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Adult skin fibroblast state change 
in murine wound healing
Fatma Z. Gharbia 1,8,9, Ahmed S. Abouhashem 2,3,4,5,9, Yomna A. Moqidem 6, Ahmed A. Elbaz 3,5, 
Ahmed Abdellatif 6, Kanhaiya Singh 2, Chandan K. Sen 2* & Hassan M. E. Azzazy 3,7*

Wound healing is a well-organized dynamic process involving coordinated consecutive phases: 
homeostasis, inflammation, proliferation and resolution. Fibroblasts play major roles in skin wound 
healing such as in wound contraction and release of growth factors which are of importance in 
angiogenesis and tissue remodeling. Abnormal fibroblast phenotypes have been identified in patients 
with chronic wounds. In this work, we analyzed scRNA-seq datasets of normal and wounded skin from 
mice at day 4 post-wound to investigate fibroblast heterogeneity during the proliferative phase of 
wound healing. Compositional analysis revealed a specific subset of fibroblast (cluster 3) that primarily 
increased in wounded skin (14%) compared to normal skin (3.9%). This subset was characterized 
by a gene signature marked by the plasma membrane proteins Sfrp2 + Sfrp4 + Sfrp1 + and the 
transcription factors Ebf1 + Prrx1 + Maged1 + . Differential gene expression and enrichment analysis 
identified epithelial to mesenchymal transition (EMT) and angiogenesis to be upregulated in the 
emerging subset of fibroblasts of the wounded skin. Using two other datasets for murine wounded 
skin confirmed the increase in cluster 3-like fibroblasts at days 2, 7 and 14 post-wounding with a 
peak at day 7. By performing a similarity check between the differential gene expression profile 
between wounded and normal skin for this emerging fibroblast subset with drug signature from the 
ConnectivityMap database, we identified drugs capable of mimicking the observed gene expression 
change in fibroblasts during wound healing. TTNPB, verteprofin and nicotinic acid were identified as 
candidate drugs capable of inducing fibroblast gene expression profile necessary for wound healing. 
On the other hand, methocarbamol, ifosfamide and penbutolol were recognized to antagonize the 
identified fibroblast differential expression profile during wound healing which might cause delay 
in wound healing. Taken together, analysis of murine transcriptomic skin wound healing datasets 
suggested a subset of fibroblasts capable of inducing EMT and further inferred drugs that might be 
tested as potential candidates to induce wound closure.

The wound healing process consists of four overlapping phases: hemostasis, inflammation, proliferation and 
 resolution1,2. Immediately after wounding, the hemostasis phase begins with formation of fibrin clots and vas-
cular constriction. Next, migration of inflammatory cells into the wound starts. Recruitment of inflammatory 
cells such as neutrophils, macrophages and lymphocytes initiate the inflammatory phase of the wound healing 
 process3. The proliferation phase overlaps with the inflammatory phase in which epithelial cells proliferate and 
migrate within the wound  area4. During the proliferative phase, fibroblasts and endothelial cells are the most 
prominent cell types which support collagen formation, blood vessel growth and granulation tissue formation 
at the injury  site4. After proliferation and extracellular matrix synthesis are completed, the healing process 
enters the final resolution phase in which tissue remodeling  occurs4. During the resolution phase, the wound 
density returns to normal by pruning of many of the newly formed blood  vessels5. During the wound healing 
process, activation of well-organized biological processes, such as epithelial to mesenchymal transition (EMT), 
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mesenchymal to epithelial transition (MET) and angiogenesis,  occurs6,7. During the EMT process, epithelial 
cells acquire mesenchymal characteristics, such as enhanced motility, change their interactions with ECM and 
lose their cell–cell  junctions8–11. The EMT process, which is necessary for normal embryonic development, is 
accelerated during the wound healing  process8,12. The EMT was also found to be accelerated by fibroblast growth 
factor 2 during wound  healing13. Next, MET helps to reconstitute the apical junctional complex (AJCs) restoring 
the barrier function of the repaired skin. Additionally, angiogenesis increases during the healing  process14. New 
capillary sprouts invade the wound clot followed by their organization into a network through the granulation 
tissue before their regression during the resolution phase of wound  healing4.

Fibroblasts are diverse and dynamic in nature and play major role in wound  healing15. As it relates to wound 
contraction, they are present in two distinct states: contractile and  noncontractile16. Fibroblasts are activated 
and differentiated into myofibroblasts at the wound site to generate contractile forces to bring the wound edges 
together and facilitate wound  closure16. The EMT process plays significant role in myofibroblast  transition16,17. 
Fibroblasts also support the wound angiogenesis process by the production of appropriate extracellular matrix 
(ECM)  bed18. Fibroblast malfunction has been reported to cause wound  chronicity19. These awry fibroblasts show 
impaired pattern of cytokine release and display abnormal phenotypes with defective proliferation and early 
 senescence20. Fibroblast-focused therapies for wound care are currently under  development21,22. Growth factor-
based therapies such as platelet derived growth factor B subunit B seek to stimulate fibroblasts activation and 
 differentiation23,24. However, the focus on any single growth factor to heal wound has not been  productive25. The 
complexity of the in vivo wound healing microenvironment requires intelligent approaches to modify fibroblast 
state as would be needed for wound closure.

Defining Fibroblast heterogeneity is an important and emerging area of research in wound healing. The appli-
cation of single cell RNA sequencing (scRNA-seq) has established different states (e.g. contractile, regenerative, 
adaptive or fibrotic) of skin fibroblasts during development, homeostasis and injury in both human and murine 
 models26–33. A recently published article provided a systematic view of skin cellular dynamics at day 4 during 
dermal wound healing in mice at the single cell  level34. In the current study, we investigated the same dataset 
(GSE142471) to identify fibroblast states during wound healing and to change normal skin fibroblast states neces-
sary for physiological wound healing. Next, we verified the presence of the identified states using other datasets 
(GSE153596, GSE178758 and GSE188432). Such understanding will inform therapies targeting the change of 
fibroblast state in non-healing wound. The primary outcomes of this study include: (1) identification of skin cell 
types states in normal skin and during wound healing, (2) identification of the fibroblast state emerging during 
the wound healing process, (3) identification of the differentially expressed genes, altered pathways and biological 
processes in fibroblasts during wound healing, and (4) identification of the drugs which could induce changes 
in fibroblast gene expression consistent with that required for physiological wound repair.

Results
Murine skin scRNA-seq data were retrieved from GEO database (accession no. 142471) from two groups: nor-
mal skin and day 4 wounded skin. Cells were clustered and cell types were identified for each of the identified 
19 clusters. Clusters identified as fibroblasts were analyzed to identify the subset of fibroblasts having higher 
abundance during wound healing. Differential expression analysis and Gene Set Enrichment Analysis (GSEA) 
were performed on the identified subset of fibroblasts (cluster 3) which revealed upregulation of angiogenesis 
and EMT. The resulting DEGs were used to identify drugs which have potential to induce fibroblast state transi-
tion from the resting state found in cluster 3 in normal skin towards the wound healing state found in cluster 3 
in wounded skin (Fig. 1a).

Identification of eight distinct cell types in murine skin. The initial data included 27,317 cells from 
5 skin samples (2 normal skin samples and 3 skin samples at day 4 post wounding). After excluding low quality 
cells, 26,723 cells remained for the downstream analyses (Supplementary Fig. 1; Supplementary table 1). Cluster-
ing of single cells identified 19 distinct clusters (Fig. 1b,c). Cell type assignment identified eight cell types includ-
ing keratinocytes (11,124 cells), fibroblasts (8,657 cells), macrophages (3,971 cells), T memory cells (1,214 cells), 
smooth muscle cells/ pericytes (868 cells), endothelial cells (319 cells), neutrophils (307 cells), myofibroblasts 
(263 cells) (Fig. 1c,d; Supplementary Fig. 2; Supplementary table 2).

Identification of wound healing-related genes and biological processes in the skin tissue. The 
transcriptional changes that occurred in skin at day 4 of wound healing were investigated by comparing genes 
from all cells in wounded skin and all cells from the normal skin samples (Supplementary table 3). Enrichment 
analysis using GSEA software identified affected pathways and biological processes in the wounded skin. The 
upregulated gene sets in skin during wound healing included granulocyte chemotaxis, neutrophil chemotaxis, 
IL6 Jak Stat3 signaling, IL18 signaling, myogenesis and EMT (Supplementary Fig.  3a and b; Supplementary 
table 4). Sixty genes were found to be upregulated with a log2FC > 0.25 involved in EMT. The top upregulated 
genes involved in epithelial mesenchymal transition included Cxcl1, Acta2, Thbs1, Timp1, Tpm1, Tpm2, Il6, 
Basp1 and Vim (Supplementary Fig. 3c). Genes involved in granulocytes chemotaxis in wounded skin included 
Cxcl2, Ccl4, Ccl3, Cxcl1, S100a9, Ccl2, S100a8, Cd74, Thbs1, Fcer1g, Ccl7, Ccl8, Rac2, Ccl11, Dpep1, Pde4b 
and Rarres2 with log2FC > 0.25 (Supplementary table 4). On the other hand, keratinization, cornification and 
keratinocyte differentiation were found to be downregulated in wounded skin (Supplementary table 4).

Identification of a subset of fibroblasts during wound healing with upregulated angiogenesis 
and EMT. To identify the role of fibroblasts in the wound healing process, analysis of fibroblast clusters was 
performed. Cells identified as fibroblasts were found in five distinct states (clusters 0, 3, 9, 14 and 17) with specific 
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Figure 1.  Identification of 19 distinct clusters. (A) The analysis overview. (B) UMAP plot showing 19 distinct 
clusters. Each dot represents a single cell. Left panel represents normal skin cells and right panel represents 
wounded skin at day 4 post wounding (GSE14271). (C) Dotplot representing the top 3 markers in each cluster. 
(D) UMAP plots showing eight cell types for each condition (normal skin and wounded skin).
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upregulated markers for each (cluster 0: Igfbp2, Cpz and Cldn10; cluster 3: Saa3, Ptx3 and Cthrc1; cluster 9: Coch, 
Crabp1 and Wif1; cluster 14: Gatm, Plp1 and Mest; cluster 17: Acta1, Mylpf and Tnnc2) (Fig. 2a–c). Percentage of 
cells in clusters 0, 9 and 14 among all cell types was comparable between normal skin and wounded skin (cluster 
0 cells: 18% in normal skin and 17.12% in wounded skin; cluster 9: 3.16% in normal skin and 3.98% in wounded 
skin; cluster 14: 0.53% in normal skin and 1.65% in wounded skin). On the other hand, cluster 3 had a higher 
percentage of cells in wounded skin relative to in normal skin, increasing from 3.93% to 14.09% (Supplementary 
table 1). To test if this increase in cluster 3 cells resulted from an increase in proliferation or differentiation, cell 
cycle analysis was performed using the function CellCycleScoring in Seurat to identify the ratio of dividing cells 
and non-dividing cells in cluster 3 from normal skin and wounded skin. The canonical marker genes for S, G2 
and M phases were used to calculate cell cycle scores for each cell as reported  previously35. Next, cells express-
ing markers for either S, G2 or M phases were assigned to proliferative cells, while cells not expressing mitotic 
marker genes were assigned to G1 phase. Analysis of cell cycle phase for cluster 3 cells identified that 54.3% and 
55.15% of cells were assigned to G1 phase (non-proliferative cells) in normal skin and wounded skin respec-
tively indicative of no proliferation differences. Also, myofibroblasts (cluster 17) increased from 0.1% to 1.56%. 
Fibroblasts in cluster 3 represent 11.2–16.3% of the fibroblast population in normal skin, while they represent 
30.3–40.3% of the fibroblast population in wounded skin (Fig. 2d,e, Supplementary table 1). Trajectory inference 
of cluster 3 cells identified a trajectory capturing cluster 3 cells from both normal skin and wounded skin samples 
(Fig. 3a–c). Comparing genes between cluster 3 cells in wounded skin and normal skin resulted in identification 
of 1,650 DEGs with adjusted p value < 0.05. Among them, 506 genes were found to be upregulated and 282 genes 
were found to be downregulated using a cutoff log2FC ± 0.25. The resulting DEGs were classified based on their 
family into transcription factors, plasma membrane proteins, enzymes and other categories. The top upregulated 
plasma membrane proteins in cluster 3 in wounded skin included Sfrp2 and Sfrp4, while the top downregulated 
plasma membrane proteins included Il1r2 and Ghr (Supplementary Fig. 4). The transcription factors Nfkbia and 
Noct were upregulated, while Fosp, Ebf1, Klf4 and Aff3 were downregulated in wounded skin cluster 3. Regard-
ing growth factors, Ptn and Mdk were upregulated, while Gas6 and Igf1 were downregulated in wounded skin 
cluster 3. All DEGs in cluster 3 of wounded skin samples are provided in supplementary table 5. Enrichment 
analysis using GSEA software resulted in identification of altered biological processes and pathways in cluster 
3 in wounded skin compared to cluster 3 in normal skin (p value < 0.05 and FDR q-val < 0.1) (Fig. 3d; Supple-
mentary table 6). The upregulated gene sets included epithelial mesenchymal transition (Fig. 3e,f), granulocyte 
chemotaxis (Fig.  3g) and angiogenesis (Fig.  3h,i). On the other hand, epidermal development, keratinocyte 
differentiation and oxidative phosphorylation were found to be downregulated in cluster 3 fibroblasts during 
wound healing (Supplementary table 6). To investigate the contribution of other fibroblast clusters (0,9,14 and 
17), in this paradigm, we compared inter-cluster transcriptome profiles (Supplementary Fig. 5a and b). A total 
of 1,235 genes were found to be differentially expressed in fibroblast clusters when comparing each cluster from 
wounded skin with the corresponding cluster in normal skin with log2FC ± 0.25 and adjusted p value < 0.05. 
Among these, 255 genes were upregulated, and 105 genes were downregulated in more than one fibroblast clus-
ter (Supplementary table 7). Other genes were differentially expressed in a cluster-specific basis (483 upregulated 
genes and 323 genes). A total of 69 genes had bidirectional behavior (upregulated and downregulated in distinct 
fibroblast clusters). Upregulated genes in wounded skin fibroblast clusters compared to normal skin that have 
role in EMT included 16 genes in cluster 0, 63 genes in cluster 3, 35 genes in cluster 9, 20 genes in cluster 14 and 
no genes in cluster 17 (Supplementary Fig. 6).

Validation of cluster 3-like cells in other datasets. Since our goal was to identify a fibroblast popula-
tion that uniquely represented the ability to support EMT during wound healing, we focused on cluster 3 in 
our subsequent study. The dataset with accession number GSE153596 included 34,859 cells from 6 samples (3 
normal skin and 3 wounded skin) at day 7 post-wound was thus retrieved and investigated for presence and 
quantification of cluster 3 cells. After excluding low quality cells 34,191 cells remained for downstream analysis 
among which 5,669 cells were labeled as fibroblasts similar to clusters 0, 3, 9 and 14 from the original dataset 
with high expression of Col1a1, Col1a2 and Mmp2 (Fig. 4a–c). Cells labeled as cluster 3 have higher EMT scores 
in both GSE153596 and GSE142471 compared to other fibroblast clusters and other cell types. Additionally, 
cluster 3 cells in wounded skin have higher EMT scores in wounded skin at day 4 and day 7 compared to normal 
skin (Fig. 4d–g). Angiogenesis scores were found to be higher in clusters 0, 3 and 9 in both GSE153596 and 
GSE142471 datasets (Fig. 4h–k). Next, to quantitate the abundance of cluster 3 fibroblasts at different days post-
wounding, another dataset with accession number GSE178758 was investigated. This dataset included 19,968 
cells from 4 samples at different time points post-wounding (days 0, 2,7 and 14). Cluster 3-like cells increased 
from 5.7% in normal skin to 27.7%, 40,8% and 26.6% in days 2, 7 and 14 respectively (Supplementary Fig. 7a, 
b and c). In conclusion, combining all three datasets it became clear that cluster 3 significantly increased post 
wounding in murine skin (p = 0.0003), while cluster 0 showed no significant alteration as compared to normal 
skin (p value = 0.99). Furthermore, the expression of EMT genes in these cluster 3-like cells remain low in the 
wound of aged mice (88 week old) as compared to young mice (7 week old) (adjusted p value < 0.05, supplemen-
tary Fig. 8).

Identification of drugs affecting the wound healing process. Prediction of drugs using Connectiv-
ity Map resulted in identification of 21 drugs with positive and 40 drugs with negative enrichment scores (P 
value < 0.05). Scores were based on the similarity between the effect of the drug on gene expression profile from 
the Connectivity Map  database36 (drug signature) and the observed alteration in gene expression level in cluster 
3 cells in wounded skin compared to cluster 3 in normal skin. The top 3 drugs with positive scores included 
TTNPB, verteporfin, and nicotinic acid (predicted to be capable of inducing fibroblast state change from the 
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Figure 2.  Identification of distinct subsets of fibroblasts. (A) UMAP plot showing cells identified as fibroblasts 
or myofibroblasts in blue color and other cells in grey color. (B) Fibroblast clusters. (C) Top upregulated 3 
genes in fibroblast clusters 0, 3, 9, 14 and 17. (D) UMAP plots showing cells identified as fibroblasts splitted by 
condition (normal skin: left panel and wounded skin: right panel). (E) Barplot representing percentage of each 
fibroblast cluster among the fibroblast population within each sample.
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Figure 3.  Upregulation of EMT and angiogenesis in cluster 3 fibroblasts at day 4 post-wound in mice skin. (A) UMAP plot 
representing cluster 3 in a black color and other clusters in s grey color. (B, C) UMAP plots of cluster 3 cells colored by condition and 
pseudotime receptively. The black line represents the inferred trajectory. (D, G) Top 10 uppregulated hallmark and biological processes 
gene sets in cluster 3 in wounded skin compared to normal skin. Bars represent the normalized enrichment score (NES) of the gene 
set enrichment analysis. (E, H) GSEA enrichment plot for EMT and angiogenesis. Hits (black lines) represent the intersection between 
the DEGs and the enriched gene sets. (F, I) Dotplots representing relative expression level of the top upregulated genes having role in 
EMT and angiogenesis respectively with log2FC > 0.25 in cluster 3 during wound healing compared to cluster 3 in normal skin. Dot 
size represents percentage of cells within cluster 3 expressing the gene in each sample. Dot color represents the relative expression level 
of the gene.
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Figure 4.  Upregulation of EMT and angiogenesis in cluster 3 fibroblasts at day 4 post-wound in mice skin. (A) UMAP representing 
cells from 3 normal skin and 3 wounded skin samples at day 7 post-wound retrieved from GSE153596. (B) Expression level of Col1a1, 
Col1a2 and Mmp2. (C) UMAP plot representing cells from GSE153596 labeled using mutual nearest neighbor and label transfer (see 
methods) from GSE142471. (D) EMT score in cells from GSE142471. (E) Left panel represents EMT score in fibroblast clusters and 
other cell types. Right panel represents EMT score in cluster 3-like cells from GSE142471 in normal and wounded skin. (F) EMT score 
in cells from GSE153596. (G) Left panel represents EMT score in fibroblast clusters and other cell types. Right panel represents EMT 
score in cluster 3-like cells from GSE153596 in normal and wounded skin. (H-I) Angiogenesis score in cells from GSE142471 in all 
cells and in cluster 3 fibroblasts. (J-K) Angiogenesis score in cells from GSE153596 in all cells and in cluster 3 fibroblasts.



8

Vol:.(1234567890)

Scientific Reports |          (2023) 13:886  | https://doi.org/10.1038/s41598-022-27152-4

www.nature.com/scientificreports/

normal skin state towards the identified state in cluster 3 cells during wound healing). On the other hand, the 
top 3 drugs with negative scores included methocarbamol, AH-6809 and Y-27632 (predicted to be capable of 
inducing fibroblast state transition towards the resting state found in cluster 3 in normal skin) (Fig. 5a–c; Sup-
plementary table 8).

Methods
Data retrieval. scRNA-seq data was extracted from the gene expression omnibus (GEO) database ( 
GSE142471, GSE153596 and GSE178758). Those datasets were selected as they included murine small wound 
2-6 mm at 2, 4, 7 and 14 post wound days. Besides, the mice in the included data have no diseases and received no 
treatments representing wound healing under normal physiological conditions. For the wound healing experi-
ments in GSE142471, the authors of the original study used 5 mice skin samples where they performed scRNA-
seq experiments using 7 week-old female K14-Cre; ROSAmTmG mice (C57BL/6 J background)34. They generated 
a full-thickness wound in the back skin of 3 mice using a 6-mm punch. Four days later, they excised the wound 
and the surrounding unwounded skin regions (1.5 cm in diameter) using a 10-mm punch. For the control group 
(2 mice), they shaved the mice, removed the back skin, and scrapped off the fat. Finally, they minced the skin 
from both groups into pieces of less than 1 mm in diameter where they were used for library generation using 
the Chromium Single Cell 3′ Reagents Kits v2. HiSeq 4000 platform was utilized to sequence samples and Cell 
Ranger 2.1.0. was used to map the resulting FASTQ reads to mm10 genome.

Single-cell RNA sequencing preprocessing. Seurat package (4.0.4) in R (v.4.1.1) was used for all the 
analyses except  mentioned37–41. Firstly, the initial data in GSE142471, including a total of 27,317 cells from the 5 
samples (2 normal skin samples and 3 skin samples during wound healing) was log normalized using 10,000 as 
a scaling factor for the total number of detected molecules per cell. Filtration criteria was determined to exclude 
low quality cells. Cells with less than 200 expressed genes, a total number of detected molecules less than 500 
were excluded or more than 30,000 were excluded and cells with more than 10% of their genes originating from 
the mitochondrial genome were excluded. All downstream analyses were performed using the remaining 26,723 
cells. After removing low quality cells, the top 2,000 genes exhibiting high cell-to-cell variation were identified 
for each sample. Next, highly variable genes were ranked based on their identification as variable genes in multi-
ple samples and were used for integration of the 5 samples using canonical correlation analysis (CCA). To reduce 
the data dimensions, we performed a principal component analysis (PCA) and the top 25 principal components 
were chosen for dimensionality reduction and visualization using the UMAP algorithm.

Clustering of single cells and cell types assignment. Clustering of single cells was performed using a 
graph-based clustering approach. Next, the Louvain algorithm was applied to group cells together with different 
resolutions and a resolution of 0.25, which represents distinct states among each cell type in this dataset, was 
selected for downstream analysis. Cluster markers were identified by comparing genes from each of the resulting 
19 clusters with the rest of the cells combined using the Wilcoxon Rank Sum test. For a gene to be considered 
for comparison, it has to be expressed in at least 20% of the cells of either the cluster or in 20% of the rest of the 

Figure 5.  Identification of drugs mimicking or counteracting the differential expression pattern in cluster 3 
during wound healing. (A) The similarity between the DEGs between cluster 3 cells in wounded skin and cluster 
3 cells in normal skin with log2FC ± 0.25 were checked with the signature of each of the 6,100 drug/ compound 
instances in the Connectivity Map database. (B) The top identified drugs having signature that mimics the 
differential expression pattern in cluster 3 in wounded skin (positive enrichment). (C) The top identified drugs 
having signature that counteracts the differential expression pattern in cluster 3 in wounded skin (negative 
enrichment).
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cells. Cell type assignment was performed using the PanglaoDB database using the top 10 upregulated genes in 
each  cluster42. Cell type annotation was performed automatically using the PanglaoDB database, while manual 
annotation was performed for clusters which was not automatically assigned.

Differential expression analysis. To identify the effect of the wound healing process on gene expres-
sion profile of skin tissue, gene expression values were compared between all cells from the wounded skin and 
all cells from the normal skin. Wilcoxon Rank Sum Test was performed to identify the differentially expressed 
genes (DEGs) and for a gene to be considered for the comparison, it has to be expressed in at least 20% of cells 
in either of the 2 groups. Additionally, genes were compared between cluster 3 cells in wounded skin and normal 
skin, which were identified to have a higher percentage of cells in wounded skin samples compared to normal 
skin. Identified DEGs from all analyses were annotated using ingenuity pathways analysis (IPA)  software43–45. In 
addition, 4 other comparisons were performed to compare between other fibroblasts subsets from wounded skin 
and normal skin in clusters 0, 9, 14 and 17. The resulting DEGs for all fibroblasts comparisons were classified into 
genes differentially expressed in one fibroblast subset, genes having similar change in multiple subsets and genes 
with bidirectional change (upregulated and downregulated in distinct fibroblast clusters).

Gene set enrichment analysis. The resulting DEGs from comparing all cells in wounded skin with all 
cells in normal skin and between cluster 3 cells in wounded skin with normal skin with adjusted p value < 0.05 
were considered for enrichment analysis. Enrichment was performed using the GSEA software using the default 
 parameters46,47. Enrichment was performed against hallmark gene sets and gene ontology biological processes 
gene sets. The genes identified to be involved in EMT from this analysis were checked for their differential 
expression in other fibroblast clusters 0, 9, 14 and 17 (Supplementary Fig. 6).

Trajectory inference for cluster 3 cells. Fibroblasts identified in cluster 3 from normal skin and 
wounded skin were used to infer a trajectory linking between them. Monocle3 package (v 1.0.0) in R was used to 
infer a trajectory based on the continuous change in gene expression profiles in cluster 3  cells48,49. PCA analysis 
was performed and the first 10 dimensions were used to reduce the data dimensions.

Cell cycle analysis. To test if the increase in cluster 3 cells resulted from an increase in proliferation or dif-
ferentiation, cell cycle analysis was performed using the function CellCycleScoring in Seurat to identify the ratio 
of dividing cells and non-dividing cells in cluster 3 cells from normal skin and wounded skin. The canonical 
marker genes for S, G2 and M phases were used to calculate cell cycle scores for each  cell35. Next, cells express-
ing markers for either S, G2 or M phases were assigned to proliferative cells, while cells not expressing mitotic 
marker genes were assigned to G1 phase.

Analysis of wound healing at day 7 post-wound. To verify the presence of cluster 3-like cells in 
wounded skin from other datasets, the dataset with GEO accession number GSE153596 was retrieved including 
3 samples of normal skin and 3 samples of 2 mm wounded skin at day 7 post-wound in 21-day old  mice27. Cells 
with more than 200 detected genes, between 500 and 30,000 total number of counts and less than 10% mitochon-
drial DNA expression were kept for downstream analysis. All samples were integrated using CCA and log nor-
malization was performed with a scaling factor of 10,000. Next, PCA was performed to reduce data dimensions 
and UMAP was used for visualization. The functions FindTransferAnchors and Transfer Data in Seurat were used 
to map the cluster labels from the original dataset (GSE142471) into the new samples based on mutual nearest 
neighbors. The function AddModuleScore in Seurat was used to calculate scores for EMT and angiogenesis using 
the identified upregulated genes in cluster 3 in wounded skin.

Identification of cluster 3-like cells over time during wound healing. To further identify the 
dynamics of cluster 3 cells, we retrieved a spatial transcriptomic dataset (GSE178758) of wound healing at dif-
ferent time points (normal skin, day 2, 7 and 14 post wound)29. The authors performed splinted excisional 6 mm 
diameter wound in mice skin. Cells with more than 200 detected genes, between 500 and 30,000 total number 
of counts and less than 10% mitochondrial DNA expression were kept for downstream analysis. All samples 
were integrated using CCA and log normalization was performed with a scaling factor of 10,000. Then, PCA 
was performed to reduce data dimensions and UMAP was used for visualization. SingleR and celldex packages 
in R were used to identify fibroblasts based on Spearman correlation across marker genes between each cell and 
the reference  samples50. Cell type assignment was computed for each cell against the reference labels including 
sorted 18 main cell  types51. Cluster labels from GSE142471 were used to identify cells similar to cluster 3 cells 
using the functions FindTransferAnchors and TransferData in Seurat.

Analysis of wound healing in young and aged mice. To identify the effect of aging in cluster 3-like 
cells proportion and the accompanied EMT activation, 2 combined count matrices were retrieved from 
GSE188432 representing young and aged skin  samples52. The data included normal skin and wounded skin from 
7 young and 3 aged mice skin samples. The authors generated a full-thickness wound using 6-mm punch in 
7-week-old and 88-week-old C57BL/6 J mice. Cells with more than 200 detected genes, between 500 and 30,000 
total number of counts and less than 20% mitochondrial DNA expression were kept for downstream analysis 
(46,713 cells). All samples were integrated using CCA and log normalization was performed with a scaling factor 
of 10,000. Then, PCA was performed to reduce data dimensions and UMAP was used for visualization. Cluster 
labels from GSE142471 were used to identify cells similar to cluster 3 cells using the functions FindTransferAn-
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chors and TransferData in Seurat. The function AddModuleScore in Seurat was used to calculate scores for EMT 
in young and aged skin samples. Additionally, FindMarkers function in Seurat was used to compare the EMT-
related genes in cluster 3-like cells between aged and young mice.

Predictions of drugs for fibroblast shate change. To identify which drugs or compounds have an 
effect on gene expression profile mimicking that observed change in cluster 3 fibroblast in wounded skin com-
pared to normal skin, a similarity check was performed using the Connectivity map  software36. Connectivity 
map is a large public database of drugs and gene signatures which represent the effect of drugs on gene expres-
sion profile. The basic concept of Connectivity map is to compare between drug-specific gene expression profiles 
as references with a specific gene signature by submitting a list of upregulated and downregulated genes relevant 
to a particular biological condition. The connectivity map database includes 6,100 microarray experiments of 
1,309 drugs on different cell lines such as MCF7, HL60 and PC3 and varying concentrations and time points 
against vehicle controls. The fold change of treatment to control was calculated and sorted into decreasing order 
and converted to a ranked list. DEGs with adjusted p value < 0.05 and log2FC ± 0.25 resulting from comparing 
genes from cluster 3 in wounded skin and normal skin were annotated with HT_HG-U133A IDs as a require-
ment for Connectivity Map enrichment. Next, the annotated genes were submitted as a signature query in Con-
nectivity Map software to perform the enrichment. The query was compared to the ranked vector based on 
the fold changes of the probesets. The algorithm gives a connectivity score either positive or negative for each 
instance using a nonparametric rank-ordered Kolmogorov–Smirnov (KS) test. Next, the resulting connectivity 
scores were normalized using random permutation, so values close to + 1 reflects closeness or similarity between 
the submitted query and the effect of the drug on the gene expression profile using the ranked list. A score close 
to -1 emphasizes an inverse similarity between the submitted query and the reference profile. The algorithm 
detected the similarity between drug signatures from the database and the differential expression pattern in 
cluster 3 fibroblasts to unravel unexpected connections between them.

Discussion
Understanding the dynamic cell biology of wound healing process in vivo in light of scRNA-seq data will provide 
critical insight into the molecular basis of wound closure. Fibroblasts have numerous roles in skin wound healing 
including deposition of new ECM of murine  skin53. We analyzed scRNA-seq data of mice skin in normal state 
and during wound healing with the objective to identify and characterize the subset of fibroblasts playing a major 
role in the wound healing process. To be able to identify drugs that could induce fibroblasts to enable wound 
healing, genes from the emerging subset of fibroblasts in wound versus those in normal skin were compared 
followed by a similarity check between the resulting differential gene expression pattern and the drug effects on 
gene expression profile.

Compositional analysis identified a distinct percentage of cell types in normal and wounded skin. The 
observed early upregulation of neutrophil chemotaxis is consistent with the reported sequel of events wherein 
early recruitment of neutrophils is followed by monocytes which differentiate into wound  macrophage54,55. 
Fibroblasts were identified in different states based on distinct gene expression profiles. This is consistent with 
previous reports that dermal fibroblasts include processes relevant to wound  healing54,56,57. Among the identi-
fied fibroblast subsets, the increase in cluster 3 percentage from 3.93% in normal skin to 14.09% among all cells 
in wounded skin hints towards their potential role in the wound healing process. The top upregulated plasma 
membrane proteins found in wounded skin cluster 3 fibroblasts were Sfrp2, Sfrp4 and Sfrp1. Sfrp2 has been 
found to be essential for myocardial tissue survival and repair by enhancing engraftment of mesenchymal stem 
cells and formation of granulation  tissue58,59. On the other hand, downregulation of Gpc4 (Glypican 4) induces 
cell migration and proliferation in breast cancer cell  lines60. Upregulation of EMT process in cluster 3 fibroblasts 
during wound healing is consistent with previous  reports13,61. During the EMT process, epithelial cells acquire 
mesenchymal features such as enhanced motility, change their interaction with ECM and undergo cytoskeletal 
 rearrangement8–11. Cxcl1, Cthrc1, Ptx3 genes support EMT and were upregulated in cluster 3 wound fibroblasts. 
Cxcl1 promote EMT in cutaneous wound healing by mediating formation of new  vessels62,63. Cthrc1 improves 
wound healing via regulating NOTCH and TGF-β pathways and recruiting M2  macrophages64. The deficiency of 
Ptx3 has pathological consequences such as epithelial hyperplasia, excessive accumulation of collagen and defec-
tive mature tissue  formation65. Data analysis presented in this work identified multiple genes involved in angio-
genesis to be upregulated in cluster 3 fibroblasts in wounded skin including Fstl1 and Nrp1. Fstl1 (Follistatin Like 
1) is a known angiogenic factor that promotes ischemic tissue revascularization and endothelial cell  function66. 
Nrp1 (Neuropilin 1) is critically important to drive  angiogenesis67. Anti-Nrp1 treatment exhibited a significant 
reduction in the wound vascular density (67% decrease) during dermal wound  healing67. Investigation of cluster 
3 wound fibroblasts suggest their involvement in EMT and angiogenesis during the wound healing process. EMT 
upregulation was found to be cluster 3-specific, while angiogenesis score was found to be higher in clusters 0, 3 
and 9 indicating that multiple subsets of fibroblasts are involved in the angiogenesis process. Cluster 3 cells were 
found to have a similar proportion of proliferative and non-proliferative cells in both normal skin and wounded 
skin indicating that the observed increase in cluster 3 cells resulted from cell differentiation. This indicates that 
some other mechanisms rather than proliferation might be involved in the rise of cluster 3 cells during wound 
healing. Trajectory inference also explained such differentiation of cluster 3 fibroblasts in normal skin (resting 
state) into cluster 3 fibroblasts in the wound healing state. These observations lead to the hypothesis that cluster 
3 cells present in uninjured skin differentiate to the observed state during wound healing activating EMT.

Wound healing outcomes may be viewed as a product of the acquisition of appropriate cell state and fate by 
participating cell types. Such state and fate of any single cell depends on their gene expression profiles. In this 
work the differential gene profile of cluster 3 fibroblast can be considered as the signature profile requirement 
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for physiological wound healing. Identification of drugs with the ability to induce pro-healing signature gene 
expression profile will help populate a drug candidate list for preclinical and clinical validation studies. The result 
of the similarity check compared to the signature of cluster 3 wound fibroblasts revealed a group of drugs with 
positive enrichment scores (pro-healing) and another group with negative enrichment scores (anti-healing). 
Anti-healing drugs will interfere with the healing process and should be useful to induce wound chronicity for 
experimental processes. Among the pro-healing drugs, TTNPB, an analog of retinoic acid, activates retinoic acid 
receptors potently and  selectively68. TTNPB in combination with other small molecules has been reported to 
enable chemical reprogramming of mice embryonic fibroblasts to pluripotent stem  cells69. Verteporfin induces 
skin regeneration without scar formation through Yap (Yes-associated protein)  inhibition70. Additionally, verte-
porfin was found to inhibit fibrogenic genes and was suggested to be a novel antifibrotic  agent71. The third drug 
identified to have a positive enrichment score was nicotinic acid which represents the active form of vitamin-B3. 
Nicotinic acid was reported to have anti-inflammatory and antioxidant  effects72–74. Furthermore, nicotinic acid 
topical administration was found to improve tissue regeneration in excisional skin wounds through the incre-
ment of fibroblast proliferation, collagen synthesis, and  vascularization75,76. Findings of this study provide a list 
of candidate drugs that should be preclinically and clinically tested for their effects on improving wound closure. 
In conclusion, findings of this work at transcriptome level underscore the diversity and dynamicity of wound-
site fibroblasts and their potential responsiveness to drugs that may induce their change of state favoring wound 
closure. However, the results are solely based on analysis of transcriptomic datasets and further mechanistic 
studies are needed to support its inferences.

Data availability
The datasets are publicly available in the National Center for Biotechnology Information Gene Expression Omni-
bus (GEO) repository (GSE142471, GSE153596, GSE178758 and GSE188432).
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