
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22630  | https://doi.org/10.1038/s41598-022-27145-3

www.nature.com/scientificreports

Identifying vital nodes for influence 
maximization in attributed 
networks
Ying Wang , Yunan Zheng * & Yiguang Liu 

Identifying a set of vital nodes to achieve influence maximization is a topic of general interest in 
network science. Many algorithms have been proposed to solve the influence maximization problem 
in complex networks. Most of them just use topology information of networks to measure the node 
influence. However, the node attribute is also an important factor for measuring node influence in 
attributed networks. To tackle this problem, we first propose an extension model of linear threshold 
(LT) propagation model to simulate the information propagation in attributed networks. Then, we 
propose a novel community-based method to identify a set of vital nodes for influence maximization 
in attributed networks. The proposed method considers both topology influence and attribute 
influence of nodes, which is more suitable for identifying vital nodes in attributed networks. A series 
of experiments are carried out on five real world networks and a large scale synthetic network. 
Compared with CELF, IMM, CoFIM, HGD, NCVoteRank and K-Shell methods, experimental results 
based on different propagation models show that the proposed method improves the influence spread 
by −2.28% to 4.76% , −2.50% to 16.97% , 0.18% to 16.07% , 0.22% to 41.82% , 0.23% to 11.24% and 
10.78% to 75.22%.

Complex networks are common in real world and can be used to represent complex systems in many fields. 
More and more complex networks come with attributes in nodes and are named as attributed  networks1. These 
networks not only contain topology structures, but also have rich node attribute information such as text descrip-
tions of nodes and comments related to nodes. Influence maximization (IM) is a classic optimization problem 
in network science, which aims to seek a set of vital nodes that the diffusion orients from these nodes can cause 
the maximum influence spread in networks. Vital nodes identification for IM has been widely used in many 
applications such as viral  marketing2, information  propagation3, rumor  analysis4 and so on.

Many IM algorithms have been proposed in complex networks, including diffusion-based  algorithms5–7 
and heuristic-based  algorithms8–12. Diffusion-based algorithms provide a good performance guarantee to the 
optimal solution with the weakness of enormous calculations. Heuristic-based methods improve efficiency to 
some extent but take no consideration of propagation models or do not optimize a global function of influence. 
Recently, community-based  methods13–15 play an important role in the IM problem. A community is defined as 
a group of nodes with dense internal connections and relatively sparse connections to the rest of the network. It 
can effectively represents the organization and structure of the  network16. Benefiting from the fact that different 
communities are sparsely connected, the propagation overlap between seed nodes selected from different com-
munities can be effectively reduced.

Due to the benefits of community-based influence maximization algorithms, many previous studies have 
focused on them in complex networks. The first and foremost step of community-based algorithms is community 
detection. Numerous community detection methods based on matrix  factorization17,18, label  propagation19,20, 
 percolation21 and random  walks22,23 have been proposed with certain limitations and scalability issues. However, 
these community detection methods only use the information relevant to the graph topology and fail to corre-
late node features with the community  structure24. Recently, the graph-embedding based community detection 
 methods25,26 have attracted tremendous attention, since they can learn a representation that embeds the topol-
ogy into the attribute for each node. Given the good performance of graph-embedding methods in community 
detection, we try to apply it to solve the influence maximization problem.

Although many community-based methods have been proposed for the IM problem, there are few methods 
that are suitable for attribute networks. Almost all graph clustering or community detection methods in attribute 
networks do not conduct the influence maximization study since there are no suitable information propagation 
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models for attributed networks. Moreover, community-based influence maximization algorithms avoid the 
propagation overlap between seed nodes selected from different communities, but the propagation overlap 
between seed nodes selected from the same community may still exists which may reduce the influence spread. 
To solve the above problems, we propose an information propagation model and a novel community-based 
influence maximization algorithm for attributed networks. The main contributions are summarized as following:

• An extension of classic linear threshold (LT) information propagation model is proposed named LTPlus, 
which not only considers topology structures of networks but also attributes of nodes.

• To solve the influence maximization problem in attributed networks, we propose a community-based influ-
ence maximization algorithm using graph-embedding. To the best of our knowledge, it is the first time that 
a graph-embedding based community detection method is used to the influence maximization problem.

• The proposed method alleviates the propagation overlap between seed nodes selected from the same com-
munity by recalculating the influence of seed nodes’ predecessors during the seed nodes selection process.

• Extensive analysis is performed on six datasets, and experimental results show that the proposed method 
has a good performance.

Related work
The related IM algorithms in this paper are classified into three categories: diffusion-based methods, heuristic-
based methods and community-based methods. These methods are discussed with more details below:

Kempe et al.5 proposed the diffusion-based method, Greedy, which provides a (1− 1/e − ε) approximation 
performance guarantee to the optimal solution. However, its computation cost is expensive since it needs to 
perform Monte-Carlo simulations on all possible combinations of the current seed set and remaining nodes. 
Leskovec et al.6 proposed the CELF algorithm which employed the principle of diminishing marginal utility to 
avoid a lot of Monte-Carlo simulations. It significantly reduces the time complexity but it is still not scalable to 
large scale networks.

To improve efficiency, some heuristic centrality measures, such as degree  centrality27, K-Shell9, betweenness 
 centrality28 and closeness  centrality29 etc., were proposed to evaluate node influence. Moreover, Li et al.3,30 pro-
posed to identify influential nodes by novel gravity models.  LENC12 identified influential nodes by the entropy 
of the node based on the weight distribution of edges connected to it. However, these methods may lead to rich-
club effect in solving the IM problem.  VoteRank31 was proposed to reduce the rich-club effect by selecting seed 
nodes based on a voting scheme, where the voting ability of each node is the same and each node gets the vote 
from its neighbors.  NCVoteRank32 argued that the voting ability of each node should be different and depends 
on its topological position. A fast and accurate IM algorithm,  LMP33, was proposed by using a local traveling 
for labeling of nodes based on the influence power. This method can achieve a linear time complexity, while 
have good performance.  HGD34 presented a heuristic group discovery method to reduce the influence overlap, 
which utilized the K-Shell and degree centrality to cluster nodes. However, HGD is a local optimal clustering 
algorithm that cannot guarantee global optimal performance. Overall, heuristic-based methods are relatively 
time efficiency but may lack performance guarantee in some networks.

As the community detection is an appropriate approach for understanding the structure and hidden infor-
mation in complex  networks35, many community-based IM methods were proposed. Li et al.36 pointed out that 
higher community diversity can reduce the risk of marketing campaigns and prolong the effect of a marketing 
campaign in the future promotion.  OASNET37 used the Clauset-Newman-Moore community detection method 
and selected candidate nodes from each community by classic greedy-based algorithm, then selected seed nodes 
from candidates by dynamic programming. However, the efficiency of this method still need to be improved. A 
fast overlapping community-based IM method,  FIP33, was proposed by removing insignificant communities to 
decrease the search space for choosing seed nodes. This makes the method time efficient. The probability coef-
ficient of global diffusion is considered to improve seed node selection performance.  CoFIM38 used the Louvain 
 algorithm39 for community detection and defined the node-expansion and intra-community propagation under 
the weighted cascade model, which successfully avoid thousand times of Monte-Carlo simulations. This method 
performs well on many large-scale datasets and has high time efficiency.

However, these aforementioned methods just focus on network topologies and fail to measure the importance 
of node attributes in attributed networks, while the attribute is also an essential indicator as well as the topol-
ogy. Some  literature40,41 dealt with node attributes and studied target-aware IM problem, but their optimization 
objective functions are different from traditional IM. Besides, the continued growth of the network scale and 
high-dimensional node attributes put forward higher requirements for the efficiency and scalability of commu-
nity detection algorithms in attributed networks. Inspired by the significant progresses in graph-embedding42, 
graph-embedding based community detection came into view in recent years.  AANE43 computed the attribute 
similarity matrix between nodes and calculated vector representation associated with structural information 
and designed the joint learning process in a distributed manner. He et al.44 cast MRFasGCN as an encoder for 
unsupervised community detection in attributed networks. AGC 45, an adaptive graph convolution method, 
exploited high-order graph convolution to capture global cluster structure and adaptively selected the appro-
priate order for different networks. These graph-embedding methods only complete the community detection 
task, but do not solve the IM problem. Therefore, vital nodes identification for IM in attributed networks is still 
a challenging problem to be solved.
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Preliminaries
Attributed networks. Given a directed and attributed network G = (V ,E,X) , where V = {v1, v2, . . . , vN } 
is the set of nodes and |V | = N . E is the set of edges which can be represented as an adjacency matrix 
A = {aij} ∈ R

N×N , where aij = 1 if node vi connects to node vj and otherwise aij = 0 . X = [x1, x2, . . . , xN ]
T is 

the attribute matrix of all nodes, where xi ∈ R
d is a real-valued attribute vector of node vi and d is the dimension 

of attribute.

Linear threshold (LT) model. The LT  model5 is a widely used information diffusion model. In the LT 
model, nodes are divided into two states: active and inactive. In a directed network, the activation of node vi 
depends on its in-neighbors Nin(vi) . If vj ∈ Nin(vi) is active, it has an influence on vi , denoted as bvj ,vi . In the LT 
model, bvj ,vi is set as:

where kin(vi) represents the in-degree of node vi . Each node in Nin(vi) has an influence value to vi , and the sum-
mation of these values must be no more than 1, that is 

∑

vj∈Nin(vi)
bvj ,vi ≤ 1 . Each node vi has an activation 

threshold θvi which is between 0 and 1. Therefore, vi will be activated once 
∑

vj∈Nin(vi)
bvj ,vi ≥ θvi . The diffusion 

process is over until no more nodes can be activated.

Independent cascade (IC) model. Another well-known information diffusion model is the IC  model46. 
In the IC model, each edge has a probability p to measure the social influence of this edge. Nodes are also divided 
into active and inactive states. If a node vi is activated, then it has a chance with probability p to activate its inac-
tive out-neighbor vj in a directed network.

Influence maximization. Influence  maximization47 aims to find a node subset S ⊆ V  and |S| = m , such 
that the expected influence scope is maximal:

where φ(S) is an objective function used to evaluate the expected number of active nodes after the diffusion 
process.

Well-known state-of-the-art methods. Four state-of-the-art IM methods are introduced in this paper. 
These algorithms have been  proved48,49 to perform well on many datasets.

• CELF6: a much faster greedy-based algorithm based on the submodularity of the spread function. By using 
the principle of diminishing marginal utility, CELF achieves an up to 700 times improvement in running time 
while maintains similar practical performance compared with the simple greedy-based algorithm. However, 
the running time of CELF is still terrible especially on large-scale datasets which makes it meaningless in 
practical applications. Thus, we do not compare it on the Synthetic dataset in this paper.

• IMM50: a martingale-based algorithm which utilizes reverse influence  sets51. It computes a lower bound of 
the maximum expected spread of m nodes and derives the number of random Reverse Reachable(RR) sets 
needed to be sampled. The first m nodes that appear most frequently in the RR sets are selected as seeds.

• CoFIM38: a community-based framework for influence maximization assuming that influence propagates 
from seed nodes to their neighbors and then from these neighbors to other nodes within the same com-
munity. Based on this assumption, an incremental greedy algorithm is developed to select seed nodes. In 
contrast to other community-based algorithms, CoFIM has high time efficiency.

• HGD34: a heuristic group discovery algorithm using centrality metrics and the strong community rule to 
cluster cohesive nodes into one group. Compared with other heuristic-based algorithms, HGD is more effi-
cient and perform well especially when m is small since it is a local optimal algorithm.

• NCVoteRank32: a neighborhood coreness based voting approach designed to find spreaders by taking the 
coreness value of neighbors into consideration for the voting of node influence. NCVoteRank is also a 
heuristic-based algorithm, which outperforms many existing popular algorithms and is competitive in time 
complexity.

• K-Shell9: in this method, nodes that locate within the core of the network are identified to be more important 
by the K-Shell decomposition analysis. The top k nodes with larger K-Shell value are selected as seeds.

Methods
The proposed LTPlus propagation model. For a given directed and attributed network G, the LTPlus 
model considers both the topology influence and the attribute influence between nodes. In order to better com-
pare with the LT model, we do not change the topology influence evaluation method in the classical LT model. 
Thus, the incoming topology influence of vi is the same as Eq. (1), and here it is noted as TIin(vj , vi):

where vj is the in-neighbour of vi.

(1)bvj ,vi =
1

kin(vi)
,

(2)S∗ = argS max φ(S),

(3)TIin(vj , vi) =
1

kin(vi)
,
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Since node attributes represent common characteristics among nodes which play essential roles in the infor-
mation diffusion, the incoming influence from in-neighbors in the LTPlus model is jointly decided by both the 
incoming topology influence and the incoming attribute influence. Similar attribute vectors mean that these 
nodes are homogenous, and the information propagation between these nodes will be easier. That is to say, 
the attribute influence will be greater if attribute vectors of two nodes are similar. We simply use the cosine 
 similarity52 to measure the similarity of attribute vectors:

In order to make the topology influence and attribute influence in the same order of magnitude, we adopt the 
edge-softmax53 method to normalize sa(vj , vi) for each node and get the incoming attribute influence of vi:

where vj is the in-neighbour of vi , and Nin(vi) represents the in-neighbors set of vi.
To sum up, the incoming influence of node vi from its in-neighbour vj is calculated as the linear combina-

tion of the incoming topology influence TIin(vj , vi) and the incoming attribute influence AIin(vj , vi) . Thus, the 
incoming influence b̂vj ,vi in LTPlus model is defined as:

where α1 and α2 indicate the weight coefficients of topology and attribute influence, α1,α2 ∈ (0, 1) and 
α1 + α2 = 1.

Obviously, the LTPlus propagation model takes into account topology structure and attribute similarity 
between nodes. Besides, the LTPlus propagation model fully considers that different in-neighbors contribute 
different attribute influence, which is more in line with real situations of information propagation. When α1 = 1 , 
the LTPlus model degenerate into the LT model, while α1 = 0 means only node attributes are considered in 
information diffusion process. Generally, we treat the topology and attribute influence on an equal basis and 
set α1 = α2 = 0.5.

The graph-embedding based community detection method. The goal of graph-embedding based community 
detection is to partition nodes in the network G into l clusters C = {C1,C2, . . . ,Cl} . As mentioned above, an 
adaptive graph convolution (AGC)  method45 is used in this paper as the community detection method. A low-
pass graph filter F45 is designed in AGC:

where Ls = I − D− 1
2AD− 1

2 is the symmetrically normalized graph Laplacian operator, I is the identity matrix 
and D is the degree matrix. To capture global graph structures and facilitate clustering, AGC defined k-order 
graph  convolution45 as:

where k is a positive integer. After convolution, AGC employed the linear kernel K = X̄X̄T to learn pairwise simi-
larity between nodes and then performed spectral clustering on W = 1

2 (|K | + |KT |) to obtain clustering results.
k-order graph convolution will produce smoother attributes as k increases, but too large k may lead to over-

smoothing, i.e., the attributes of nodes in different clusters are mixed and become indistinguishable. To adaptively 
select the order k, the intra-cluster distance intra(C)45 is computed to measure clustering performance:

where |C| is the number of communities and |Ci| is the number of nodes in community Ci . This graph convolu-
tion network is trained iteratively until intra(C) converges.

However, AGC is designed for undirected networks. The symmetric operator Ls cannot be directly used for 
directed networks, since adjacency matrices of directed networks are asymmetric. A simple but effective method 
is to construct a symmetric matrix As

54:

Then, a degree matrix Ds is built from As and the Laplacian operator is Lsd = I − D
− 1

2
s AsD

− 1
2

s  . That is, the graph 
Laplacian operator Ls in AGC is replaced by Lsd in this paper. For the convenience of notation, the improved 
AGC method applicable for directed networks is noted as DAGC.

The seed nodes selection method. After community detection, nodes with powerful influence will be selected 
from different communities by measuring both topology and attribute influence. There are two key issues in the 

(4)sa(vj , vi) =
xi · xj

�xi� · �xj�
.

(5)AIin(vj , vi) =
sa(vj , vi)

∑

vl∈Nin(vi)
sa(vl , vi)

,

(6)b̂vj ,vi = α1 · TIin(vj , vi)+ α2 · AIin(vj , vi),

(7)F = I −
1

2
Ls ,

(8)X̄ = (I −
1

2
Ls)

kX,

(9)intra(C) =
1

|C|

∑

Ci∈C

1

|Ci|(|Ci| − 1)

∑

vi ,vj∈Ci ,vi �=vj

�x̄i − x̄j�,

(10)As = A+ AT .
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seed nodes selection phase: (1) The first problem is that how many nodes should be selected from each com-
munity. (2) The second problem is that how to select seed nodes.

To address the first problem, we empirically find that communities of different sizes should not be treated 
the same, since placing seed nodes in a large community could trigger more nodes than in a small community. 
According to this, a quota-based approach is adopted and mCi nodes are selected from each community:

where round() function means rounding the value to the nearest integer, and m is the total number of seed nodes. 
Thus, mCi nodes will be selected from community Ci and added to the seed node sequence. If the seed node 
sequence length is larger than or equal to m, the iteration will be broken. In contrast, if the seed node sequence 
is smaller than m, the node with the maximum influence in the current network will be selected as the seed node.

For the second key problem, when selecting influential nodes in directed networks, we pay more attention 
to how many nodes can be affected by one node. The more nodes it points to, the more nodes it can affect. Thus, 
the out-degree of each node is used to measure its topology influence, which can be formulated by:

The more similar the attributes between nodes, the more likely the information successfully propagates between 
these nodes. Thus, the attribute influence of a node is measured by its attribute similarities to its out-neighbors. 
Attributes after graph convolution X̄ are used to compute cosine similarities for nodes since they integrates 
topology and attributes well. It is noteworthy that different from Eq. (4), the attribute similarity after convolution 
noted as sa(vi , vk) is calculated between node vi and its out-neighbor vk:

The attribute influence of a node is calculated by summing the attribute similarities to its all out-neighbors:

where Nout(vi) is the out-neighbors set of node vi.
To ensure that the influence of each node is in the range of [0, 1], the topology and attribute influence of each 

node are normalized by Min-Max scaling normalization method. The normalization of TIout(vi) and AIout(vi) 
noted as NTI(vi) and NAI(vi) respectively are calculated as follows:

where max(TIout) and min(TIout) are the maximal and minimal value of nodes’ topology influence respectively, 
and similarly max(AIout) and min(AIout) are the maximal and minimal value of nodes’ attribute influence respec-
tively. The topology influence and the attribute influence are supposed to be treated on an equal basis. Thus, the 
total outcoming influence of each node is:

(11)mCi = round(m×
|Ci|

N
),

(12)TIout(vi) = kout(vi).

(13)sa(vi , vk) =
x̄i · x̄k

�x̄i� · �x̄k�
.

(14)AIout(vi) =
∑

vk∈Nout (vi)

sa(vi , vk),

(15)















NTI(vi) =
TIout(vi)−min(TIout)

max(TIout)−min(TIout)

NAI(vi) =
AIout(vi)−min(AIout)

max(AIout)−min(AIout)
,
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For communities whose mCi > 0 , the INF value of nodes in this community will be calculated and the node with 
the maximum INF value will be selected as the seed node. To reduce the propagation overlap between seed nodes 
selected from the same community, the node will be removed from the network when it is selected as a seed 
node and the influence of its in-neighbors should be weakened. Suppose that node vj is a in-neighbour of node 
vi , the topology and attribute influence of vj will be reduced if node vi is selected as the seed node. The updated 
topology influence TI ′out(vj) and attribute influence AI ′out(vj) can be calculated as:

Then normalization topology and attribute influence of vj can be updated by taking Eq. (17) into Eq. (15), respec-
tively. Finally, INF(vj) is also updated by recalculating Eq. (16). The node with the maximum INF will be selected 
as the seed node in each iteration. The proposed seed nodes selection method can be summarized as Algorithm 1.

Complexity analysis. We also analyze the time complexity of our proposed algorithm. Firstly, if DAGC method 
iterates t times, the time complexity of DAGC community detection is O(N2dt + ndt2) where N is the number 
of nodes, d is the number of attributes and n is the number of nonzero entries of the adjacency matrix A45. 
Secondly, influence values for nodes in communities whose mCi > 0 will be calculated in the seed nodes selec-
tion phase (as described in the 3th to 9th rows of Algorithm 1), which have a O(l ·mCi · |Ci|) complexity. Since 
|Ci| can be approximated as the average value Nl  and mCi is a constant, O(l ·mCi · |Ci|) ≈ O(N) . The complexity 
for recalculating influence of the selected node’s in-neighbors (as described in the 12th row of Algorithm 1) 
is O(l ·mCi ∗ Nin(v

∗
i )) . Since Nin(v

∗
i ) ≪ |Ci| , O(l ·mCi ∗ Nin(v

∗
i )) ≪ O(N) , the complexity of the seed nodes 

selection method is O(N). Overall, the total complexity of our proposed influence maximization algorithm is 
O(N2dt + ndt2 + N).

Results
Data description. We evaluate the performance of the proposed algorithm on five real world datasets and 
a large-scale synthetic dataset. Details of these datasets are described in Table 1. Five real world datasets includ-
ing Pubmed, Cora, Cornell, Texas and Washington. The Pubmed dataset consists 19,717 scientific publications 
from PubMed database pertaining to diabetes classified into one of three classes. Its citation network consists 
44,338 links. Each publication in the dataset is described by a TF/IDF weighted word vector from a dictionary 
which consists of 500 unique words. The Cora dataset consists 2708 scientific publications and 5429 links. Each 
publication in the dataset is described by a 0/1-valued word vector indicating the absence/presence of the cor-
responding word from the dictionary. The dictionary consists of 1433 unique words. The Cornell, Texas and 
Washington datasets are gathered from three different universities. Each line of these datasets contains two 
webpage IDs. The first entry is the ID of the webpage being cited and the second ID stands for the webpage 
which contains the citation. The synthetic large dataset named ‘Synthetic’ is constructed with 105,000 nodes and 
830,159 edges. To generate our synthetic dataset, the function random_partition_graph() in the networkx pack-
age of Python is used. More specifically, the number of community is set as 3 and the size of community is set 
as [3× 104, 3.5× 104, 4× 104] . Nodes in the same community are connected with probability 2.5× 10−4 and 
nodes of different communities are connected with probability 1× 10−4 . The attribute of each node is a vector of 
size 100. Initially, each bit of the vector is randomly assigned 0 or 1. When all neighbors of a node have attributes, 
the attribute of this node is rounding the average attribute value of its neighbors.

Performance metrics. Two critical metrics are employed to evaluate the performance of our proposed 
algorithm in this paper:

• Influence spread σ(S) : for a given seed set S, the number of expected active nodes when the diffusion on the 
propagation model comes to steady state is denoted as φ(S) . In the following experiments, φ(S) is the aver-
age value of 1000 times Monte-Carlo simulations. To facilitate observations on datasets of different scales, 
influence spread is defined as the ratio between φ(S) and the total number of nodes in the dataset: 

(16)INF(vi) = NTI(vi)+ NAI(vi).

(17)

{

TI
′

out(vj) = TIout(vj)− 1

AI
′

out(vj) = AIout(vj)− sa(vj , vi).

Table 1.  Details of six datasets used in this paper.

Networks Nodes Edges Communities Attributes

Pubmed 19,717 44,338 3 500

Cora 2708 5429 7 1433

Cornell 195 304 5 1703

Texas 187 328 5 1703

Washington 230 446 5 1703

Synthetic 105000 830159 3 100
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 Influence spread is used to evaluate the effectiveness of an influence maximization algorithm. Higher σ(S) 
value indicates that the algorithm is more effective.

• Running time: running time is defined as the time for selecting m seed nodes. In the previous community-
based influence maximization  study38, only the time of seed nodes selection phase is considered. To analyze 
the running time of the whole influence maximization algorithm in more detail, we report the running time 
of community detection, attribute similarity calculation (or K-Shell calculation for HGD and NCVoteRank) 
and seed nodes selection respectively, as shown in Table . The running time is measured in seconds.

• Speedup: the speedup is measured for influence spread of the proposed method over baseline methods with 
m = 30 , 40 and 50 seed nodes. The  speedup55 is computed as: 

 where A and B are the influence spread of two compared methods. For example, if the influence spread of Ours 
and K-Shell methods are 0.4475 and 0.2328, respectively, the speedup of Ours compared to K-Shell is calculated 
as: speedupOurs→K−Shell = ((0.4475− 0.2328)÷ 0.4475× 100) = 47.98 . Similarly, the speedup of K-Shell 
compared to ours is calculated as: speedupK−Shell→Ours = ((0.2328− 0.4475)÷ 0.2328× 100) = −92.23.

Experimental results. Based on the above networks, benchmark algorithms including  CELF6,  IMM50, 
 CoFIM38,  HGD34,  NCVoteRank32, K-Shell9 are used to compare with our proposed method. To evaluate the 
effectiveness of our proposed method, we compare the influence spread σ(S) of different algorithms under dif-
ferent initial numbers of seed nodes m on LTPlus model with random sampling the active threshold of each 
node. Results on six datasets are shown in Fig. 1, where x-axis represents the number of seed nodes m and y-axis 
represents the influence spread σ(S) . From the results, we can see that our method outperforms community-
based method (CoFIM) and heuristic-based methods (HGD, NCVoteRank K-Shell) on all datasets. Besides, our 
proposed method surpasses CELF on Pubmed dataset in some scenarios. CELF and IMM have similar perfor-
mance in influence spread on six datasets. On the four small datasets(Fig. 1b–e), our method has similar per-
formance with CELF and IMM which have theoretical guarantees. However, CELF can not be executed on the 
Synthetic dataset since its running time is intolerable. Methods with no theoretical guarantees may perform well 
on some datasets, but perform poorly on other datasets. For example, NCVoteRank and CoFIM perform well on 
Pubmed and Synthetic but poorly on Washington. Since both topology and attribute influence are considered 
in the seed nodes selection process of Ours, our method is more stable than other methods without theoretical 
guarantees. Overall, from the influence spread results on six datasets, our proposed algorithm shows its effective-
ness and robustness in finding influential seed nodes and achieving influence maximization.

Since Independent Cascade (IC) model is also a classic propagation model, experiments are carried out on 
the IC model to evaluate the performance of the proposed method. In the IC model, a uniform probability p is 
assigned to each edge of the graph. A node vi has a chance of p to activate its out-neighbors. The probability p in 
our experiments is set as 0.1 by following the previous  study5 and the number of seeds m ranges from 5 to 50. 

(18)σ(S) =
φ(S)

N
.

(19)speedup = ((A− B)/A)× 100,

Figure 1.  The influence spread σ(S) of different algorithms on six datasets with different number of initial 
spreaders m under the proposed LTPlus model. The active threshold of each node is randomly sampled.
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From Fig. 2, we can see that our proposed method still has a good performance in most cases. In addition, our 
node selection method does not depend on the propagation model, we do not need to re-select seeds when the 
propagation model changes. This proves the universality of our method.

The speedup experiments based on the LTPlus and the IC model are shown in Tables 3 and 4, respectively. 
Three different number of seeds 30, 40 and 50 are taken for experiments. Table 3 reveals that the proposed method 
has positive speedup than CoFIM, HGD, NCVoteRank and K-Shell on all datasets. Besides, the proposed method 
has positive speedup than CELF and IMM on Pubmed and Washington datasets. Although the proposed method 
has negative speedup than CELF and IMM on Cornell and Texas datasets, the absolute value of the speedup is 
very small, which means the difference of influence spread between these two methods is small. In Table 4, the 
proposed method has positive speedup than baseline methods in almost all datasets. The experimental results 
show the effectiveness of our proposed method.

In the seed nodes selection phase, we propose to recalculate the current influence of seed nodes’ in-neighbors 
(as shown in the 12th row of Algorithm 1) to reduce the propagation overlap between seed nodes selected from 
the same community. To verify the effectiveness of this step, we compare the influence spread of our proposed 
algorithm with/without recalulating INF of seed node’s in-neighbors, respectively. As shown in Table 2, the first 

Figure 2.  The influence spread σ(S) of different algorithms on six datasets with different number of initial 
spreaders m under the IC model.

Table 2.  Ablation experiments that analyze the impact of recalculating the INF of seed nodes’ in-neighbors. 
The propagation is simulated on the LTPlus model and the number of seed nodes m changes from 5 to 50. The 
first and second row of each dataset is the influence spread of our method with/without recalulating INF of 
seed node’s in-neighbors, respectively. Significant values are in bold.

Datasets

m

5 10 15 20 25 30 35 40 45 50

Pubmed
0.0331 0.0525 0.0663 0.0788 0.0906 0.1003 0.1093 0.1194 0.1286 0.1368

0.0290 0.0491 0.0612 0.0752 0.0852 0.0957 0.1064 0.1157 0.1258 0.1343

Cora
0.1756 0.2376 0.2760 0.3150 0.3300 0.3554 0.3759 0.4034 0.4119 0.4276

0.1635 0.2359 0.2635 0.2917 0.3175 0.3341 0.3573 0.3925 0.4042 0.4169

Cornell
0.5358 0.6195 0.6688 0.7027 0.7335 0.7852 0.8144 0.8663 0.8921 0.9008

0.5269 0.6125 0.6593 0.6862 0.7174 0.7490 0.7915 0.8329 0.8638 0.8859

Texas
0.5470 0.6155 0.6561 0.6879 0.7262 0.7613 0.7782 0.8061 0.8279 0.8504

0.5470 0.5804 0.6387 0.6607 0.6753 0.6921 0.7199 0.7553 0.7849 0.7984

Washington
0.5492 0.5990 0.6354 0.6664 0.6901 0.7153 0.7417 0.7696 0.7902 0.8125

0.1133 0.5769 0.6111 0.6342 0.6631 0.6858 0.7015 0.7302 0.7670 0.7776

Synthetic
0.0009 0.0016 0.0023 0.0031 0.0040 0.0046 0.0054 0.0060 0.0069 0.0078

0.0009 0.0016 0.0021 0.0029 0.0037 0.0043 0.0052 0.0058 0.0066 0.0074
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row of each dataset is the influence spread of Ours method on the LTPLus model, and the second row of each 
dataset is the influence spread of our proposed method without recalculating INF of seed nodes’ in-neighbors 
in seed nodes selection phase, that is, without the 12th row in Algorithm 1. Compared to the method without 
recalculating INF in seed nodes selection phase, the influence spread of Ours method has an improvement to 
some extent. Especially in Washington network when m = 5 , the value of the first row is significantly higher 
than the second row. This may be due to that nodes in the network are concentrated in the same community 
and the number of initial seed nodes is small. Most seed nodes are selected from the same community and they 
may connect with each other. Seed nodes have a large number of common neighbors which eventually lead to a 

Table 3.  Speedup % (in terms of influence spread) for Ours versus other baseline methods on six datasets. The 
propagation is simulated on the LTPlus model.

Datasets Seed size

Methods

Ours CELF Ours IMM Ours CoFIM Ours HGD Ours NCVoteRank Ours K-Shell

Pubmed

30 1.59 −1.62 9.48 −10.48 5.75 −6.10 39.65 −65.71 7.16 −7.71 75.22 −303.63

40 0.75 −0.75 8.21 −8.94 5.84 −6.20 41.82 −71.89 9.38 −10.35 73.81 −281.80

50 0.80 −0.81 8.42 −9.19 6.79 −7.28 36.04 −56.34 10.24 −11.40 71.99 −257.05

Cora

30 −0.12 0.12 1.85 −1.89 5.24 −5.53 10.46 −11.68 3.84 −3.99 70.73 −241.65

40 0.20 −0.20 2.45 −2.51 9.69 −10.74 13.86 −16.09 7.33 −7.91 47.22 −89.46

50 0.02 −0.02 2.06 −2.10 8.58 −9.38 13.45 −15.54 6.82 −7.32 47.98 −92.23

Cornell

30 −1.78 1.75 −1.81 1.78 11.67 −13.21 15.63 −18.53 6.38 −6.82 17.11 −20.64

40 −2.28 2.23 −2.50 2.44 16.07 −19.14 16.62 −19.93 11.24 −12.67 24.51 −32.47

50 −0.90 0.89 −0.41 0.41 13.74 −15.93 15.60 −18.48 9.74 −10.79 22.94 −29.78

Texas

30 −1.11 1.09 −1.45 1.43 8.65 −9.47 10.79 −12.09 5.31 −5.60 15.82 −18.79

40 −2.06 2.01 −2.27 2.22 9.17 −10.09 12.73 −14.59 6.48 −6.93 18.54 −22.76

50 −0.58 0.57 −0.84 0.83 9.73 −10.78 10.89 −12.22 4.97 −5.23 19.36 −24.00

Washington

30 0.49 −0.49 0.79 −0.79 7.76 −8.41 7.99 −8.69 4.64 −4.86 13.49 −15.60

40 0.50 −0.50 0.41 −0.41 12.62 −14.45 9.74 −10.79 4.78 −5.02 13.80 −16.01

50 0.44 −0.44 0.62 −0.62 14.90 −17.52 11.23 −12.65 3.33 −3.44 15.16 −17.87

Synthetic

30 – – 12.98 −14.91 4.47 −4.68 6.98 −7.50 5.25 −5.54 32.24 −47.57

40 – – 16.97 −20.45 6.51 −6.97 6.10 −6.49 6.96 −7.48 33.25 −49.81

50 − − 16.97 −20.44 7.77 −8.42 12.64 −14.46 6.65 −7.12 36.53 −57.55

Table 4.  Speedup % (in terms of influence spread) for ours versus other baseline methods on six datasets. The 
propagation is simulated on the IC model.

Datasets Seed size

Methods

Ours CELF Ours IMM Ours CoFIM Ours HGD Ours NCVoteRank Ours K-Shell

Pubmed

30 1.55 −1.58 1.94 −1.98 1.21 −1.22 5.98 −6.36 0.99 −1.00 14.86 −17.45

40 1.45 −1.47 2.17 −2.21 1.41 −1.43 6.95 −7.47 0.91 −0.91 16.01 −19.06

50 1.47 −1.50 2.03 −2.07 1.16 −1.17 6.53 −6.99 0.96 −0.97 16.77 −20.16

Cora

30 0.64 −0.64 2.32 −2.38 2.44 −2.50 7.46 −8.06 1.84 −1.87 57.67 −136.25

40 2.01 −2.05 2.39 −2.45 2.70 −2.77 8.42 −9.19 2.61 −2.68 41.55 −71.10

50 2.04 −2.08 2.89 −2.97 3.75 −3.90 9.53 −10.53 3.93 −4.09 41.16 −69.96

Cornell

30 2.49 −2.55 1.74 −1.77 8.06 −8.76 10.89 −12.22 5.27 −5.56 11.74 −13.30

40 −0.87 0.86 −0.38 0.38 6.83 −7.34 7.62 −8.25 3.21 −3.32 12.00 −13.63

50 −0.26 0.26 −0.46 0.46 6.58 −7.04 7.23 −7.80 2.75 −2.83 11.78 −13.35

Texas

30 3.51 −3.63 2.60 −2.67 9.09 −9.99 7.75 −8.40 4.99 −5.25 10.78 −12.08

40 2.48 −2.55 0.92 −0.93 7.88 −8.56 7.21 −7.77 9.88 −10.96 11.67 −13.22

50 0.53 −0.54 0.06 −0.06 6.21 −6.63 5.18 −5.46 8.98 −9.86 11.01 −12.37

Washington

30 4.76 −5.00 4.21 −4.39 9.52 −10.52 8.07 −8.77 6.92 −7.44 15.82 −18.79

40 3.89 −4.05 2.86 −2.94 9.75 −10.81 7.44 −8.04 5.72 −6.07 14.26 −16.63

50 3.99 −4.16 2.25 −2.30 9.44 −10.42 6.25 −6.67 3.61 −3.74 11.92 −13.54

Synthetic

30 – – 0.41 −0.41 0.18 −0.18 0.22 −0.22 0.23 −0.23 18.70 −23.00

40 – – 0.46 −0.47 0.19 −0.19 0.23 −0.23 0.25 −0.25 18.77 −23.10

50 – – 0.40 −0.40 0.27 −0.27 0.31 −0.31 0.32 −0.32 18.92 −23.34
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small influence spread. Therefore, it is necessary to recalculate the influence of seed nodes’ in-neighbors in the 
seed nodes selection process.

Time efficiency is a key indicator that many researchers concern about. Therefore, the running time of our 
proposed algorithm and baselines algorithms are analyzed in stages. Experiments are carried out on a computer 
with 2.30 GHz Intel i7-10875H CPU and 32GB memory. Table  shows the running time of various algorithms on 
six datasets. Here the running time of seed nodes selection is the time of selecting 25 seed nodes. As can be seen 
from this table, the time efficiency of our proposed method is very competitive in seed nodes selection phase. 
Although CELF has a good performance in influence spread, its running time is too long. IMM shows high time 
efficiency in all datasets. However, both CELF and IMM select seeds depend on the propagation model. They 
should reselect seeds when the propagation model changed. CoFIM has a relative high time efficiency in the 
seed nodes selection process in large-scale datasets. The running time of K-Shell is low, but its influence spread is 
unsatisfactory. HGD and NCVoteRank show high time efficiency in some datasets but sometimes it is inefficient 
and their influence spread performance is also not stable.

Besides, except for the time of seed nodes selection phase, the community detection time of Ours and CoFIM 
is also analyzed. Compared with CoFIM, the graph-embedding based community detection method used in 
Ours requires more time to find proper communities. Although the community detection phase seems to be 
time-consuming, it only needs to be carried out once for each dataset, no matter how many groups of experi-
ments are carried out on one dataset. The time of calculation attribute similarities in CELF and Ours under the 
LTPlus model is reported. Similarly, the time of calculation K-Shell values in HGD and NCVoteRank is also 
reported. It should be noted that attribute similarities and K-Shell values are computed and saved in advance for 
the convenience of multiple experiments. That is, they are only executed one time for each dataset.

Discussion
In summary, we propose an extension of LT information propagation model, named LTPlus, that considers topol-
ogies and attributes of nodes in propagation simulations. This model is more suitable than previous information 
propagation models in attributed networks. In addition, we propose a novel community-based method to identify 
a set of vital nodes to achieve influence maximization in attributed networks. To the best of our knowledge, the 
proposed method makes the first effort to combine influence maximization with the graph-embedding com-
munity detection method. Compared with well-known state-of-the-art methods, empirical analyses on five real 
world networks and a large scale synthetic network under the LTPlus model suggest that our proposed method 
always performs very competitively, as shown in Fig. 1. Experimental results in Fig. 2 show the universality of our 
proposed method under the IC model. We believe our work can bring a little light into studies of the influence 
maximization problem in the future. For example, the graph-embedding community detection method can be 
further improved for directed attributed networks. In addition, an end-to-end method considering the property 
of propagation models can be further explored in the future work.

Data availability
All relevant real world datasets can be downloaded from https:// github. com/ yingw ang926/ attri buted_ datas ets.

Table 5.  Running time (in seconds) for different algorithms on six datasets. The number of seed nodes m is 
25. Symbol ‘–’ indicates that the corresponding cell has no value.

Phase Datasets CELF IMM CoFIM HGD NCVoteRank K-Shell Ours

Community detection

Pubemd – – 14.43 – – – 69.43

Cora – – 1.57 – – – 28.83

Cornell – – 0.17 – – – 2.28

Texas – – 0.18 – – – 1.67

Washington – – 0.20 – – – 2.26

Synthetic – – 1616.40 – – – 3374.65

Attribute similarity calculation (or 
K-Shell calculation*)

Pubemd 4.74 4.74 – 6.44* 6.44* 6.44* 4.74

Cora 0.47 0.47 – 0.88* 0.88* 0.88* 0.47

Cornell 0.05 0.05 – 0.16* 0.16* 0.16* 0.05

Texas 0.05 0.05 – 0.07* 0.07* 0.07* 0.05

Washington 0.05 0.05 – 0.10* 0.10* 0.10* 0.05

Synthetic – 29.43 – 117.49* 117.49* 117.49* 29.43

Seed nodes selection

Pubemd 101,232.05 0.38 0.31 0.36 0.41 – 0.56

Cora 1977.51 0.05 0.16 0.22 0.04 – 0.16

Cornell 14.33 0.01 0.08 0.11 0.02 – 0.02

Texas 14.65 0.01 0.08 0.09 0.03 – 0.02

Washington 24.25 0.01 0.11 0.17 0.03 – 0.02

Synthetic – 2.53 0.56 2.15 13.65 – 2.98

https://github.com/yingwang926/attributed_datasets
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