the exercise test, and a RMSE of 7.33 mmHg and ρp of 0.47 during the posture 
change test. Normalised weights of the linear model were used to highlight features that had the most predictive 
power and an inconsistency of the best features was found between the two tests. Miao et al.19 used support 
vector regression on 14 extracted features from 73 subjects to track BP changes induced by physical exercise. A 
genetic algorithm for feature selection was developed to highlight features that best estimated �BP. The stability 
of the proposed models was evaluated in a follow-up study for 1 day, 10 days and 6 months after the initial test. 
The results suggested that, similar to  PAT20,21, the models lose their accuracy over time and therefore require 
frequent recalibration. Hasanzadeh et al.22 extracted features from the PPG in a subset of 1,000 individuals from 
the MIMIC-III dataset. The intra-arterial blood pressure was used as a reference. The authors implemented a 
linear regression model as well as a non-linear tree-based model, AdaBoost. AdaBoost significantly outperformed 
the linear model for their dataset. Additionally, the authors highlighted the sensitivity of PPG feature detection 
in the presence of random noise. Recent shifts in the field have moved towards the application of deep learning 
 algorithms23,24 which often do not require the extraction of handcrafted features and instead work on the raw 
PPG waveform. However, while these approaches are reported to improve the estimation accuracy, they lose out 
in model interpretability due to their black-box nature.

Relationship between changes in BP and changes in the ECG. The ECG is a measure of the electri-
cal activity generated in the myocardium (heart muscle) during each heartbeat. It is acquired by measuring the 
voltage difference between two points on the body surface over  time25. A single lead ECG is typically recorded 
by three electrodes placed on an individual’s torso forming Einthoven’s  triangle25.
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In comparison to the PPG, less focus has been placed on the potential use of the ECG for BP estimation. 
The general theory governing the relationship between ECG and BP is based on a cyclical process known as 
mechano-electric coupling (MEC)26. Changes in the electrical properties of the heart have a direct impact on its 
contractility. This is known as excitation-contraction coupling. Similarly, changes in the mechanical properties 
of the tissues surrounding the heart are detected by mechanosensitive ion channels, resulting in local changes 
in the electrical potential. This is known as mechano-electrical feedback. MEC, therefore, describes the cyclical 
process whereby changes in the ECG waveform can reflect �BP. However, MEC is influenced not only by extra-
cardiac control mechanisms such as the Autonomic Nervous System (ANS) and hormonal changes, but also by 
environmental mechanisms such as ion concentrations and  temperature27. Therefore, the relationship between 
� BP that can be detected by analysing morphological changes in the ECG waveform are not as developed as 
methods using the PPG waveform.

Simjanoska et al.28 used a dataset containing 51 individuals from a mixture of 4 open-source datasets. Three 
of the datasets (totalling 44 individuals) included healthy volunteers using commercial ECG sensors with refer-
ence BP values measured by a cuff. In these datasets BP was perturbed by natural variations with each individual 
contributing a range from 1 to 8 measurements overall. The fourth dataset was recorded from 7 patients with 
traumatic brain injuries in an intensive care unit (ICU) using clinical-grade ECG sensors and reference BP values 
measured by an arterial line. Complexity features such as mobility and entropy were extracted from 30-second 
segments of ECG data and used to train a random forest regression model using a train-validation-test split. 
After calibration, the model achieved mean absolute error (MAE) of 7.72 mmHg for SBP, 9.45 mmHg for dias-
tolic blood pressure (DBP), and 8.13 mmHg for mean arterial blood pressure (MAP). However, the authors only 
implemented a small number of complexity features, and the mixture of data sources (especially with regard to 
mixing healthy and unhealthy populations) makes interpreting the results difficult.

Methods
Clinical study. Thirty healthy volunteers with no history of cardiovascular disease were recruited for the 
clinical study. The study protocol has been outlined  previously1,29. The study took place at the Cardiovascular 
Clinical Research Facility within the John Radcliffe Hospital, Oxford, UK. This study was reviewed and approved 
by the Oxford University Research and Ethics Committee and Clinical Trials and Research Governance teams 
(R63796/RE001). All methods were performed in accordance with the relevant guidelines and regulations. Indi-
vidual informed written consent was obtained from all the participants in the study to record the data and 
publish the results.

The study was split into four main stages: rest, dose increase, maximum infusion, and washout. Each ses-
sion began with a 5-minute resting period. Participants were then administered an infusion of phenylephrine. 
Phenylephrine is an α1 adrenergic receptor agonist which causes arterial and venous vasoconstriction as well as 
reflex bradycardia (slowing down of heart rate)30. The dosing regimen was guided by the clinician in the Medical 
Sciences Division Ethics Committee (University of Oxford) who balanced the desired clinical effect against any 
safety  concerns29. Phenylephrine was administered as an intravenous solution, starting at a rate of 0.2mcg/kg/
min with an increase of 0.2mcg/kg/min every 1 minute for 10 increments. Once the maximum rate was reached, 
the infusion and all monitoring remained constant for a further 6 minutes. Each session ended with an 8-minute 
washout period. Participants were asked to refrain from ingesting caffeinated drinks for four hours prior to the 
study visit as caffeine is a vasoconstrictor. Participants lay with the head and trunk raised to between 15 and 45 
degrees (semi-Fowler’s position).

Instrumentation. A Philips Intellivue MX800 patient monitor (Philips, Netherlands) recorded BP via a sphyg-
momanometer cuff. The Philips comfort care M3001A BP cuff was wrapped around the upper left arm of the 
participant with the centre directly above the brachial artery as  recommended31. The ixTrend software (Ixellence 
GmbH, Germany) was used to record the data generated by the patient monitor. A Stowood Visi Black shadow 
polygraphy device (Stowood, UK) recorded the ECG and PPG signals. Three ECG electrodes were attached to 
the participant’s torso forming Einthoven’s triangle. A pulse oximeter (Masimo, USA) probe was placed on the 
participant’s right hand. Table 1 provides a summary of the physiological parameters recorded by the Philips and 
Stowood monitors.

Features from the PPG. To preprocess the PPG waveform, we performed the following steps. The PPG 
signal was first filtered using an  8th-order Butterworth infinite impulse response (IIR) band-pass filter with cut-
off frequencies of 0.5 Hz and 10 Hz as recommended  in3. We then followed the work of Villarroel et al.32 to 
detect the pulse onsets and to assess the quality of the PPG signal  (SQIPPG). Amplitude modulation of the PPG 
can result from  respiration33 as well as changes in contact pressure of the sensor on the surface of the  skin34. In 
order to reduce the dependence of this amplitude modulation as well as heart rate, we normalised the PPG beats 

Table 1.  Physiological parameters and sampling rates recorded by the two devices used in this study.

Device Name Description Sampling rate (Hz)

Philips SBP, MAP, DBP Blood pressure signal from the sphygmomanometer cuff 1/60

Stowood
ECG
PPG
HR

1-lead electrocardiography signal
Photoplethysmography signal
Heart rate derived from Masimo pulse oximeter

256
512
5
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to have unit amplitude and time duration. The first and second derivatives of the PPG beats, known as the veloc-
ity plethysmogram (VPG) and acceleration plethysmogram (APG) respectively, were extracted using a  7th-order 
Savitzky-Golay  filter35. We used the nomenclature defined by Elgendi et al.36 for the characteristic fiducial points 
of the PPG, VPG, and APG.

Figure 1 shows the typical changes in the morphology of the PPG, VPG and APG beat seen for a participant 
during the four main stages of the study protocol (rest, dose increase, maximum infusion and washout). The 
following fiducial points were detected using the criteria defined  in37: dicrotic notch (N), diastolic peak (D) 
and the a, b, c, d, and e waves on the APG. The dicrotic notch is produced by the closing of the aortic valve and 
therefore marks the end of systole and the beginning of diastole. The systolic peak (S) was defined as the first 
turning point of the PPG pulse above its midpoint.

We identified features from previous publications describing methods for estimating � BP from the PPG. 
Table 2 provides a summary of the features we extracted from the PPG. We grouped these features into five 
main categories: PPG morphology, VPG morphology, APG morphology, Gaussian decomposition, and principal 
component analysis (PCA).

PPG morphology. As BP is determined by the product of total peripheral reistance (TPR) and cardiac 
output (CO), features reflecting variations in these two metrics are likely to provide a strong indication of �BP.

Changes in TPR can significantly impact the morphology of the PPG through interactions with the incident 
forward travelling wave produced by left ventricular contraction and the reflected pressure  waves8. To model 
the varying amplitude of the reflected pressure waves, we included the dicrotic notch amplitude ( Namp ), and 
the diastolic peak amplitude (labelled reflection index, RI, for consistent feature notation with the literature) as 
 features38. As the tidal and dicrotic reflected waves typically arrive during systole and diastole respectively, Lyu 
et al.39 proposed the stress-induced vascular response index (sVRI) as the ratio of the mean of the PPG in the 
diastolic phase, µDias, to the mean of the PPG in the systolic phase, µSys. This effect was additionally modelled 
using the areas under PPG during the systolic (A1) and diastolic (A2)  phases40. The ratio of these two areas (A2/
A1) is referred to as the inflection point area ratio (IPA).

The influence of the reflected pressure waves was additionally modelled through analysis of the frequency 
domain by assessing the level of distortion in the PPG waveform as the relative power of its harmonic frequencies 
using the normalised harmonic area (NHA)40.

The increased velocity of the reflected waves was modelled by relative time delays such as � T (time between S 
and D)41, crest time (CT, time from onset to S)15,  TSys (time in systolic phase), and  TDia (time in diastolic phase), 
and  TRatio  (TSys/TDia)42. Additionally, the time delay between the systolic peak and dicrotic notch is related to the 

Figure 1.  Overview of the fiducial points detected and some of the features extracted from the PPG waveform 
for one individual (Male, Age: 24, BMI: 25.1) during the four stages of the study protocol: (a) rest, (b) dose 
increase, (c) maximum infusion, and (d) washout. Examples of the following features are provided: Crest time 
(CT), � T, reflection index (RI),  width25,  width50, slope transit time (STT), A1, A2, Gaussian estimation of 
the transit time of the reflected wave (Gauss RTT) and augmentation index (Gauss AI),  slopeb-c and  slopeb-d. 
Acronyms: S - Systolic peak, N - Dicrotic notch, D - Diastolic peak, a-e - waves of the APG.
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transit time of the dicrotic wave to the site of reflection and back. Shin et al.43 suggest that this time delay may 
be calibrated to the individual by normalising by the time delay between the maximum derivative of the PPG 
and the dicrotic notch, and multiplying the resultant by the individual’s height. This feature is labelled pressure 

Table 2.  Summary of features extracted from the PPG. *Indicates features that, to the authors’ knowledge, 
have not been previously implemented for BP estimation. † Note that there are two Gaussian indices referenced 
reflection index and augmentation index. We refer to the second set using the subscript R to reflect the authors: 
Rubins et al. µSys and µDias represents the mean of the PPG during systole and diastole respectively. h is the 
height of the participant. t is the normalised time since the pulse onset. FFT is the fast Fourier transform. gi 
refers to the ith Gaussian; gs = g1 + g2 representing the systolic wave; gd = g3 + g4 representing the diastolic 
wave. 

∑
(gi) is the area under the ith Gaussian.

Category Feature notation and publication Description or formula

PPG morphology

Notch amplitude ( Namp) Amplitude of the dicrotic notch (see Fig. 1)

Reflective index (RI)38 Amplitude of the diastolic peak (see Fig. 1)

�  T41 Time from systolic peak to diastolic peak (see Fig. 1)

Crest Time (CT)15 Time from onset to systolic peak (see Fig. 1)

TSys
42 Time in systolic phase (see Fig. 1)

TDia
42 Time in diastolic phase (see Fig. 1)

TRatio
42 TSys/TDia

Slope transit time (STT)50 Slope of straight line from onset to peak (see Fig. 1)

Stress-Induced Vascular Response Index (sVRI)39 µDias/µSys

A140 Area under PPG in systolic phase (see Fig. 1)

A240 Area under PPG in diastolic phase (see Fig. 1)

Inflection point area (IPA)40 A2/A1

Width25
41 Width of the PPG at 25 % of its amplitude (see Fig. 1)

Width50
41 Width of the PPG at 50 % of its amplitude (see Fig. 1)

Pressure index (PI)43 t(N)−t(S)
t(N)−t(W)

× h

Normalised harmonic area (NHA)40 ∑N
n=2 FFT

2(fn)/
∑N

n=1 FFT
2(fn)

Inflection and harmonic area ratio (IHAR)40 (1-NHA)/ IPA

Skewness23 –

Kurtosis23 –

VPG morphology

Sysµ
18 Mean of VPG in the systolic phase

Sysσ
18 Variance of VPG in the systolic phase

Diaµ
18 Mean of VPG in the diastolic phase

Diaσ
18 Variance of VPG in the diastolic phase

APG morphology

b
a  , ca  , da & ea

46

Ageing index (AGI)46 b−c−d−e
a

slopeb-c
42 Slope of a straight line between b and c, normalised by 

a (see Fig. 1)

slopeb-d
42 Slope of a straight line between b and d, normalised by 

a (see Fig. 1)

PPG  AI47 PPG augmentation index d−2/b−2

Gaussian decomposition

Ag1−4 , σg1−4 , µg1−4
Amplitude, variance and mean of the four decomposed 
Gaussians

Gaussian augmentation index (Gauss AI)12 max(gs)− Ag3 (see Fig. 1)

Gaussian reflection index (Gauss RI)12 ∑
(gs)−

∑
(g3)

Gaussian reflected wave transit time (Gauss RTT)48 µg3 − µg1 (see Fig. 1)

Gaussian augmentation  indexR (Gauss  AIR)48 † Ag1−Ag2

Ag1

Gaussian reflection  indexR (Gauss  RIR)48 † Ag3/Ag1

Gaussian approximation of left ventricular ejection 
time (Gauss LVET)51 See reference for definition

GaussSys/Dias *
∑

(gs)/
∑

(gd)

GaussA4/A1 * Ag4/Ag1

Gaussσ4/A1 * σg4/Ag1

PCA

PPG PCA 1-3
52 First 3 principal components of PPG beat

VPG PCA 1-3
52 First 3 principal components of VPG beat

APG PCA 1-3
52 First 3 principal components of APG beat
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index (PI). Lin et al.44 recently suggested that these time delay features may additionally reflect changes in CO. 
CO monitoring using the PPG has been demonstrated using the inflection and harmonic area ratio (IHAR)40.

A small number of features parameterise changes in the overall PPG morphology. For example, Width25 
and Width50 track variations in the width of the PPG at 25% and 50% of the overall amplitude  respectively41,45. 
Skewness and kurtosis both characterise the distribution of the PPG beat  values23. Kurtosis is a measure of the 
relative “tailness” of the distribution. Skewness is a measure of the asymmetry of the data around the mean.

VPG morphology. We included four features derived from analysing the VPG morphology. In order to 
model the changing velocity of the pulse wave during the two main phases of the cardiac cycle, we included the 
mean and standard deviation of the VPG during systole ( Sysµ and Sysσ respectively) and diastole ( Diaµ and Diaσ 
respectively)18.

APG morphology. We included eight features derived from analysing the APG morphology. The ampli-
tude of each APG wave, normalised by the amplitude of a, exhibits a moderate linear relationship to  age46. b/a 
increase with age, whereas c/a, d/a, and e/a decrease with age. These relationships were implemented into a 
single feature using the ageing index (AGI) (b− c − d − e)/a46. In addition, Mok Ahn et al.42 proposed the gra-
dient of the straight lines joining the b wave to the c and d wave  (slopeb-c and  slopeb-d respectively) as additional 
indicators of age-related arterial stiffness. Finally, Pilt et al.47 suggested that the PPG waveform index (PPG AI), 
computed as the ratio of PPG waveform coincident with the d wave of the PPG (labelled d−2 ) to the ratio of 
PPG waveform coincident with the b wave of the PPG (labelled b−2 ), reliably tracks changes in arterial stiffness. 

Gaussian decomposition. Each PPG pulse (of unit amplitude and duration) was decomposed into the summa-
tion of four  Gaussians48. This approach has the advantage of providing a representation of the PPG pulse without 
reliance on fiducial point detection. Additionally, it allows for the modelling of reflected wave interactions which 
are thought to have a Gaussian  profile49.

For a PPG pulse ζ we computed the modelled pulse, ζGauss, as:

where gi represents the ith Gaussian component modelled as:

where t is the normalised time duration for the PPG pulse, and θi is a vector, [ Agi , µgi , σgi ], containing the 
respective amplitude, mean and variance of each Gaussian. � = [ θ1 , θ2 , θ3 , θ4 ] and thus Gaussian decomposition 
parameterises each PPG beat into 12 components. To determine the optimum value for � , �̂ , we implemented 
a bounded Levenberg-Marquart optimisation algorithm to minimise the root mean squared error loss, LGauss, 
between ζ and ζGauss given as:

The optimisation was bounded such that all parameters were positive and the amplitudes were all less than 1. 
Additionally, {µ1,µ2,µ3,µ4} must be a monotonically increasing sequence. LGauss is non-convex and there-
fore the optimised values were dependent on initial conditions. For the first beat, the initial conditions were: 
θ1 = [0.9, 0.2, 0.01] , θ2 = [2/3, 0.4, 0.01] , θ3 = [0.5, 0.6, 0.01] , and θ4 = [1/3, 0.8, 0.01] . These parameters resulted 
in an evenly distributed set of Gaussians with equal widths. The amplitudes were determined in order to match 
the contour of a typical PPG beat. To encourage continuity of parameters from beat-to-beat, we used the opti-
mised parameters for the previous beat as initial seeds for the optimisation of the current beat. Following the 
work  of53, we set the  SQIPPG of each beat to 0 if the value of LGauss(�̂) for that beat was greater than 0.03.

From pulse decomposition  analysis8, g1 represents the incident forward travelling pressure wave produced 
by left ventricular contraction. g2 represents the tidal  wave9. g2 is typically observed during systole, therefore 
gs = g1 + g2 reflects the systolic component. g3 represents the dicrotic  wave10. g4 represents the additional minor 
reflections and re-reflections in the systemic vascular structure with lower amplitude than the two main reflected 
 waves54. g3 and g4 are both typically dominant in the diastole phase, therefore gd = g3 + g4 reflects the diastolic 
component.

Table 2 provides a summary of the Gaussian decomposition features used. Together with the values of �̂ , we 
implemented various features derived from the Gaussian decomposition that have been previously proposed as 
indicators of arterial stiffness in the  literature48,51. Additionally, through observations of Gaussian decomposition 
in our dataset, we propose three new features: the ratio of the systolic component to the diastolic component 
( GaussSys/Dias ); the amplitude of the fourth Gaussian scaled by the amplitude of the first Gaussian ( GaussA4/A1 ); 
and the variance of the fourth Gaussian scaled by the amplitude of the first Gaussian ( Gaussσ4/A1 ) (scaling by 
variance rather than the amplitude of the first Gaussian gave a less informative parameter). Figure 1 shows an 
example of Gaussian decomposition for a typical participant during the four main stages of the study protocol: 
rest, dose increase, maximum infusion, and washout. Figure 1 also presents examples of feature extraction for 
Gaussian estimation of the transit time of the reflected wave (Gauss RTT) and augmentation index (Gauss AI).

(1)ζGauss(t,�) =

4∑

i=1

gi(t, θi)

(2)
gi(t, θi) = Agi × e

−
(t−µgi )

2

2σ2gi

(3)LGauss(�) =

√
1

N

∑
(ζ − ζGauss(t,�))2 , �̂ = argmin

�

(LGauss(�))
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Principal components. Principal component analysis (PCA)55 maps high-dimensional data to a lower dimen-
sion along orthogonal principal components. These principal components account for the majority of the varia-
tion in the original data and therefore highlight regions of significant change in the PPG, VPG and APG signals. 
We computed PCA features using the following steps: 

1. Resample all good-quality beats (defined as an  SQIPPG > 0.8 ) from the PPG, VPG and APG signals to be 100 
samples in length using cubic spline interpolation.

2. Pool all resampled PPG, VPG and APG beats from all participants to form 3 matrices: �PPG, �VPG and �APG 
respectively.

3. Mean normalise each � matrix.
4. Perform PCA on each � independently by computing the eigenvectors of the corresponding covariance 

matrix and extract the first 3 principal components that correspond to the largest eigenvalues.

We extracted 3 principal components as this was found empirically to explain more than 85% of the vari-
ation in the �PPG, �VPG and �APG datasets. A visualisation of the computed PCA eigenvectors is provided in 
Supplementary Information figure SI: 1.

Features from the ECG. To preprocess the ECG waveform, we performed the following steps. To sup-
press the impact of baseline wander, the ECG was filtered using an 8 th-order Butterworth IIR high-pass filter 
with a cut-off frequency of 0.5 Hz. To suppress power-line interference, a  2nd-order IIR notch filter with centre 
frequency at 50 Hz (the frequency of mains power in the UK) was used. We detected the QRS complex following 
the work of Pan and  Tompkins56 and assessed the quality of the ECG  (SQIECG) following the work of Li et al.57.

The features we extracted from the ECG are summarised in table 3. Features relating to complexity and 
entropy of the ECG have been previously proposed to track changes in  BP28,58. These features quantify the level 
of regularity and unpredictability of fluctuations over a time series. Generally, a higher-level complexity indicates 
a more irregular dynamic system. A lower-level complexity indicates the presence of central trends or cyclical 
patterns. Changes in entropy of the ECG time series have been shown to track changes in heart rate variability 
(HRV) caused by myocardial  ischaemia59 and also denote periods of cardiac  arrhythmia60. We provide full details 
of the algorithms used in Supplementary Information SI: 2.

Pulse arrival time. PAT has been shown previously to provide a beat-by-beat estimate of changes in arterial 
stiffness and therefore may be a good surrogate for  BP1. PAT and its corresponding  SQIPAT was computed in the 
same manner as we have previously  reported1. We used PAT in a baseline model to compare the performance of 
PPG and ECG features for BP estimation.

Computing the reference BP values. Measurements of SBP, MAP, and DBP using sphygmomanometer 
cuffs have known limitations depending on posture, cuff-inflation hypertension and cuff  size62,63. The sphyg-
momanometer cuff used in our study was programmed to inflate every minute. However, errors in cuff inflation 
prevented the Philips monitor from registering an accurate estimate, resulting in a missed data-point in the 
recorded BP time series. Therefore, data from the cuff was both noisy and sparse. In order to reduce the impact 
of these sources of error, we processed the cuff data using a cubic smoothing  splines64 algorithm. This allowed 
for both filtering and interpolation of the noisy blood pressure readings to a new sampling frequency  fBP set as 
once per minute.

Let the ith BP observation, yi , at time ti for a participant be modelled by the relation:

where Nmeas is the number of BP measurements recorded for the participant. ǫi forms a sequence of indepen-
dently distributed random variables with zero mean. Cubic smoothing splines define an estimate, f̂  , of f that 
equates to a cubic spline with knots (transition points) at f̂ (ti) . At these transition point, the values of f̂  , f̂ ′ , and 
ˆf ′′ (where f ′ and f ′′ denote the first and second derivative of f respectively) all match. The exact form of f̂  is 

determined by minimising a loss LBP:

(4)yi = f (ti)+ ǫi , i = {1, . . . ,Nmeas}

Table 3.  Summary of features extracted from the ECG. * Indicates features that, to the authors’ knowledge, 
have not been previously implemented for BP estimation. Full details of the algorithms and equations used for 
computing each feature can be found in Supplementary Information SI: 2.

Feature notation and publication Description or formula

Hjorth  mobility28 Estimate of the signal’s mean frequency (Equation SI 1)

Hjorth  complexity28 Estimate of the signal’s bandwidth (Equation SI 2)

Fractal  dimension28 Computed using Higuchi’s  algorithm61 with kmax = 17

Shannon entropy (SE)28 Uncertainty of information content based on probability distribution (Equation SI 3)

Approximate entropy (approxEnt) * Quantifies regularities of signal

Sample entropy (sampEnt) * approxEnt computed without self comparisons

Multi-level sample entropy (MSE) * Course approximations of sample entropy, computed at scales 2, 4, 6, 8
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The first term of equation (5) imposes a penalty for the squared distance between observed BP values, yi , and 
smoothed values f̂ (ti) . The second term imposes a penalty for the complexity of f̂  , modelled as the accumulated 
second derivative of f̂  . p is a constant that defines the relative weight placed on minimising the residual sum 
of squares against the complexity of f̂  . A very low value of p will result in the regressed function converging to 
a linear least squares estimate. A very high value of p will result in the smoothing spline converging to a cubic 
spline that passes through all data points.

As all participants were under the same protocol, we implemented a p value for SBP, MAP and DBP ( pSBP , 
pMAP and pDBP respectively) that was common for all of them. Each respective p value was determined by extend-
ing the ordinary cross-validation strategy proposed  in65 by a grid search across the log-scaled range [ 10−3,..., 
108 ]. For each participant, the leave-one-out (LOO) RMSE was computed across the entire p range. The p value 
that minimised the participant-wise average LOO error was used.

Estimating changes in BP. We processed PPG features and PAT similarly to the methods proposed  in1. 
This included: outlier detection to remove statistically significant deviations in values and a Kalman filter to 
reduce the effect of transient artefacts caused by noise. We then averaged the feature values within a window, 
w, of length 40s centred around each reference BP measurement (20s to the left, 20s to the right). Only beats 
of good quality, given by  SQIPPG > 0.8 and  SQIPAT > 0.8 respectively, were included in the window and if more 
than half of the window was deemed to be of bad quality, then the feature was not recorded for that window. We 
computed ECG features within the same window, w. If less than half of the window was deemed to be of good 
quality  (SQIECG > 0.8), then feature values were not recorded for that window. We handled missing data, caused 
by poor signal quality, by nearest neighbour imputation for each participant.

A schematic outlining our proposed steps for estimating � BP is shown in Fig. 2. In this work, we adopted a 
hybrid calibration66 approach in order to estimate � BP using one of two ML regression models (LASSO+OLS or 
RF, defined in the sections below) as a function of an input feature set, X. We use xi to represent the ith observa-
tion of the feature set and xij to represent the datapoint of the ith observation of the jth feature. We implemented 
four different feature sets based on the different signals being analysed in this study. For each of the following 
groups we restricted X such that it includes features only from these sources: X ∈ {PPG, ECG, PPG+ECG, PAT}. 
We refer to these models and feature set combinations as LASSO +  OLSPPG for a LASSO + OLS model with a 
PPG feature set,  RFPPG + ECG for a RF model with PPG + ECG feature set, and so on.

We calibrated all feature and BP values to the individual participant using data recorded during the rest period 
of the study (first 5 minutes of the recording). We then removed all collinear features and implemented data 
augmentation to increase the size of the training set, XAug. We used nested leave-one-subject-out cross-validation 
(LOSOCV) to train, tune and evaluate the models. For each fold of the LOSOCV, one participant in turn was set 
as the test participant. Data from XAug set for all participants apart from the test participant were used to train 
and tune the models. Nested LOSOCV was used for model validation to optimise model hyperparameters ( � for 
OLS+LASSO and mtry for RF) with the aim of minimising RMSE. Data from X for the test participant was then 
used to evaluate the performance of the model. We used the following metrics to evaluate model performance: 
ρp , RMSE, and mean absolute error (MAE). Differences in performance metrics across all folds from the models 

(5)LBP = p

Nmeas∑

i=1

(yi − f̂ (ti))
2
+

∫ tNmeas

t1

f̂ ′′(t)2dt

Figure 2.  Schematic of the � BP estimation pipeline for each of the proposed models. We extracted features 
from the PPG and ECG and averaged their values within a window of size 40s centred on times of cuff 
inflations. We then implemented a hybrid calibration approach such that the proposed models estimate � BP 
from a baseline calibration value determined during the rest period. Data augmentation was implemented to 
increase the training and validation set size by interpolating between cuff inflations. Models were trained and 
evaluated in a nested leave-one-subject-out cross-validation (LOSOCV) framework shown here by the iterator 
j which indicates the test participant for that iteration. Participant j was then removed from the training/ 
validation set ( XAug ) for that iteration.
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were evaluated for statistical significance by a two-tailed Wilcoxon signed-rank test. We adjusted the p-values 
for multiple comparisons using the Benjamini-Hochberg  method67. This technique aims to control the number 
of type I errors (incorrectly rejecting the null hypothesis) by inflating the lowest p values  (see67 for more details).

Calibration. We adopted a hybrid calibration66 approach to personalise the estimation models for each partici-
pant in our dataset. We use the superscript p to reflect an observation from the pth participant. In this work, for 
each participant, we defined the baseline calibration value of BP ( ̂BPp ) and the jth waveform feature ( ̂f pj  ) as their 
respective mean values during the 5-minute resting period at the start of the study. In the specific example of 
one participant for whom no BP readings were taken during the rest period, we used the mean values in a one-
minute window centred on the first cuff inflation as the calibration readings.

For the pth participant, BP values were subtracted from their calibration value to compute �BP
p
i  , as observa-

tions of the regression target vector. Additionally, the feature set X consisted of relative changes of each waveform 
feature from their calibration  value68. Thus � BP and xpij took the form:

where N and M are the number of observations and features in X respectively. Np is the number of participants.
Hybrid calibration strategies use participant demographics to personalise the model outputs. Thus, for all 

feature sets, X, we added participant age, sex, height, weight, BMI, and BP calibration ( ̂BPp ) as static categorical 
features.

Baseline reference. For reference performance metrics, we implemented a simple baseline reference that 
assumed no BP changes for each participant from their baseline calibration value B̂Pp (i.e. �BP

p
i  = 0 for all i and 

p). We refer to this as Baseline reference and it indicates the minimum performance that must be achieved by the 
regression models.

Removing collinear features. Collinearity occurs when there is intercorrelation between multiple  features69,70, 
thus violating the independent identically distributed (i.i.d.) assumption that is common in regression models. 
Additionally, the presence of collinearity inflates the variance of the regression parameters and makes it difficult 
to assess the importance of features. Collinearity in a feature set, X, can be highlighted by the condition number 
κ representing the ratio of the largest singular value of X to the smallest singular value. It can be computed as:

where �·� is the 2-norm of a matrix and X+ is the pseudo-inverse of the matrix X. Typically, a condition number 
greater than 30 is thought to indicate the presence of strong multi-collinearity in the  dataset70.

It is likely that collinearity exists in the feature sets presented in this paper as there are multiple features 
describing similar characteristics, for example entropies of the ECG or time durations of the PPG. In order to 
remove the effect of collinearity and to allow for parsimonious models, we removed collinear features by inves-
tigating the variance inflation factor (VIF) defined as:

where R2
j  is the unadjusted coefficient of determination for regressing the jth feature on the remaining ones. 

If a feature can be accurately predicted using one, or more, other features then VIFj would be large for that 
feature. Removing collinear features is an iterative process where on each iteration, the feature with the largest 
corresponding VIFj is removed from the feature set until no features had a VIF greater than 10 (corresponding 
to Rj = 0.9)70.

Data augmentation. We implemented data augmentation in order to increase the feature set size by incorporat-
ing information from feature values between the reference BP cuff inflations. As shown in Fig. 2, we performed 
model training and validation on the augmented feature set, hereafter referred to as XAug, and performance met-
rics were reported using the original dataset X. We constructed XAug by interpolating between the reference BP 
values for each participant using the cubic smoothing splines outlined above at a new frequency, fBP = 1/15 Hz 
(four measurements per minute, as opposed to once a minute) with a smaller window size, w = 15s, to prevent 
overlapping windows violating the i.i.d assumption.

Regression models. The models we implemented to estimate � BP are outlined below. Different models were 
built for estimating �SBP, �MAP and �DBP.

LASSO + OLS To explore the linear relationship between each of the feature sets X and �BP, ordinary least 
squares (OLS) linear regression was implemented. In order to prevent over-fitting and to improve model inter-
pretability, we employed the Least Absolute Shrinkage and Selection Operator (LASSO) method to remove redun-
dant features prior to linear regression. We refer to this model as LASSO+OLS. LASSO imposes the L1-norm 

(6)

�BP
p
i = BP

p
i − B̂Pp, x

p
ij =

f
p
ij −

̂
f
p
j

̂
f
p
j

, i = {1, . . . ,N}, j = {i = 1, . . . ,M}, p = {1, . . . ,Np}.

(7)κ(X) =
∥
∥X+

∥
∥ · �X�

(8)VIFj =
1
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penalty to the residual sum of squares using non-negative values of shrinkage parameter � . LASSO allows the 
removal of features by shrinking some feature coefficients, β , towards zero:

where Y is the target vector ( � BP values) of length N, and M is the number of features. We optimised the � hyper-
parameter by a nested LOSOCV loop. For each loop of the LOSOCV, LASSO feature selection was implemented 
and features with non-zero coefficients were used by OLS to compute � BP estimates.

Random forest To explore potentially non-linear relationships between X and �BP, we additionally built a 
Random Forest (RF) regression model. RF regression models utilise majority voting across multiple decision 
trees, each trained with a split criterion based on summed squared error (SSE)71. Each decision tree in an RF 
model was trained on a bootstrap of features. This approach reduces model variance whilst maintaining a low 
bias. As RF models select features upon training, we trained the model using all available features (i.e. without 
the need for LASSO). Typically, RF models are not very sensitive to choices in the number of trees (Ntrees), pro-
vided it is sufficiently  high71. Therefore, we set the number of trees to 300. We optimised the number of features 
randomly selected for each node (labeled mtry) by a nested LOSOCV loop.

SHAP values feature ranking coefficient. A key objective of this work was to highlight features that have strong 
predictive power for estimating �BP. We assessed the importance of each feature through Shapley additive expla-
nation (SHAP)  values72. Shapley values, φj , represent the marginal contribution of each feature to individual 
model predictions. For a given regression model f (·) , the marginal contribution of the jth feature is computed 
through the difference in model outputs when trained with that feature compared to when trained without it, 
f (zi ∪ {xij})− f (zi) , where zi is a subset of features in xi not including xij ( zi ⊆ xi \ {xij} ). Since the impact of 
adding a feature depends on the other features in the model, φj is computed as the weighted sum of marginal 
contributions of the jth feature over all possible subsets zi ⊆ {xi1, . . . xiM} \ {xij}:

where |zi| is the number of features in zi . As most models cannot handle missing data, SHAP values are computed 
by replacing f (·) in equation (10) with fx(·) , a conditional expectation function of the original model. This step 
equates to replacing each missing feature with a random value representative of the datapoints the original 
model was trained over. Repeating this process, and averaging the results integrates out the missing value. It is 
demonstrated  in72 that SHAP values computed in this manner correspond to the only method of assessing feature 
importance that satisfies three desirable properties known as local accuracy, missingness, and consistency. A 
result of these properties is that for a complex, non-linear, model such as RF, a simpler explanation model g(·) 
can be approximated through the linear combination of SHAP values across all features:

where φ0 is the expected model value over the training set. Equation (11) allows for local interpretability of model 
outputs by examining each feature’s SHAP value for a given estimation. As SHAP values are computationally 
expensive to compute (there are 2M distinct coalitions of feature values), we computed approximates for the 
SHAP values through KernelSHAP (for LASSO+OLS) and TreeSHAP (for RF) implementations in the SHAP 
Python  library72,73.

For each loop of the cross-validation (CV), we assessed the overall importance of each feature as the mean 
absolute SHAP value across the training data. To report the variability of the feature importance across the CV , 
we computed a ranking coefficient. The ranks of all features were determined at each fold and normalised by the 
total number of features (1 being the highest rank, 0 being the lowest). For each feature, the distributions of the 
ranking coefficients across all folds were analysed. This step allowed for each fold of the LOSOCV to contribute 
equally to assessing the overall importance, while also providing a fair comparison across SBP, MAP, and DBP.

Results
Clinical study. Thirty volunteers were recruited for our clinical study. We discarded the data from four par-
ticipants from the analysis. For three of these participants, the reference ECG waveform did not include any peri-
ods of high-quality data as a result of errors in the connection of the ECG electrodes. For one participant there 
were errors recording the BP cuff data. Therefore, 26 participants made up our dataset. The demographics of the 
participants in the study whose data was used for analysis are shown in table 4. All participants were healthy 
with a median BMI of 22.5 kg/m2 and no history of cardiovascular disease. The median age of participants was 
28 years and there was an even split of sexes (53.8% female). On average, we achieved an increase of 20 mmHg 
in SBP, with a maximum increase of 40 mmHg in a subset of participants.

Removing collinear features. Figure 3a shows the correlation matrix of the total feature set (PPG + ECG 
+ demographics), including 77 features. There were a large number of features (58.5%) that were significantly 
correlated ( |ρp| > 0.8, p < 0.05 ) with at least one other feature. This indicates a high level of collinearity, high-

(9)β = argmin
β

( N∑

i=1

(Yi − xiβ)
2
+ �

M∑

j=1

|βj|

)

(10)φj(f , xi) =
∑

zi⊆xi\{xij}

|zi|!(M − |zi| − 1)!

M!
(f (zi ∪ {xij})− f (zi))

(11)g(xi) = φ0 +

M∑

j=1

φj
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lighted by a condition number κ of 315. Figure 3b shows the correlation matrix after removing all collinear 
features. The remaining dataset contained 45 features with a condition number κ of 11, suggesting independence 
of features and encouraging parsimonious models. For completeness, Supplementary Information table SI 3 
provides a list of the remaining features and the subset of the total feature set with which they have a strong cor-
relation. Additionally, Supplementary Information table SI 3 provides the correlation with �SBP for each feature 
across the whole cohort and on a participant-wise basis.

Comparing model performance. Table 5 shows the median and interquartile range (IQR) performance 
statistics for all models computed over all 26 folds of the LOSOCV for �SBP. The results for �MAP and �DBP 
are provided in the Supplementary Information table SI 1 and table SI 2 respectively. We note large RMSE and 
MAE values for the baseline reference indicating that participants experienced a significant change in their SBP 
values in response to the weight-based dosing of phenylephrine.

All models outperformed results obtained with the baseline reference, and all apart from LASSO +  OLSECG 
reported statistically significant p values indicating that consistent improvements in performance statistics were 
observed ( p < 0.05 for all). For the PPG, ECG and PPG+ECG feature sets, the RF model consistently achieved 
stronger performance metrics than LASSO + OLS. Statistically significant improvements were recorded only in 
RMSE and MAE ( p < 0.05 for all). The Wilcoxon signed rank test failed to reject the null hypothesis of equal 

Table 4.  Demographics of the population in the clinical study. 1  Participant-wise median (IQR), 2 mean 
(standard deviation) across dataset.

Descriptor Value

Total number of participants 26

 Male 12

 Female 14

Average length of session (mins)1 28.0 (0.1)

Age (years)1 28.0 (9.0)

Height (cm)1 170.0 (18.0)

Weight (kg)1 69.5 (23.0)

Body Mass Index (kg/m2)1 22.5 (5.2)

Reference maximum � BP per  participant1

  � SBP (mmHg) 20.0 (8.0)

  � MAP (mmHg) 17.0 (10.0)

  � DBP (mmHg) 15.5 (9.0)

Reference � BP  values2

  � SBP (mmHg) 6.5 (10.4)

  � MAP (mmHg) 5.3 (8.8)

  � DBP (mmHg) 4.7 (8.2)

Figure 3.  Results of removing collinear features in PPG + ECG feature set. Pairwise linear absolute Pearson’s 
|ρp| correlation matrix. (a) pre and (b) post removal of collinear features. Blank spaces represent non-significant 
( p > 0.05 ) or weak ( |ρp| < 0.2 ) correlations. For clarity of labelling on the post-collinear feature set (b), every 
other label is presented on the y-axis with the remaining labels on the x-axis.
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median ρp between LASSO+OLS and RF. The PPG feature set significantly outperformed the ECG feature set 
for all performance metrics and regression models. The absolute difference in the median ρp , RMSE, and MAE 
between  RFPPG and  RFECG was 0.19 ( p = 0.00007 ), 1.04 mmHg ( p = 0.005 ) and 0.53 mmHg ( p = 0.004 ) respec-
tively.  RFPPG and  RFPPG + ECG reported similar performance statistics with non-significant p values, indicating 
that adding ECG features to a feature set of PPG features offers little or no performance gain. For PAT, LASSO + 
OLS significantly outperformed RF across all performance metrics ( p < 0.05 for all). LASSO +  OLSPAT achieved 
similar performance metrics to the  RFPPG + ECG. LASSO +  OLSPAT consistently resulted in the smallest IQR for 
all performance metrics.

Figure 4 shows the (a) correlation and (b) Bland-Altman plots for �SBP estimation using the  RFPPG + ECG 
model. Supplementary Information figures SI 2-3 show the correlation and Bland-Altman plots for �MAP and 
�DBP respectively. Individual participants are colour and marker-coded. The ρp value of the overall estimation 
was 0.64. The median participant-wise correlation coefficient was 0.86 with a range of 0.34 to 0.95. Figure 4a 
shows the histograms of the reference and estimated values. The reference �SBP values ranged from -16.4 to 
53.8 mmHg, but the estimated �SBP values had a much tighter range of -3.37 to 22.2 mmHg. The bias of the 
overall error was 0.30 mmHg with a standard deviation of 8.05 mmHg (see Fig. 4b). We note also an additional 
bias where large values of �SBP were underestimated and small values were overestimated. At peak infusion, 
the median (IQR) value of �SBP across the cohort was 20 (8) mmHg (see table 4). We found large errors in the 
data for the four participants whose �SBP at peak infusion exceeded 30 mmHg.

Supplementary Information figures SI 5-7 show the individual reference � BP and estimated � BP values using 
the  RFPPG + ECG model across all participants in the study for SBP, MAP and DBP respectively.

Feature importance. To mitigate the variations in the training data between folds of the LOSOCV, overall 
SHAP value feature importances was assessed using a ranking coefficient. Figure 5 shows the median (across 
folds) RF and LASSO+OLS ranking coefficients for the PPG+ECG feature set for predicting SBP, with only the 

Table 5.  Performance statistics of �SBP estimation using the models proposed. Results are given as median 
(IQR) computed across all folds of the LOSOCV. Entries in bold indicate the best performance for that metric. 
* results given in units of mmHg.

Model Name ρP RMSE * MAE *

Baseline reference - (-) 10.46 (6.18) 7.40 (4.87)

LASSO+OLSPPG
RFPPG

0.85 (0.44)
0.88 (0.26)

6.19 (4.05)
5.75 (4.73)

5.41 (2.41)
4.75 (3.66)

LASSO+OLSECG
RFECG

0.64 (0.70)
0.69 (0.45)

7.48 (6.37)
6.79 (5.66)

6.54 (4.63)
5.28 (4.57)

LASSO+OLSPPG+ECG

RFPPG+ECG

0.82 (0.40)
0.86 (0.23)

7.99 (5.74)
5.66 (4.76)

6.30 (4.62)
4.86 (4.29)

LASSO+OLSPAT
RFPAT

0.83 (0.10)
0.80 (0.15)

6.09 (4.25)
6.39 (4.23)

4.91 (3.33)
5.21 (3.69)

Figure 4.  Agreement between the reference �SBP values from the sphygmomanometer cuff and the estimated 
�SBP using  RFPPG + ECG. Individual participants are colour and marker-coded. (a) The correlation analysis, the 
overall correlation was 0.64, the median participant-wise correlation coefficient was 0.86 with a range of 0.34 
to 0.95. Black striped line shows regression line. Grey dotted line shows line of unity. (b) The Bland-Altman 
analysis, the bias of the overall error was 0.3 mmHg with a standard deviation of 8.05 mmHg.
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top 15 features shown. In Supplementary Information figure SI 4, we show all features’ median ranking coef-
ficients for estimating SBP, MAP, and DBP. We quantified the agreement between the feature ranks for pairs of 
SBP, MAP, and DBP using the Kendall rank correlation coefficient, ρk74. It was found that the feature importance 
for SBP, MAP, and DBP estimation showed strong agreement with each other ( ρk > 0.6 for all) and as a result 
we continue to report SBP in the main body of this work. The top five features as determined by the median 
RF ranking coefficient were: kurtosis, σg1 , Gaussσ4/A1 , Hjorth mobility, and VPG PCA1 . The top five features as 
determined by the median LASSO+OLS ranking coefficients were: kurtosis, Gaussσ4/A1 , Gauss LVET, BP cali-
bration, and IPA. Kurtosis had the highest feature importance in 13 out of 26 folds for both RF and LASSO + 
OLS  (2nd highest in the remaining folds). In general, the ranking of features by LASSO+OLS followed the order 
of feature correlation values shown in Supplementary Information table SI 3. The only ECG feature that demon-
strated significant importance in � BP estimation was Hjorth mobility which had a median ranking coefficient 
of 0.93 for RF.

Figure 6 shows the relationship between �SBP and the top 9 ranking, non-demographic, features from the 
 RFPPG + ECG model. Different participants are coded by colour and marker to highlight clusters of features suggest-
ing individual-specific feature changes. Both Pearson’s ρp and Spearman’s ρs correlation coefficient are provided. 
Spearman’s correlation indicates monotonic (but not necessarily linear) relationships and so may provide further 
insight into the RF models (see for example the scatter of �σ g1).

Discussion
This work describes the methods for the non-invasive estimation of � BP in healthy participants using morpho-
logical features from the PPG and ECG waveforms. Changes in BP were induced by the infusion of phenylephrine 
using a standard weight-based dosing protocol, instead of being BP-target driven (although BP was constantly 
under review by the clinician to ensure safety of the participants). One of the key advantages of this study was 
that, in a relatively short period of time, and while remaining supine and still, the participants experienced a 
wide range of BP values. This helped to validate algorithms for non-invasive, cuffless, estimation of SBP over a 
clinically useful range of �SBP (-10 to 30 mmHg).

The PPG and the ECG waveforms offer great potential for non-invasive monitoring due to their ubiquity and 
ease of acquisition. The PPG in particular can be acquired using wearable devices such as smartwatches or using 
video  plethysmography14. BP estimation using the PPG has been studied in a number of  papers14, however the 
best features and models have remained unclear. A single-lead ECG may be recorded by three electrodes or via 
capacitive  coupling75. The relationship between changes in BP and the ECG is governed by mechano-electric 
coupling (MEC). However, this connection is considered less robust to that of the relationship between the PPG 
waveform and BP. As a result, estimating � BP from the ECG waveform has been explored in less detail in the 
literature.

Observed changes in the PPG waveform morphology. Figure 1 shows the changes in PPG beat seen 
for a typical participant during the four main stages of our study (a) rest, (b) dose increase, (c) max infusion, and 
(d) washout. This includes a loss of a clear dicrotic notch and a rising middle peak (often referred to as a tidal 
 wave9 and thought to be caused by reflected waves at the renal  arteries8) that can overshadow the initial peak 
seen at rest. These changes have been reported  previously18,41,49 and are thought to be due to increasing ampli-
tude and speed of reflected waves due to arterial stiffening. Additionally, they have also been shown to occur for 
age related arterial  stiffening9. Note that in Fig. 1c at maximum infusion, the tidal wave has a peak greater than 
that of the original systolic peak (see Fig. 1b). As the systolic peak is almost universally defined as the maximum 
of the PPG  beat37, this may lead to the tidal wave being incorrectly classified as the systolic peak. In which case, 

Figure 5.  Median SHAP values feature ranking coefficient for (a) random forest and (b) LASSO+OLS both 
with PPG + ECG feature set. Features are ordered by their respective median ranking coefficient. Error bars 
denote the range. Demographic features are highlighted in blue and ECG features in red for clarity. For brevity, 
only the top 15 features are provided here with the full list provided in Supplementary Information figure SI 4.
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features such as CT, � T, and STT, which rely on accurate systolic peak detection would be significantly affected. 
To account for this, we detected the systolic peak as the first turning point of the PPG pulse above its midpoint, 
as can be seen in Fig. 1c. We found that this definition was acceptable for our short, single perturbation study 
with minimal motion artefacts.

Other changes observed in the PPG waveform morphology during the phenylephrine infusion include vari-
ations in amplitude and time duration. Many factors can impact the amplitude of the PPG pulse, for example: 
 respiration33; changes in the contact pressure of the pulse  oximeter76; and changes in peripheral blood  volume6. 
As these factors can occur independently of changes in blood pressure, and as recommended  in76, we normalised 
the PPG pulse to have unit amplitude. Additionally, phenylephrine infusion activates the baroreflex response, 
increasing the parasympathetic nerve activity to the heart, and slowing heart rate  down77. It was therefore decided 
to additionally normalise the time duration of the PPG pulse in order for features such as � T (the time delay 
from systolic peak to dicrotic notch) to be independent of HR.

Model performance. Typically, machine learning algorithms require a large amount of data in order to 
make robust estimations. In this work, we were limited by the number of participants in the study ( Np=26) and 
by the number of data points per participant (typically once per minute for the 28 minutes of the recording 
per participant). In order to overcome these limitations, the models were trained, tuned and evaluated with a 
LOSOCV framework. Additionally, we implemented data augmentation to increase the number of data points 
in our training set by interpolating between the cuff measurements using cubic smoothing splines with an addi-
tional 3 augmented measurements every minute. Across all models, this data augmentation statistically sig-
nificantly improved the performance statistics at the p < 0.001 level, computed using a Wilcoxon signed rank 
test. Figure 3a splits all features into groups (PPG morphology, VPG morphology, APG morphology, Gaussian 
decomposition, ECG and demographics) and shows strong intra-group correlations indicating multi-colline-
arity in the dataset. We reduced feature collinearity by removing features with a VIF > 10 . This increased the 
confidence of the model parameters, allowed for an appropriate examination of feature importance and encour-
aged parsimonious models.

For the PPG, ECG, and PPG+ECG feature sets, there were statistically significant improvements in RMSE 
and MAE when using the RF model compared to LASSO+OLS model at the p < 0.05 level as computed by the 
corrected Wilcoxon signed rank test, whereas a non-significant difference was found in ρp . This indicates that 
LASSO+OLS was able to appropriately detect directional changes in �SBP, although it was unable to determine 
the magnitudes of the changes. This points to a calibration issue whereby the LASSO+OLS model was unable to 
approximate the feature calibration gradients for each participant. RF models may have been better at estimating 

Figure 6.  Relationship between top 9 ranking, non-demographic, features from the  RFPPG+ECG model and �SBP. 
Individual participants are colour and marker coded. Inter Pearson’s ρp and Spearman’s ρs correlation coefficient 
are shown as median and upper and lower quartiles. Additionally the 1st and 3rd quartiles of the participant-
wise correlation coefficients are shown. Note that feature values have been both subtracted and divided by their 
value at baseline.
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the feature calibration gradients as these models allow for interactions between features and demographics. 
Indeed, larger overall importance was placed on demographic features by  RFPPG+ECG than LASSO+OLSPPG+ECG 
(see Supplementary material figure SI 4). In linear models these static features can only influence intercepts and 
not gradients. Thus since the feature set was calibrated in order to predict � BP from a baseline calibration value, 
low overall importance was placed on demographics by LASSO+OLSPPG+ECG, with the exception of BP calibration. 
Supplementary material figures SI 5-7 demonstrates the marginal influence of demographics on the  RFPPG+ECG 
model estimates through the use of SHAP values. Demographics were found to have a varying influence on the 
� BP estimation, with a positive impact on some participants (IDs: 003, 009 for example) and a negative impact 
on others (IDs: 018, 025 for example). Demographics are known to influence the PPG contour; in particular, c/a 
has been previously explored as a marker for age-related arterial  stiffening41. Interestingly, the  RFPPG+ECG model 
puts little to no emphasis on the sex of the participant (see Supplementary Information figure SI 4) despite there 
being evidence of a sex-related dependency on the PPG  morphology16. We would recommend in future studies 
that the interactions between participant demographics may be accounted for in a linear model by implementing 
a linear mixed-effects model with random effects for parameters such as age and BMI. We were unable to explore 
this line of work here due to the limited number of participants and their relative homogeneity.

Despite interactions with demographics, a significant calibration issue still persisted. Figure 4 shows the 
results of �SBP estimation using the  RFPPG + ECG model via correlation and Bland-Altman analysis. Xing et al.78 
reported a Bland-Altman plot with similar characteristics where the model estimated �SBP values to be in a 
much tighter range than was given by the reference and there were large errors found particularly at the high 
values. The largest errors found in all models occurred in the four individuals with the largest �SBP at peak infu-
sion (IDs: 002, 010, 023 and 026 in Supplementary Information figure SI 5). These four individuals experienced 
significantly larger values of �SBP at peak infusion than the rest of the cohort ( �SBP > 33 mmHg, whereas the 
median value across the cohort at peak infusion was 20 mmHg). The precise clinical effect of the weight-based 
dosing of phenylephrine in an individual would depend on the balance between their sensitivity to the increase 
in afterload, the effect of bradycardia on cardiac filling (therefore contractility, the Frank-Starling  law79), and 
the proportion of venous/arterial action of phenylephrine causing the increase in preload and afterload. As a 
result, variations in � BP at peak infusion were expected across the cohort. The median weight of the four outlier 
individuals (73 kg) was marginally larger than the cohort average (69.5 kg) and so on average a larger dose of phe-
nylephrine would have been given. Other post-hoc assessments of demographics are not sufficient to distinguish 
these four individuals. Although in such a small cohort it is difficult to draw conclusions for these individuals, 
we suggest two possible explanations for the large errors found. Firstly, these individuals clearly experienced a 
significant change to their cardiovascular system in response to the dosing of phenylephrine and so the changes 
in the cardiovascular system may not be adequately represented by the features available. Secondly, the hybrid 
calibration strategy may be impacted by the small sample size. As a result, there will be difficulty in calibrating 
individuals that may be classed as outliers. In further work, to combat this inadequate calibration we suggest 
gathering a more longitudinal dataset for each individual and implementing individual calibration strategies.

Likely driven by the linear relationship between PAT and  BP1, LASSO +  OLSPAT had stronger performance 
metrics than  RFPAT. PAT has been investigated as a surrogate measure of BP in this dataset  previously1 when we 
reported that individual calibration, as opposed to population-based hybrid calibration models, were needed for 
appropriate estimation of BP. In this work, there were insignificant differences found between  RFPPG+ECG and 
LASSO +  OLSPAT suggesting that features from the PPG and ECG have the same calibration constraint as PAT. 
Estimating BP from the ECG and/or PPG may hold two significant advantages over PAT. Firstly, the devices do 
not need to be perfectly synchronous and recorded on the same internal clock as is required for computing PAT 
estimates and has been reported as a limitation in certain  datasets80. It would be possible to design a system for 
which BP was estimated from both devices when they are available and only from one device when the other 
was disconnected for any reason. Secondly, BP estimation from the PPG and ECG features was not impacted 
by the pre-ejection period (PEP) which is a significant limitation to BP estimation using  PAT2. In our previous 
publication, we additionally reported on the influence of the pre-ejection period (PEP) on PAT estimates, noting 
that in this dataset PEP was found to have contributed between 28.8% and 35.2% of  PAT1.

The results in table 5 suggest that PPG features have a significantly stronger relationship to changes in BP 
than the complexity features we extracted from the ECG. Additionally, despite Hjorth mobility demonstrating 
significant importance (median ranking coefficient = 0.93), when adding the ECG to a PPG feature set, no perfor-
mance improvements were observed. Supplementary material figures SI 5-7 show the accumulated SHAP values 
for PPG features, ECG features, and demographics on the  RFPPG+ECG model estimates demonstrating that the 
model is largely dominated by the PPG component. As mentioned in the introduction, the theoretical relation-
ship between changes in BP and the ECG is governed by MEC and the poor performance suggests that external, 
non-cardiac, control mechanisms may have a significant impact on the ECG-BP relationship, affecting the latter’s 
ability to estimate �BP. An additional explanation for the poor performance of the ECG feature set may be the 
choice of features used to explain the changes in ECG morphology; however to the authors’ knowledge, there is 
no other work suggesting alternatives to ECG complexity features for BP estimation. For  RFECG, improvements 
from a naive baseline reference assuming constant BP values were observed, but in general we suggest that ECG 
features on their own may not offer a viable solution to cuffless BP monitoring.

Feature importance. A key contribution of our work to the field of cuffless BP monitoring is a robust 
assessment of feature importance through the use of SHAP values and a ranking coefficient. We explored a 
large and comprehensive pool of features from both the PPG and the ECG gathered from a wide range of previ-
ous work (see table 3 and 2). Supplementary Information table SI 3 shows the features remaining for analysis 
after removing collinear features and the features from the original set with which they best correlate (defined 
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as |ρp| > 0.8, p < 0.05 ). The overall correlations of these features to �SBP across the cohort were in general 
quite low with only one feature ( Gaussσ4/A1 ) having |ρp�SBP | > 0.5 . There were a number of features that had 
significant participant-wise correlations (PWC) to �SBP, 21 features with a median absolute PWC > 0.5 . The 
disparity between low correlations across the cohort and high correlations on a participant-wise basis underpins 
the important need for individual calibration due to low intra-participant variability and high inter-participant 
variability.

BP is determined by CO and TPR, and changes in either of these may be represented by different  features44. 
Phenylephrine causes a direct increase in  TPR81 via an increase in both arterial and venous vasoconstriction. 
Therefore, a large impact from the reflected waves, caused by impedance mismatches at points along the arterial 
tree (specifically the renal and iliac  arteries8), was not unexpected. This was reflected in the observation that 
the majority of features that in this study have either a strong correlation or importance in estimating �SBP, 
characterise the impact of the reflected pressure waves ( Gaussσ4/A1 , c/a, IPA). On the other hand, phenylephrine 
causes a mixed response in CO with the relationship governed by preload  dependency81. The majority of par-
ticipants in the study experienced a decrease in CO (see Supplementary Information figure SI 8), driven largely 
by a decrease in heart rate. Therefore, it is not surprising that at least one of the most important features ( σg1 ) 
represents changes in the upslope of the PPG which is driven by changes in  CO44. However, it is not always clear 
how to link one feature to a specific BP control mechanism. Kurtosis (the feature with the highest importance 
for both RF and LASSO+OLS) for example, represents changes in the overall shape of the PPG.

We found some agreement between the features of the highest importance in our models to those reported 
in the literature. For example, features derived from the APG have been previously demonstrated to reflect 
age-related arterial  stiffening42,46. In agreement with this, in our work, e/a, c/a, and slopebd were found to have 
median ranking coefficients of 0.89, 0.84, and 0.75 respectively. In general, however, we suggest that there is little 
consensus on the appropriate features for BP estimation, both in our work and across the literature. There were 
large variations in the feature importances observed between folds (see Fig. 5). Additionally features such as STT, 
proposed by Addison et al.50 and supported by a recent publication by Natarajan et al.68, had a very low median 
ranking coefficient of 0.16 in our dataset. Similarly, the best-performing features from Sun et al.18 ( Sysµ , Sysσ , 
Diaµ , and Diaσ ) and Miao et al.19 (b/a and RI) all demonstrated poor performance in this work. Furthermore, 
to our knowledge, no previous works have suggested that Kurtosis may be a feature of significant importance 
for BP estimation.

A secondary explanation for the improved performance of the RF model relative to the LASSO+OLS model, 
may be that the features presented in this study (or at least the high-performing features presented in Fig. 5a) 
have a non-linear relationship to �BP. This is further corroborated by the relationship between the top 9 ranking 
(non-demographic) features and �SBP shown in Fig. 6. Only σg1 shows a discernible global relationship to �SBP. 
Individual, participant-specific clusters are apparent, highlighting the low intra-participant variability but high 
inter-participant variability. We additionally note that even within the clusters, non-linear relationships are often 
observed. This non-linear relationship is additionally supported by the results of Radha et al.12 and Hasanzadeh 
et al.22 who both reported performance improvements when estimating BP using a RF compared to a linear 
model. This significantly impacts the ability to develop individual calibration models using these features. For 
PAT, typically only 2 model parameters (a slope and an intercept) are required for accurate individual calibration. 
Therefore, theoretically, a dataset containing only two measurements of PAT and BP is required for accurate 
calibration to an individual (although in practice this number is much higher for accurate estimation of the 
model parameters,  see1). Whereas, for non-linear modelling of the PPG or ECG features, many more parameters 
are required to be estimated thus forcing a much larger dataset requirement for accurate individual calibration.

It should be noted that many of the features used in this study were derived from fiducial points such as the 
dicrotic notch. Relying on fiducial point detection has a number of limitations for BP estimation. The detection 
algorithms often set arbitrary decisions or thresholds for fiducial point locations. As discussed previously, the 
typical definition for the systolic peak was not appropriate in this study due to the increasing influence of the 
tidal wave. Additionally, fiducial point detection algorithms will be valid up to a precision; small changes in BP 
observed in, for example, an ambulatory setting may result in very small perturbations in feature values that are 
indistinguishable from errors in fiducial point  detection22. Finally, the fiducial points are not always detectable. 
The dicrotic notch has been reported to diminish in elderly individuals due to atherosclerosis (hardening of 
vessel walls and recruitment of collagen fibres to support walls)46,82. We found that the majority of the features 
of high importance (for example: kurtosis, PCA features and Gaussian decomposition features) did not require 
fiducial point detection. For the reasons stated above, these may offer more desirable representation of changes 
of the PPG.

Limitations. There are several limitations to the work presented in this study. Firstly, we perturbed BP via 
an infusion of phenylephrine, an α1-adrenergic receptor agonist that induces arterial and venous smooth muscle 
 contraction30. In daily life, BP changes result from a diverse set of physiological mechanisms governed by the 
autonomic nervous system. α1 receptors are typically activated in response to shock or low blood  pressure83. 
Whereas, the resulting smooth muscle contraction is often activated during daily life activities, such as  exercise84, 
in order to ensure adequate blood flow. Further work is required to understand how the relationship observed 
in this work compares to that present in daily life, however data acquired during daily life will be corrupted by 
motion artefacts.

Secondly, our results were reported across a small number of, relatively homogeneous, healthy participants 
( Np=26). We employed a hybrid calibration strategy to estimate changes in BP and utilised information from all 
available participants via a LOSOCV framework. However, this data-driven strategy requires a more heterog-
enous cohort in order to improve model accuracy. This was particularly highlighted in the calibration issue for 
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the four individuals with the largest errors (see Supplementary Information figure SI 5). In particular, the cohort 
should contain participants across a wide range of age groups in order to account for variations in age-related 
arterial stiffness.

Thirdly, despite participants being administered a significant dose of phenylephrine (2mcg/kg/min), the 
changes we observed in the PPG (see Fig. 1) were very subtle. We were able to detect the fiducial points of the 
PPG accurately, as motion artefacts were reduced and the contact pressure of the pulse oximeter was maintained 
constant. However, in a real-world setting where such large variations in BP are uncommon and motion artefacts 
are a significant source of noise for PPG, this may be a significant limitation to BP estimation using PPG.

Finally, measurements of BP using a sphygmomanometer cuff are susceptible to various forms of noise that 
can distort the readings. The oscillometric device used as a BP reference in this study was compliant with the 
IEC 60601-2-30/EN60601-2-30 and with the American National Standard for Electronic or Automated Sphyg-
momanometers (ANSI/AAMI SP 10/92)85 with a maximum mean error of ±5 mmHg (±0.7kPa) and a maximum 
standard deviation of 8mmHg (1.1kPa). The accuracy of the blood pressure cuff is a significant limitation to using 
single-point or hybrid calibration for BP estimation. Slight errors in a single cuff reading, caused by instrumen-
tation error as well as user error (movement, wrong cuff size, etc) may translate into a consistent offset in BP 
estimation. Consider, for example, 006 in Supplementary Information figure SI 5, the initial calibration during 
the rest period sets, with both �SBP cuff and �SBP est at 0 mmHg. In the following 5 cuff inflations, the �SBP 
cuff readings decreased to just under -5mmHg, within the resolution of the ANSI/AAMI protocol. It is unclear 
whether this change in SBP is a real change (potentially caused by the participant relaxing after the start of the 
study) or if it was a result of instrumental errors in the blood pressure cuff. Either way, a consistent DC offset of 
5-10mmHg was observed for the remaining BP estimates in this individual.

Conclusion
Under an infusion of phenyleprhine, changes in the PPG (to a greater extent) and the ECG (to a lesser extent) 
reflect changes in BP that can be tracked using certain morphological features. For monitoring of BP by a single 
device, we recommend focusing on the PPG as this appears to be far superior to BP monitoring than using the 
ECG. In this study, we observed clear changes in the PPG in response to the dose increase of phenylephrine 
and characterised these by smooth muscle activation and a clear increase in the amplitude of the reflected tidal 
wave. These changes were mirrored in certain features and it appears that their relationship to � BP may be non-
linear. BP estimation using the PPG may offer similar performance to PAT which has significant limitations 
as it requires two synchronous devices (ECG and PPG) for accurate measurements. In general, the calibration 
protocol for accurate BP estimation requires more attention, especially if the relationship is non-linear. Hybrid 
calibration strategies may not adequately reflect the unique and individualised relationship between changes 
in BP and changes in the PPG. Therefore, they should be used with caution and only as a potential indicator of 
relative changes as opposed to a clinical assessment of BP.

Data Availability
The datasets generated or analysed during the current study are not publicly available due to the sensitive and 
identifiable nature of our data, patient consent and restrictions of the ethics protocol to protect the privacy of 
patients involved in the study. Contact eoin.finnegan@eng.ox.ac.uk for any queries.
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