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Room-temperature semiconductor radiation detectors (RTSD) have broad applications in medical 
imaging, homeland security, astrophysics and others. RTSDs such as CdZnTe, CdTe are often 
pixelated, and characterization of these detectors at micron level can benefit 3-D event reconstruction 
at sub-pixel level. Material defects alongwith electron and hole charge transport properties need 
to be characterized which requires several experimental setups and is labor intensive. The current 
state-of-art approaches characterize each detector pixel, considering the detector in bulk. In this 
article, we propose a new microscopic learning-based physical models of RTSD based on limited data 
compared to what is dictated by the physical equations. Our learning models uses a physical charge 
transport considering trapping centers. Our models learn these material properties in an indirect 
manner from the measurable signals at the electrodes and/or free and/or trapped charges distributed 
in the RTSD for electron–hole charge pair injections in the material. Based on the amount of data 
used during training our physical model, our algorithm characterizes the detector for charge drifts, 
trapping, detrapping and recombination coefficients considering multiple trapping centers or as a 
single equivalent trapping center. The RTSD is segmented into voxels spatially, and in each voxel, 
the material properties are modeled as learnable parameters. Depending on the amount of data, our 
models can characterize the RTSD either completely or in an equivalent manner.

RTSDs are required for a large number of applications such as medical imaging, homeland security, astronomy 
and high energy physics1–5. These applications calls for high quality crystals at reasonable cost, with uniform 
and optimized charge transport properties - no polarization effect, excellent fabrication quality, high breakdown 
voltage, high drift velocity, high energy resolution and lowest possible defects (charge trapping centers). Over 
the last several decades, RTSDs such as CdTe, CdZnTe, HgI2 , TlBr have emerged as potential detectors. RTSDs 
are often used as compact radiation detection units with highly segmented pixelated anode patterns.

CdZnTe (CZT) is the leading RTSD of choice today. The performance and yield of high quality detector-grade 
materials are limited by presence of high concentrations of performance-limited defects which are randomly 
distributed. CZT suffers from major detrimental defects6 such as compositional inhomogeneity due to non-unity 
segregation coefficient of Zn7, presence of high concentration of secondary phases, Te inclusions and sub-grain 
boundaries/dislocation walls in high concentration in CZT array. These defects act as trapping centers, hindering 
localized charge transport and imposes spatial non-uniformity in charge transport properties, thereby adversely 
affecting the detector performance8–13.

The efforts to characterize these detectors has been done over last several years. For instance, using thermo-
electric emission spectroscopy (TES) and thermally stimulated conductivity (TSC) measurements, the thermal 
ionization energies of the electron and hole traps were measured14. Determination of the trap lifetime was done 
using a microwave cavity perturbation method in CdZnTe and HgI215. In another work, the electron and hole 
traps of CdZnTe samples were radially irradiated with 5 MeV focused proton beam to generate electron–hole 
pairs and fill traps, which were released later by thermal re-emission. Electron and hole traps were distinguished 
by excitation near the vicinity of the appropriate electrodes16. Deep trap levels in CdZnTe were characterized 
by analyzing simultaneous multiple peaks on TSC measurements17. 9 defect levels and irradiation-induced 
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variations of these levels were observed on CdZnTe:Al using TSC measurements18. The average hole trapping 
time τh was derived using statistical model of charge collection efficiency based on known electron average 
trapping time19. Average hole de-trapping time τdh was extracted by comparing the measured and simulated 
signals for holes as measured in the cathode20–22. The effects of deep-level defects on the carrier mobility in 
CZT have been studied23. 13 trap levels in Indium doped CZT crystal had been shown24. Imperfections due to 
mechanical damage or adsorbed chemical species trap charges or increase leakage current. Using pulsed laser 
microwave cavity perturbation method selectively at the surface and in the bulk region of CZT, these defects has 
been characterized25. The influence of type of metal contacts and deposition techniques on the recombination 
and trapping defects at the metal-semiconductor interface has also been studied26. The uniformity of high flux 
CdZnTe has also been characterized13. In literature, the defects and charge transport properties of electrons and 
holes are measured using classical approaches considering homogeneous behavior over the detector. This requires 
cumbersome multiple experiments and technical know how. However, the homogeneity and repeatability of the 
defects and charge transport properties within a detector and across multiple detectors are unknown. However, 
achieving high energy resolution below 1.0% at 662 keV and sub-millimeter position detection accuracy depends 
on in-depth characterization of the RTSDs. Such characterization of RTSD will also aid in developing improved 
reconstruction algorithms. However, this approach traditionally is hugely time consuming, requires numerous 
sophisticated experiments and skilled manpower. Thus, for RTSD arrays, precise characterization of each detec-
tor spatially and temporally is vital.

A Machine Learning based approach is used to address this problem. Machine learning has been tremen-
dously popular in the last few years with several novel works in different fields. Recent focus on applying machine 
learning to materials, physics based systems, drug discovery is gaining momentum. Integrating Physics-based 
Modeling and Machine Learning is becoming more popular over the years27,28. The overall objectives of such 
approaches are to develop inverse models, improve predictions beyond state-of-art physical models, model 
parameterization, partial differential equations (PDEs) solutions, discover symbolic governing equations, and 
others. Solving problems in physics governed by PDEs using Neural Networks has been done29,30. These models 
are typically based on physics guided loss function, initialization, architecture, hybrid model of physics with 
Deep Learning (DL) and other approaches. For example, the two-dimensional wave equation is modeled as a 
Recurrent Neural Network31. DeepONets32 have been demonstrated as a powerful tool to learn nonlinear opera-
tors in a supervised data-driven manner. The 2D Poisson Equation has been solved with a Physics Informed 
Neural Networks33. In most of these physics based machine learning approaches, relatively simpler PDEs have 
been solved. However, the charge transport in a RTSD has multitude of coupled PDEs34 involving charge drift, 
trapping, detrapping and recombination, which has been addressed only in one of our previous works35 using 
a physics-inspired learning model.

Our approach follows the principle of physics-guided design architecture. Our previous work35 focused on 
characterizing radiation detectors using learning-based approaches, where adequate data dictated by physical 
equations of electron and hole charge transport in the RTSD. These are the signals at the electrodes, free and 
trapped charges in the bulk of the material, which were used to train and test the learning-based model. In our 
previous work, the physical charge transport equations were used in the model architecture with input param-
eter as the injected electron–hole charge pairs at different voxels and output parameters as the free and trapped 
charges, alongwith signals at the electrodes. All the output parameters were used for training and testing the 
model, which we refer as the model with adequate data. However, in reality, although the signals are readily avail-
able from the electrodes, obtaining data such as free and trapped charges in the bulk of the RTSD with several 
trapping centers is cumbersome.

In this paper, our main contributions has been to develop physics-inspired learning models derived from 
the physical charge transport equations for both electrons and holes for a RTSD based on fewer data than what 
is dictated by the physics of charge transport in RTSDs. Depending on the amount of data, this result in models 
which characterizes the material either completely for multiple trapping centers or in a single equivalent trap-
ping center. Adequate data can be obtained using numerous hardware experiments, which is time consuming, 
and requires skilled manpower. This work proposes physics-based models to characterize the RTSD with fewer 
simulation data. This would be hugely beneficial for characterizing the detector in large scale and implementing 
in different applications—medical imaging, security, astronomy and others, without much additional effort and 
experimental setups. Depending on the amount of data compared to what is desired by physical equations, the 
detector can be characterized either precisely based on the numerous trapping centers or as a single equivalent 
trapping center. As in our previous work35, the detector is spatially discretized into voxels. The physical charge 
transport equations are incorporated into the architecture of the model, in each voxels of the model. A conven-
tional CNN or RNN model typically has millions of trainable weights. However, incorporating the physical charge 
transport equations into the architecture of the model results in fewer trainable weights and requires less training 
data, as the amount of training data is proportional to the number of trainable parameters. The trained weights 
are one-to-one related with the RTSD material properties. We use simulated data for training our learning-based 
physical model of charge transport in RTSD.

Our learning-based physical models is an attempt to solve the vital problems currently plaguing the char-
acterization of radiation detectors—(a) Characterization of detector material properties at finer resolution (at 
micron scale) in a fast and efficient way, (b) Characterization of defects in the material depending on the amount 
of data, and (c) Characterization of the material precisely based on multiple trapping centers or as a single 
equivalent trapping center.
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Methods
In this section, we present the classical approach for detector modeling, learning-based full model of the detec-
tor and our learning-based physical model of detectors with reduced data. Our approach of developing the 
learning-based physical models based on reduced data has been progressively developed with reduced amount 
of data during training the models, thereby reducing the amount of learnable parameters (and hence the material 
properties) in the model as shown in the subsequent sections of the paper.

Classical approach for detector modeling.  Electrons and holes transport properties play a vital role in 
selecting the RTSD. Shockley-Read-Hall (SRH) Theory36,37 governs the trapping, detrapping and recombination 
during charge transport. Rodrigues et al.38 measured the detailed properties of these detectors using the charge 
transport and charge continuity equations with multiple electron and hole defect levels—coupled with Poisson’s 
equation39–43. In the RTSD, the electron–hole pairs are created when high energy photons interact with the 
material. Subsequently in the RTSD, the free charges drift towards the respective electrodes, along with trapping, 
de-trapping in the defect levels and recombination of free charges in the bulk of the material44. The temporal 
dynamics of free electrons and holes following the SRH model is affected by the trapping energy states in the 
bandgap45. For free hole concentration (p), with trapping and detrapping lifetimes τTi and τDi respectively for ith 
trap, and pti as the concentration of holes in the ith trap, the following equation can be written45,

The trapping and detrapping lifetimes dictate whether the defects induce short term or long term trapping 
of charges in the detector. Considering the low probability of transition of charges between the trapping cent-
ers, the occurrence of such process46 is neglected in Eq. (1). The equations governing the transport, trapping 
and detrapping, and diffusion of electrons and holes is detailed35. Signals collected at the electrodes arise due 
to the movement of charges47–50. The detector setup is shown in Fig. 1 with the 9 grid electrodes on the anode 
side—north–west (NW), north (N), north–east (NE), west (W), center (C), east (E), south–west (SW), south 
(S), south–east (SE), and, 1 single large cathode electrode (CAT).

The simulated data for training the proposed learning model has been generated using the classical physical 
equations34,35. A MATLAB code was developed for describing the charge transport equations in the detector, by 
defining the transport, trapping, de-trapping and lifetimes of electrons and holes which are µe , µh , τeT , τeD , τhT1 , 
τhD1 , τhT2 , τhD2 , τe , and τh respectively as the fixed pre-defined parameters, with electric field along the material35. 
As in our previous work35, the classical model was created for a discretized (voxelized) RTSD, with charge input 
at any voxel. At each time step, the signals are collected at the cathode and pixelated anodes. The free and trapped 
charges in different voxels are also computed at each time step. The time steps and total number of time steps 
is defined a priori. The input for training the learning-based model consists of electron–hole pairs injected at 
known voxel positions. The signals, alongwith free and trapped charges in different voxels of the classical model 
over different time steps are the output of the learning-based model35.

Learning‑based full model of detector.  We subdivide the RTSD into N voxels, (N = number of subdivi-
sions in the material in any dimension). In each of the discretized voxels, the material properties such as µe,h,i , 
τeT ,i , τeD,i , τhT1,i , τhD1,i , τhT2,i , τhD2,i , τe,i , and τh,i are defined, which refer to the drift coefficients for electrons and 
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Figure 1.   Detector Configuration (i) Pixelated anode pattern with 9 pixels as the regions of interest, (ii) 
Detector configuration with pixelated anode on top, CZT in the middle and, cathode at the bottom. Figure 
adapted with permission35.
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holes, electron trapping lifetime, electron detrapping lifetime, hole trapping 1 lifetime, hole detrapping 1 life-
time, hole trapping 2 lifetime, hole detrapping 2 lifetime, electron lifetime and hole lifetime respectively in ith 
voxel35. The model therefore allows the determination of the unknown material properties with higher spatial 
resolution than the bulk of the RTSD. For each of these coefficients (referred here as τ in general), we compute 
the number of charged particles (electrons or holes) remaining in that particular level as Nleft = N0e

−t/τ , where 
N0 and Nleft are the number of charged particles at a particular level at t = 0 and at time t respectively35. We use 
these charges in our model. For a particular material property τ , we can find out the fraction of charges remain-
ing in that energy level. A voxelized representation of the detector in 1D is shown in Fig. 2a with the electrodes 
at either end - anode on the right and cathode on the left. The high energy radiation (for example Gamma rays or 
X-rays) can interact in any position of the RTSD. The learning-based model is a recurrent network structure over 
time with the input to the model as the injection positions of the electron–hole pairs with the magnitude of the 
injected charges normalized to 1 as shown in Fig. 2b. Each voxel consists of discretized material properties as the 
trainable weights. As charges drift under the influence of Electric Field, the electrons moves towards the anode 
(blue arrows in Fig. 2b) and the holes moves towards the cathode (red arrows in Fig. 2b). The operations in each 
voxel can be either that of the full model as shown in Fig. 3a or as an equivalent model as in Fig. 4. Each voxel 
consists of free and trapped electron and hole charges at each time instant. The movement of charges between the 

Figure 2.   RTSD model with (a) 1D voxels and electrodes at the either ends, and (b) Overview of the learning-
based physical model of RTSD. The input to the model is the electron–hole charge and position. The learning-
based physical model consists of trainable weights in each voxel. The charges move dynamically from one voxel 
to another based on the Electric Field and polarity (blue for electrons, and red for holes). The free and trapped 
charges in each voxel alongwith the signals generated during movement of charges are used as output of the 
model. Cathode and Anode is on outer ends of Voxel 1 and N respectively.

Figure 3.   (a) Operations at voxel 3 at a particular time t. The electron transport from cathode to anode (left 
to right) is shown in the bottom half of this figure, while the hole transport in the opposite direction is shown 
in the top half of the figure. Figure adapted with permission35, and (b) Current generation in the RTSD. For 
simplification, we show the 1D model with only five voxels. When the γ-rays hit voxel 3, an electron–hole 
pair is produced. Charge transfer from one voxel to another induces a potential difference w at the electrodes. 
The product of transferred charge with w gives the generated current at the electrodes. Figure adapted with 
permission35.
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different voxels gives rise to signals at the electrodes. The output of the model are the signals from the electrodes, 
free and trapped electron and hole charges in the voxels over time. Based on the electron–hole pair input to this 
model, the outputs (signals, free and trapped charges) are computed over time35.

Figure 3a shows the operations taking place in voxel i at time t. At any time t − 1 , the charge in voxel i in free 
state is qt−1,i

h  for holes and qt−1,i
e  for electrons. Under the influence of Electric Field from Anode to the Cathode, 

holes drift at time t from other voxels i + 1, . . . , i + k, . . . ,N , to voxel i, with charges qt,i+1

h,o , . . . , qt,i+k
h,o , . . . , qt,Nh,o  

respectively. These charges are added onto the existing charge to form the total charge due to holes in voxel i at 
time t. Some of this net hole charges recombine with the intrinsic electron concentration in the bulk of the mate-
rial. The presence of trapped hole centers in the RTSD traps some of the holes and detraps holes back as excess 
hole concentration over bulk. In Fig. 3a, we show 2 trapping centers for holes and 1 trapping center for electrons 
which resemblances a typical CZT detector14,34. However, this modeling approach can be used for other RTSDs 
as well with several trapping centers for electrons and holes, depending on its material properties. A fraction 
of holes drift out of voxel i, while the remaining holes are left behind in voxel i at time t. Similar operations are 
repeated for electrons, as shown in bottom half of Fig. 3a. This approach is as per our previous work35.

Figure 3b shows the model with the detector discretized into 5 voxels (for illustration). The high energy rays 
are incident on voxel 3 creating electron–hole pairs in that voxel. The electrons drift towards the anode (right of 
voxel 5), while the holes drift towards the cathode (left of voxel 1). While drifting from one voxel to another, the 
electron charges are multiplied by difference of induced potentials, to generate electrical current from movement 
of electrons ( signalelectrons ) as per the Schokley-Ramo Theorem48. Similar phenomena occur to generate electrical 
current from movement of holes ( signalholes ). The induced potential differences due to the motion of charges are 
fixed based on the geometry and pre-computed in this model35.

Additionally, we consider the applied bias voltage to the electrodes to be fixed at Vi and Vf  . In general, the 
voltage can vary in any manner within the RTSD depending on the defects within the material. Here we consider 
the voltage at each voxel of the detector to be a linearly increasing function from cathode to the anode. An error 
term errorvoltage , is formulated as the difference between the voltages at a particular voxel obtained from succes-
sive linear segments, as detailed in our previous work35.

The learning-based model is trained with the data simulated in MATLAB. The input is the voxel position 
and magnitude of the injected electron–hole pair. The signals obtained at the electrodes along with the electron 
and hole charges (free and trapped) in each of the voxels over time are the output of this learning-based model. 
The overall loss function is computed as the sum of the squared errors between the signals and charges in the 
voxels compared to the ground truth signals along with the error2voltage . We consider CZT detector with 2 trapping 
centers for holes and 1 trapping center for electrons14,34 as shown in Eq. (2). In the loss function, the subscript gt 
refers to the ground truth data for the particular parameter generated in MATLAB, while the subscript L refers 
to the data generated by the learning based model as detailed in our previous paper35.

Learning‑based physical models of detector with reduced data.  The learning-based full model of 
the detector uses a loss function taking into consideration the complete data as required by the classical physical 
equations—signals, voltage distribution in the material, free and trapped charges in the different trapping cent-
ers for both electrons and holes. In the real world, each of these data must be obtained from experimental hard-
ware setups with the detector, which not only requires costly equipments, but also skilled manpower and time. 
In order to address this issue, we propose learning-based models to learn from fewer data than in the full model 
(which is dictated by the classical physical model). We explore the models by training with fewer data than what 
is dictated by the classical physical equations, step-wise removing small fraction of relevant data from the full 

(2)
LF =k[(signalgt − signalL)

2 + error2voltage] + l[(qe,gt − qe,L)
2 + (qeT1,gt − qeT1,L)

2]

+ n[(qh,gt − qh,L)
2 + (qhT1,gt − qhT1,L)

2 + (qhT2,gt − qhT2,L)
2].

Figure 4.   Equivalent Operations in voxel i at time t.
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learning-model (such as charge trapped and trapping centers) and evaluate the performance of the learning-
model. In the end, we remove a significant portion of the data from the full model and use only the signals for 
training the physical model. Our models have been developed keeping in mind what can be measured with the 
hardware setups and labor required to generate these data.

Physical Model‑1.  The Physical Model-1 has been developed using signals at the electrodes, voltage distribu-
tion along the detector, free electron charges and, free and trapped hole charges in one trap center as shown in 
Eq. (3). We use hole charges corresponding to one trapping center and no electron charges for its trapping center 
for CZT detector with 2 trapping centers for holes and 1 trapping center for electrons. Our model as shown in 
Figs. 2 and 3 can be trained using charges corresponding to any one of the hole trapping center. However, for 
illustration purposes, we have used data from hole trapping center 1. For any other material with NTh trap-
ping centers for holes and NTe trapping centers for electrons, we would use the data corresponding to NTe − 1 
trapped charges for electrons and NTh − 1 trapped charges for holes.

The learning-based model uses the same hyperparameters k, l, n in the loss function in Eq. (2) which was 
derived through optimization in our earlier work35.

Physical Model‑2.  In Physical Model-1, we observed from our simulation experiments that the hyperparam-
eters k, l, n in the loss function are biased heavily towards the free and trapped charges, and hence the hyper-
parameters l, n are much higher than k. Thus, the Physical Model-2 has been developed considering only the 
free electron charges and, free and trapped hole charges, corresponding to hole charges in only one trapping 
center—in this case using hole charges in hole trapping center—1 (for illustration purposes). The loss function 
( LF2 ) is then defined in Eq. (4),

The model does not use the signals and the voltage distribution in bulk of the detector, as well as the hole 
charges in the trapping center 2 of the CZT detector to characterize the material. In general, for NTh trapping 
centers for holes and NTe trapping centers for electrons, we can use the free hole and electron charges, as well as, 
electron and hole trapped charges for NTe − 1 and NTh − 1 trapping centers respectively in training the model.

Physical Model‑3.  In the Physical Model-3, we further reduce the dependency on any of the trapped hole 
charges which were used in the Physical Model-2. This results in a model which can characterize the trapping 
centers in an equivalent manner. The equivalent trapping and detrapping lifetimes are the equivalent contribu-
tion of several trapping and detrapping lifetimes in the detector which contributes to the dynamics of charge 
motion in the detector as shown in Eq. (1). The properties of the physical detector can be attributed as defect-free 
properties in addition to equivalent defects in the material. The detector has inherent properties such as trans-
port of charges (electrons and holes) in bulk of the material alongwith recombination of charges which form the 
defect free model. On the other hand, the defects (equivalent) in the model are contributed due to trapping and 
detrapping of charges at the trapping centers within the detector. The presence of multiple trapping and detrap-
ping levels can be converted to equivalent trapping and detrapping levels. In such a scenario, for 2 hole trapping 
levels of CZT with trapping lifetimes τ1 and τ2 , the equivalent trapping lifetime is given in Eq. (5),

Considering the probability of trapping 1 level as pτ1 and detrapping 1 lifetime as τdt1 , alongwith probability 
of trapping 2 level as pτ2 and detrapping 2 lifetime as τdt2 , we can calculate the equivalent detrapping lifetime 
as in Eq. (6),

The physical model-3 is designed as a combination of defect-free model and model with equivalent defects. 
The equivalent computations in a voxel i is shown in Fig. 4. The equivalent trapping and detrapping weights are 
whTeq ,i and whDeq ,i for holes, and similarly for electrons, the corresponding trapping and detrapping weights are 
weTeq ,i and weDeq ,i . The charges in equivalent trap center is q̃heq ,i and q̃eeq ,i for holes and electrons respectively. The 
loss function consists of only the free electron and hole charges is used to train the model, as shown in Eq. (7),

Physical Model‑4.  In Physical Model-4, we use only the signals generated at the cathode and anodes due to 
motion of the charged particles to train. Typically, the signals are generated at the electrodes by the superposi-
tion of signals generated individually due to transport of electrons and transport of holes. However, in Physical 
Model-4, we separate out the signals generated due to the transport of electrons from the signals generated due 

(3)
LF1 = k[(signalgt − signalL)

2 + error2voltage] + l[(qe,gt − qe,L)
2] + n[(qh,gt − qh,L)

2 + (qhT1,gt − qhT1,L)
2].

(4)LF2 = l[(qe,gt − qe,L)
2] + n[(qh,gt − qh,L)

2 + (qhT1,gt − qhT1,L)
2].

(5)
1

τeq
=

1

τ1
+

1

τ2
.

(6)
pτeq

τdt,eq
=

pτ1
τdt1

+
pτ2
τdt2

.

(7)LF3 = l[(qe,gt − qe,L)
2] + n[(qh,gt − qh,L)

2].
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to the transport of holes and use them in training the model. The loss function for training the physical model-4 
is shown in Eq. (8),

It is also observed from our simulation experiments that by using the loss function in Eq. (8) leads to the 
trained model weights which fail to converge to the ground truth solution. The solution converges to a local 
minimum which is different from global minimum, and hence the trained weights differ from the ground truth 
weights. We use a Total Variation (T.V.) regularization on the different weights of the model corresponding to 
the trapping, detrapping and recombination of electrons and holes to converge the learned solution to the global 
minimum solution as observed in our simulation experiments. Similar to Physical Model-3, the multiple trap-
ping and detrapping hole coefficients in actual material is learned in the Physical Model-4 as a single equivalent 
trapping and detrapping weights as well. The loss function gets modified to LF4,m as shown in Eq. (9),

The T.V. regularization ensures smoothness in the trained weights of the model. The optimal values of �1 and 
�2 are determined through simulation experiments by finding the minimum error between the ground truth 
weights and the trained weights.

Implementation details.  The learning-based physical models of RTSD with reduced data is trained with syn-
thetic data by considering the classical model in MATLAB as in35. The scarcity of experimental data in litera-
ture for signals and charge distribution in bulk of the RTSDs is the major reason for developing an algorithm 
for generating simulated data for training and testing the different learning-based physical models. In these 
learning-based physical models, the input to the model are the injection positions and magnitude of the gener-
ated electron–hole pair charges. The magnitude of the injected charges are normalized to 1. The output from the 
model are the free and trapped charges in the voxels, alongwith the signals at the electrodes. The complete data 
as dictated by the physical equations for the RTSD is first generated using all the known phenomena such as 
drift, trapping, detrapping and recombination of electrons and holes. Subsequently, limited data is chosen out of 
these complete data in order to train the learning based models with complete physical properties for multiple 
trapping centers or a single equivalent trapping center, depending on the data.

The model weights are initialized during the start of the training process to its initial values. The models 
are trained over several epochs by computing the loss function based on the output corresponding to each 
input injections for the different reduced models. The model is a recurrent network structure over time, and 
hence Backpropagation through Time (BPTT)51,52 is used to compute the gradients of the loss with respect to 
the trainable weights in the model. The weights are updated based on a stochastic gradient descent method 
- ADAM optimization53. The learning rate of 5× 10−4 is used alongwith 2 momentum terms set as β1 = 0.9 
and β2 = 0.999 . The optimization reduces the loss function over epochs and the weights are trained. Once the 
model is trained, the weights of the model converges to the ground truth detector parameters used to generate 
the data in MATLAB. Our model has been developed using the popular machine learning Tensorflow library54 
in Python in eager execution mode.

The trained weights for the different Physical Models has been evaluated by computing an error metric for 
each of the weights. For example, for electron trapping weight ( weT ) with weT ,gt and weT ,lr as the ground truth 
and trained weights respectively, the error is expressed as,

The error is computed over the injection positions of the electrons/holes and the number of voxels over which 
the weight gets trained over the epochs. The difference between the trained weights and ground truth weights for 
the trained region is normalized by the ground truth weights, to take into account the different ranges of weights 
in the model and put equal emphasis on the different model weights. For multiple injections of electron–hole 
pair, when the model weights are not trained in a contiguous manner, only the voxels where the weights are 
trained are taken into account in order to compute this error metric. For characterization purposes in this paper, 
more emphasis is placed on the RTSD properties in the bulk of the material than at the ends. The mean error 
(Err(Mean)) is computed as the arithmetic mean of these individual weights. The relative error, expressed as

for each of the trained weight are also shown for electrons and holes for the four different physical models. For 
electron and hole weights, the mean of the different electron and hole weights are computed as the relative error 
metric.

(8)LF4 = [(sge,gt − sge,L)
2] + [(sgh,gt − sgh,L)

2].

(9)
LF4,m =[(sge,gt − sge,L)

2] + �1�∇weTeq +∇weDeq +∇we,Rec�2

+ [(sgh,gt − sgh,L)
2] + �2�∇whTeq +∇whDeq +∇wh,Rec�2

.
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Results
In this section, we present the simulation experimental results from the different physical models which have 
been presented in the previous section.

Numerical experiments with Physical Model‑1.  We performed experimental studies with unit elec-
tron–hole charge pair injections at voxel positions 9 with stride of 5 voxels until voxel 59. The trained weights of 
the model for electron drift coefficients, electron and hole trapping coefficients are shown in Fig. 5a–c, respec-
tively for different k, l and n in the loss function in Eq. (3). Table 1 shows the different error values of the learned 
model properties. The error for the electron coefficients are computed from Voxels 9 to 99 since the electrons 
move towards anode and the coefficients in those voxels gets trained, while for the hole coefficients, the error is 
computed from Voxels 1 to 59, where the hole move towards cathode. For k = 1 , l = 104 and n = 103 , the error 
is minimum, as shown in Table 1. The electron trapping, detrapping and recombination coefficients fit closely to 
the ground truth values as shown in Fig. 5b. The drift coefficients follow the ground truth which is uniform in the 
material as shown in Fig. 5a. Here we consider the fact that the hole drift coefficients is one-tenth that of electron 
drift coefficients (µh = 0.1µe) . The hole trapping, detrapping coefficients for the 2 trapping centers alongwith 
the recombination coefficients are shown in Fig. 5c. The holes travel from the point of injection towards the 
cathode which is Voxel 0 in our model. The holes get trapped inside the material due to its lower drift coefficient 
( µh ), and thus the hole coefficients are trained only in those voxels where the holes propagate.

Numerical experiments with Physical Model‑2.  Unit charge in terms of electron–hole pair injections 
at voxel positions 9 with stride of 5 voxels until voxel 59 are fed into the model in order to train the model. 
The trained weights of the model—drift coefficients, electron coefficients and hole coefficients are shown in 
Fig. 6a–c, respectively. In the weighted loss function of Eq. (4), we use the weights l = 10 , n = 1 , is based on the 
same ratio for the weights in the loss function of Eq. (3) used in Physical Model-1 which gives marginally smaller 
mean error. For the drift coefficients ( µe ), the trained weights follow the ground truth as shown in Fig. 6a. The 
learned trapping, detrapping and recombination coefficients for the electrons match closely to the ground truth 
parameters as in Fig. 6b. Similarly, for holes, the trapping, detrapping coefficients for trapping centers 1 and 2, 
alongwith the recombination coefficients match closely to the ground truth parameters as in Fig. 6c. For the 
trained weights as shown in Fig. 6, the error values of drift coefficients ( µe ), trapping ( weT ), detrapping ( weD ), 
recombination coefficients ( weRec ) for electrons are 1.6108× 10−4 , 0.1241, 0.0240, 0.1673 respectively which are 
computed for voxels 9 to 99. Similarly, the error values of the trapping 1 ( whT ,1 ), detrapping 1 ( whD,1 ), trapping 2 
( whT ,2 ), detrapping 2 ( whD,2 ) and recombination coefficients ( whRec ) for holes are 0.0768, 0.0447, 0.1005, 0.0640, 

Figure 5.   (a) Drift coefficients ( µe ), (b) electron coefficients ( weT , weD , weRec ), and, (c) hole coefficients ( whT ,1 , 
whD,1 , whT ,2 , whD,2 , whRec ) for e–h injection at voxel positions 9 with stride of 5 voxels until voxel 59 for k, l, n in 
Physical Model-1 as shown in the plot legend. Rec in the legend refers to recombination coefficients. Readers are 
suggested to enlarge the figure for closer view.

Table 1.   Error values for Physical Model-1. Err(µe) , Err(weT ) , Err(weD) and Err(weRec) are the Error values 
in the drift, trapping, detrapping and recombination coefficients of the electrons respectively. Err(whT ,1) , 
Err(whD,1) , Err(whT ,2) , Err(whD,2) and Err(whRec) are the error values in the trapping 1, detrapping 1, trapping 
2, detrapping 2 and recombination coefficients of the holes respectively. Err(Mean) is the arithmetic mean of 
these error values. Significant values are in [bold].

k, l, n Err(µe) Err(weT ) Err(weD) Err(weRec) Err(whT ,1) Err(whD,1) Err(whT ,2) Err(whD,2) Err(whRec) Err(Mean)

1,103,103 2.12×10−4 0.2437 0.1183 0.2567 0.0755 0.0447 0.0866 0.0574 0.1425 0.1140

1,104,103 1.55×10−4 0.0700 0.0728 0.1265 0.0781 0.0447 0.0911 0.0656 0.1903 0.0821
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0.2406 respectively which are computed for voxels 1 to 59. The arithmetic mean of the error of these coefficients 
is 0.0936.

Numerical experiments with Physical Model‑3.  The electron-hole charge pairs are injected at voxel 
positions 9 with stride of 5 voxels until voxel 59 during training the Physical Model-3 as well. The learned physi-
cal properties of the model—drift coefficients, electron coefficients and hole coefficients are shown in Fig. 7a–c 
respectively. Equation (7) is used as the loss function with weights l = 10 and n = 1 based on the same ratio 
for the weights in the free and trapped electron and hole charges as in simulation experiments with Physical 
Model-1 and Physical Model-2. Clearly, the electron drift, trapping, detrapping and recombination coefficients 
follow the ground truth values. The learned recombination coefficients for the holes follow the ground truth val-
ues as well. For multiple trapping centers for holes (2 in this case), the learning based model finds the equivalent 
trapping center, with equivalent trapping and detrapping lifetimes following Eqs. (5) and (6) respectively.

The ground truth values of trapping 1 lifetime is 0.195 µ s and trapping 2 lifetime is 0.094 µ s. This corresponds 
to the probability of trapping holes in trap center 1 and 2 to be 0.05 and 0.10 respectively. The ground truth 
equivalent trapping lifetime ( τeq ) is calculated using Eq. (5) to be 0.0634 µ s. The fraction of holes remaining as 
free holes after getting trapped in the equivalent trapping center is Nafter = Nbeforee

−dt/τeq . Considering time step 
dt = 10 ns, Nafter = 0.8541Nbefore . Thus, the fraction of holes getting trapped in the equivalent trapping center 
is 1− 0.8541 = 0.1459 . Similarly, in the ground truth simulation data, we considered fraction of charge getting 
detrapped from trap center 1 and 2 are 0.10 and 0.05 respectively. Thus, after detrapping, the fraction of charges 
remaining in trapping center 1 and 2 would be 0.90 and 0.95 respectively. Considering Nafter = Nbeforee

−dt/τeq , 
with the same time step of dt = 10 ns, the detrapping 1 and 2 lifetimes are 94.9122 ns and 194.9573 ns respec-
tively. Considering Eq. (6), and equivalent trapping probability as 0.1459, we compute the equivalent detrap-
ping lifetime τdt,eq as 145.9 ns. The fraction of holes remaining after detrapping from the equivalent trapping 

Figure 6.   (a) Drift coefficients ( µe ), (b) electron coefficients ( weT , weD , weRec ), and, (c) hole coefficients ( whT ,1 , 
whD,1 , whT ,2 , whD,2 , whRec ) for e–h injection at voxel positions 9 with stride of 5 voxels until voxel 59 for l and n in 
Physical Model-2 as shown in the plot legend. Rec in the legend refers to recombination coefficients. Readers are 
suggested to enlarge the figure for closer view.

Figure 7.   (a) Drift coefficients ( µe ), (b) electron coefficients ( weT ,1 , weD,1 , weRec ), and, (c) hole coefficients 
( whT ,1 , whT ,2 , whT ,eq , whD,1 , , whD,2 , whD,eq , whRec ) for e–h injection at voxel positions 9 with stride of 5 
voxels until voxel 59 for l and n in Physical Model-3 as shown in the plot legend. Rec in the legend refers to 
recombination coefficients. Readers are suggested to enlarge the figure for closer view.
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level would be 0.9338. Thus, the fraction of charges getting detrapped from the equivalent trapping center is 
1− 0.9338 = 0.0662 . From our simulation experiments, we find that our learning based model is able to cor-
rectly identify the equivalent trapping and detrapping probabilities as shown in Fig. 7c. For the trained weights 
as shown in Fig. 7, the error values of drift coefficients ( µe ), trapping ( weT ), detrapping ( weD ), recombination 
coefficients ( weRec ) for electrons are 1.32× 10−5 , 0.0412, 0.0316, 0.0277 respectively which are computed for 
voxels 9 to 99. Similarly, the error values of the equivalent trapping ( whT ,eq ), equivalent detrapping ( whD,eq ), and 
recombination coefficients ( whRec ) for holes are 0.0954, 0.1957 and 0.3378 respectively which are computed for 
voxels 1 to 59. The arithmetic mean of the error of these material properties is 0.1042.

Numerical experiments with Physical Model‑4.  The physical model-4 is trained with signals gener-
ated from motion due to electrons and holes separately. We show the convergence of trained hole coefficients 
and electrons coefficients. For holes, the physical model-4 finds out the equivalent trapping and detrapping coef-
ficients similar to physical model-3. Figure 8 shows the hole trapping, detrapping and recombination coefficients 
due to electron-hole pair injection at voxel positions 24, 27 and 30 for different �2 in Eq. (9). During training, 
the trapping hole and detrapping hole weights were bounded in [0.04, 0.07], and [0.15, 0.30] respectively which 
are close to the actual ground truth weights. The initialization of trapping, detrapping and recombination coef-
ficients for holes are done uniformly at 0.05, 0.2 and 0.005 respectively. This is represented as ‘bound’ in Table 3. 
It is seen that for �2 = 0 , without T.V. regularization, the hole trapping, detrapping and recombination coef-
ficients does not converge to the ground truth hole coefficients. On the other hand using the T.V. regularization 
improves the convergence of these coefficients to actual ground truth values. The different error values, com-
puted for hole coefficients from Voxels 13 to 30 for varying �2 values are shown in Table 2. For �2 = 0.001 and 
0.01, the hole trapping and detrapping coefficients are closer to the ground truth coefficients than for �2 = 0.1 
and hence smaller the error. However, for recombination coefficients, the trained weights for �2 = 0.1, 0.01 and 
0.001 are better than for �2 = 0 . Thus, it is seen that the weights �2 = 0.01, 0.001 in the loss function of Eq. (9) 
provides better convergence for the hole coefficients.

Additional simulation experiments has been done with �2 = {0.001, 0.01} without bounds on trapping and 
detrapping coefficients and electron-hole pair injections at Voxels 24, 26 and 28. All the initial weights of trapping 
and detrapping over the voxels has been uniformly initialized as {0.005, 0.005}, {0.05, 0.2}, {0.07, 0.3} which cor-
responds to ‘far’, ‘ip1’ and ‘ip2’ respectively in Figs. 9 and 10. Table 3 shows the different error values, computed 
for hole coefficients from Voxels 13 to 28. It is observed that bounds on the trapping and detrapping weights 
do not have any influence on the final trained weights of the holes. However, for �2 = 0.001 , the hole trapping, 
detrapping and recombination coefficients converge more closely to the ground truth parameters. Additionally, 
initializing the trapping and detrapping hole weights with ‘ip2’ converges the trained weights closer to the actual 

Figure 8.   Trapping, Detrapping and Recombination Hole Coefficients for hole injection at Voxels 24, 27 and 
30 in Physical Model-4 with varying � values as shown in the legend. Here � refers to �2 in Eq. (9). Readers are 
suggested to enlarge the figure for closer view.

Table 2.   Error values for Physical Model-4 with different �2 values. Err(whT ,eq) , Err(whD,eq) and Err(whRec) are 
the error values in the trapping equivalent, detrapping equivalent and recombination coefficients of the holes 
respectively. Err(Mean) is the arithmetic mean each of these error values. Hole injections are at voxel 24, 27 
and 30. Significant values are in [bold].

�2 Err(whT ,eq) Err(whD,eq) Err(whRec) Err(Mean)

0 0.3347 0.1139 0.7515 0.4000

0.001 0.0967 0.0672 0.0427 0.0689

0.01 0.1072 0.0727 0.0108 0.0636

0.1 0.1719 0.1419 0.0175 0.1104
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ground truth parameters, which signifies better convergence of the solution to ground truth parameters with 
weights initialized above the ground truth parameters.

Similar experiments has been done with varying �1 in Eq. (9) with �1 ∈ {0, 0.001, 0.01, 0.1} as shown in 
Table 4. The electron-hole pair injections are at Voxels 81, 84 and 87. It is seen that for �1 = 0.1 in Eq. (9), the 
mean error value has the minimum value of 0.0638. During training, the bounds on trapping, detrapping and 
recombination weights for electrons are bounded in [0.004, 0.012], [0.008, 0.02] and [0.0005, 0.005] respectively, 

Table 3.   Error values for Physical Model-4 for �2 = 0.001, 0.01 values. Err(whT ,eq) , Err(whD,eq) and Err(whRec) 
are the error values in the trapping equivalent, detrapping equivalent and recombination coefficients of the 
holes respectively. Err(Mean) is the arithmetic mean each of these error values. Hole injections are at voxel 24, 
26 and 28. Significant values are in [bold].

�2 condition Err(whT ,eq) Err(whD,eq) Err(whRec) Err(Mean)

0.001 bound 0.0842 0.0548 0.0326 0.0572

0.001 far 0.1512 0.1375 0.0807 0.1231

0.001 ip1 0.0994 0.0628 0.0189 0.0604

0.001 ip2 0.0549 0.0206 0.0278 0.0115

0.01 bound 0.1118 0.0734 0.0161 0.0671

0.01 far 0.1884 0.1591 0.0089 0.1188

0.01 ip1 0.1154 0.0809 0.0098 0.0687

0.01 ip2 0.0341 0.0332 0.0103 0.0259

Figure 9.   Trapping, Detrapping and Recombination Hole Coefficients for hole injection at Voxels 24, 26 and 28 
in Physical Model-4 with � = 0.001 as shown in the legend. Here � refers to �2 in Eq. (9). Readers are suggested 
to enlarge the figure for closer view.

Figure 10.   Trapping, Detrapping and Recombination Hole Coefficients for hole injection at Voxels 24, 26 and 
28 in Physical Model-4 with � = 0.01 values as shown in the legend. Here � refers to �2 in Eq. (9). Readers are 
suggested to enlarge the figure for closer view.
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while the initialization of trapping, detrapping and recombination coefficients for electrons are done uniformly 
at 0.012, 0.015 and 0.002 respectively. This is referred to as ‘bound’ in Table 5. Additional simulation experi-
ments has been done with �1 = 0.1 without bounds on trapping, detrapping and recombination coefficients 
with the same electron-hole pair injections at Voxels 81, 84 and 87. The initialization of trapping, detrapping 
and recombination weights for electrons are done with the same values of {0.012, 0.015, 0.002} , {0.02, 0.02, 0.004} 
and {0.005, 0.009, 0.0005} which are referred as ‘same’, ‘grtr’ and ‘lt’ respectively as shown in Table 5. It is seen 
that for ‘grtr’ case, the mean error has the value of 0.1159 which is minimum of these three cases. Overall, the 
case with ‘bound’ provides us with the minimum error for the electron coefficients. Figure 11 shows the electron 
drift, trapping, detrapping and recombination coefficients for � = 0.1 with ‘bound’ and ’grtr’ cases. The material 
properties for the electrons converges very closely to the corresponding ground truth values.

Comparison of the different Physical Models.  The performance of the different physical models has 
also been evaluated with the Relative Error in %, is shown in Table 6. The mean relative error due to the electron 
coefficients (Err2(electrons)) are separated from that of holes (Err2(holes)) and the mean of Err2(electrons) and 
Err2(holes) are then computed as Err2(Total) in Table 6. For Physical Model-1, k = 1, l = 104, n = 103 are used 
with electron–hole pair injections are voxel position 9 with stride of 5 voxels until voxel 59. For Physical Model-
2, l = 10, n = 1 is used, with same electron–hole pair injections as in Physical Model-1. For Physical Model-3, 
l = 10, n = 1 , and the electron–hole pair injections are in the same voxel position as in Physical Model-1 and 2. 
In Physical Model-4, the electrons and holes coefficients are trained separately. Hence, the Err2(electrons) only 

Table 4.   Error values for Physical Model-4 with different �1 values. Err(µe) , Err(weT ) , Err(weD) , Err(weRec) are 
the error values in the drift, trapping, detrapping and recombination coefficients of the electrons respectively. 
Err(Mean) is the arithmetic mean each of these error values. Significant values are in [bold].

�1 Err(µe) Err(weT ) Err(weD) Err(weRec) Err(Mean)

0 0.0370 0.2790 0.0723 0.4560 0.2111

0.001 0.2729 0.0544 0.0455 0.3281 0.1752

0.01 0.1970 0.0257 0.0384 0.2815 0.1311

0.1 0.0350 0.0187 0.0145 0.1868 0.0638

Table 5.   Error values for Physical Model-4 for �1 = 0.1 at different conditions. Err(µe) , Err(weT ) , Err(weD) , 
Err(weRec) are the error values in the drift, trapping, detrapping and recombination coefficients of the electrons 
respectively. Err(Mean) is the arithmetic mean each of these error values.

condition Err(µe) Err(weT ) Err(weD) Err(weRec) Err(Mean)

bound 0.0350 0.0187 0.0145 0.1868 0.0638

same 0.1991 0.0203 0.0261 0.2294 0.1187

grtr 0.1930 0.0205 0.0269 0.2232 0.1159

lt 0.4140 0.0213 0.0328 0.2502 0.1796

Figure 11.   (a) Drift, (b) Trapping and Detrapping and, (c) Recombination Electron Coefficients for electron 
injection at Voxels 81, 84 and 87 in Physical Model-4 with �1 = 0.1 in Eq. (9). Readers are suggested to enlarge 
the figure for closer view.
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refers to the relative error result for the model trained for electron coefficients only. The electron injections are at 
voxel 81, 84 and 87 with �1 = 0.1 with ’bound’ condition as described in Table 5. On the other hand, Err2(holes) 
only refer to the relative error result for the model trained for hole coefficients only. The hole injections are at 
voxel 24, 26 and 28 with �1 = 0.001 with ’ip2’ condition as described in Table 3.

It is seen that for Physical Models 1 and 2, the Err2(Total) value is small. On the other hand, for Physical 
Model 3, the Err2(holes) are maximum. This is because in the learned model, the hole coefficients (equivalent in 
this case) tend to oscillate around the ground truth value. Overall, the Err2(Total) is less than 9% , which shows 
good convergence of the RTSD material parameters to the ground truth values.

Discussion
The learning-based approach for obtaining the detector parameters is novel for RTSD. We have developed four 
physical models using different amount of data for modeling the RTSD. In practice, experimentally generating 
data for building these learning models, such as free and trapped charges (holes and electrons) in the bulk of the 
material requires several experimental setups, expert know how and time. Physical learning based model have 
been developed step-wise using fewer data which directly relates to fewer experimental setups. Physical Model-1 
uses most information regarding the system, while Physical Model-4 utilizes just signals in the learning model, 
which is obtained directly from the electrodes without any additional hardware requirements. We also observe 
that progressively using reduced or limited data in developing these models affect the characterization proper-
ties of the RTSD. While in Physical Models-1 and 2, we characterize all the properties of the RTSD, in Physical 
Models-3 and 4, the characterization of the RTSD is done in a single equivalent manner for multiple trapping 
centers (holes in this case). Thus, the Physical Model-3 and 4 is agnostic to the actual (ground truth) number 
of trapping centers in the RTSD. In this work, we have shown our results of a model with a 100 voxel, but our 
approach can be extended to models with other voxel as well. Our learning approach learns the properties of the 
RTSD in a fast and efficient way and can identify defects in the detector spatially and their variations over time.

In experimental results with Physical Model-3, for the hole coefficients in Fig. 7c, we observe slight fluctua-
tions in the trained parameters around the converged value. We observe that these fluctuations gradually dimin-
ish if we continue training over additional several epochs. Additionally, in Physical Model-4, we observe that the 
addition of T.V. regularization to the loss function in Eq. (8), improves the solution drastically and converges 
the hole and electron coefficients to the ground truth parameters. However, from our numerical experiments 
with Physical Model-4, we observe that different weights on the T.V. regularization is required for electrons 
compared to the holes.

In this work, a 1D learning model of the detector trained with different amount of data is presented. The 3D 
learning model of the detector will follow the same principles. Moreover, in this work, the ground truth data has 
been simulated using a classical model in MATLAB as in our previous work35. In actual practice, the simulation 
results must be validated with actual experimental data. This experimental data can be obtained using thermo-
electric emission spectroscopy, thermally stimulated current measurements, laser induced techniques and others. 
However, this work reduces the burden on generating experimental data and can still characterize the RTSD at 
higher resolution (in order of microns) than any other technique in the literature. The impact of additional noise 
(such as electronic noise) in the data needs to be addressed as well. Nevertheless, extending this model to work 
with actual experimental data in 3D detector systems is one of the future directions of work.

Conclusion
The paper introduces novel learning-based physical models of the radiation detector using limited data, which 
characterizes the RTSD. The limited data dictates the requirement of fewer experimental setups and less infor-
mation to train these models, which is hugely beneficial for practical wide-scale implementation. Four physical 
models have been demonstrated which progressively utilize fewer data and characterize the material. Based on 
the amount of data, the models either characterize the detector completely or in an equivalent manner. The model 
shows promising results which could lead the way for future developments in characterization of the RTSD with 
fewer experimental setups and data.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.

Table 6.   Relative Error (in %) for the four different physical models.

Physical Model Err2(electrons) Err2(holes) Err2(Total)

1 2.4104 2.9942 2.7023

2 2.6536 3.6098 3.1317

3 1.3443 16.0488 8.6966

4 (holes only) × 3.2256
4.1909

4 (electrons only) 5.1561 ×



14

Vol:.(1234567890)

Scientific Reports |          (2023) 13:168  | https://doi.org/10.1038/s41598-022-27125-7

www.nature.com/scientificreports/

Received: 19 August 2022; Accepted: 26 December 2022

References
	 1.	 Scheiber, C. & Giakos, G. C. Medical applications of cdte and cdznte detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accelera‑

tors Spectrometers Detectors Associated Equipment 458, 12–25 (2001).
	 2.	 Schlesinger, T. et al. Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R Rep. 32, 103–189 

(2001).
	 3.	 Butler, A. et al. Bio-medical X-ray imaging with spectroscopic pixel detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerators 

Spectrometers Detectors Associated Equipment 591, 141–146 (2008).
	 4.	 Del Sordo, S. et al. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and 

medical applications. Sensors 9, 3491–3526 (2009).
	 5.	 Johns, P. M. & Nino, J. C. Room temperature semiconductor detectors for nuclear security. J. Appl. Phys. 126, 040902 (2019).
	 6.	 Roy, U. N. et al. Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogene-

ity and reduced defects. Sci. Rep. 9, 1–7 (2019).
	 7.	 Zhang, N. et al. Anomalous segregation during electrodynamic gradient freeze growth of cadmium zinc telluride. J. Crystal Growth 

325, 10–19 (2011).
	 8.	 Bolotnikov, A. et al. Characterization and evaluation of extended defects in czt crystals for gamma-ray detectors. J. Crystal Growth 

379, 46–56 (2013).
	 9.	 Carini, G., Bolotnikov, A., Camarda, G. & James, R. High-resolution X-ray mapping of cdznte detectors. Nucl. Instrum. Methods 

Phys. Res. Sect. A Accelerators Spectrometers Detectors Associated Equipment 579, 120–124 (2007).
	10.	 Amman, M., Lee, J. S. & Luke, P. N. Electron trapping nonuniformity in high-pressure-bridgman-grown cdznte. J. Appl. Phys. 92, 

3198–3206 (2002).
	11.	 Camarda, G. S. et al. Polarization studies of cdznte detectors using synchrotron X-ray radiation. IEEE Trans. Nuclear Sci. 55, 

3725–3730 (2008).
	12.	 Roy, U. N., Camarda, G. S., Cui, Y. & James, R. B. Advances in cdzntese for radiation detector applications. Radiation 1, 123–130 

(2021).
	13.	 Veale, M. C. et al. Characterization of the uniformity of high-flux CdZnTe material. Sensors 20, 2747 (2020).
	14.	 Lee, E., James, R., Olsen, R. & Hermon, H. Compensation and trapping in CdZnTe radiation detectors studied by thermoelectric 

emission spectroscopy, thermally stimulated conductivity, and current-voltage measurements. J. Electron. Mater. 28, 766–773 
(1999).

	15.	 Tepper, G. C., Kessick, R., James, R. B. & Van den Berg, L. Contactless measurements of charge traps and carrier lifetimes in 
detector-grade cadmium zinc telluride and mercuric iodide. In Hard X-Ray, Gamma-Ray, and Neutron Detector Physics II, 4141, 
76–88 (International Society for Optics and Photonics) (2000).

	16.	 Medunić, Z., Pastuović, Ž, Jakšić, M. & Skukan, N. Studying of trap levels by the use of focused ion beams. Nucl. Instrum. Methods 
Phys. Res. Sect. B Beam Interact. Mater. Atoms 231, 486–490 (2005).

	17.	 Pavlović, M., Jakšić, M., Zorc, H. & Medunić, Z. Identification of deep trap levels from thermally stimulated current spectra of 
semi-insulating CdZnTe detector material. J. Appl. Phys. 104, 023525 (2008).

	18.	 Nan, R. et al. Irradiation-induced defects in Cd0.9Zn0.1Te:Al. J. Electron. Mater. 41, 3044–3049 (2012).
	19.	 Rodrigues, M. L. & He, Z. High-flux experiments and simulations of pulse-mode 3d-position-sensitive CdZnTe pixelated detectors. 

In 2011 IEEE Nuclear Science Symposium Conference Record, 4677–4688 (IEEE) (2011).
	20.	 Blakney, R. & Grunwald, H. Small-signal current transients in insulators with traps. Phys. Rev. 159, 658 (1967).
	21.	 Jung, M., Morel, J., Fougeres, P., Hage-Ali, M. & Siffert, P. A new method for evaluation of transport properties in CdTe and CZT 

detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerators Spectrometers Detectors Associated Equipment 428, 45–57 (1999).
	22.	 Prokesch, M., Bale, D. S. & Szeles, C. Fast high-flux response of CdZnTe X-ray detectors by optical manipulation of deep level 

defect occupations. IEEE Trans. Nucl. Sci. 57, 2397–2399 (2010).
	23.	 Xu, L. et al. Effects of deep-level defects on carrier mobility in CdZnTe crystals. Nucl. Instrum. Methods Phys. Res. Sect. A Accelera‑

tors Spectrometers Detectors Associated Equipment 767, 318–321 (2014).
	24.	 Zaman, Y. et al. Characterization of CdZnTe co-doped with indium and lead. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerators 

Spectrometers Detectors Associated Equipment 770, 48–51 (2015).
	25.	 Tepper, G. C., Kessick, R. & Szeles, C. Investigation of the electronic properties of cadmium zinc telluride surfaces using pulsed 

laser microwave cavity perturbation. In Hard X-Ray and Gamma-Ray Detector Physics III, 4507, 79–89 (International Society for 
Optics and Photonics) (2001).

	26.	 Zheng, Q. et al. Investigation of generation of defects due to metallization on CdZnTe detectors. J. Phys. D Appl. Phys. 45, 175102 
(2012).

	27.	 Willard, J., Jia, X., Xu, S., Steinbach, M. & Kumar, V. Integrating physics-based modeling with machine learning: A survey. (2020) 
arXiv preprint arXiv:​2003.​04919.

	28.	 Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).
	29.	 Khoo, Y., Lu, J. & Ying, L. Solving for high-dimensional committor functions using artificial neural networks. Res. Math. Sci. 6, 1 

(2019).
	30.	 Han, J., Jentzen, A. & Weinan, E. Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. 

Sci. 115, 8505–8510 (2018).
	31.	 Hughes, T. W., Williamson, I. A., Minkov, M. & Fan, S. Wave physics as an analog recurrent neural network. Sci. Adv. 5, eaay6946 

(2019).
	32.	 Lu, L., Jin, P., Pang, G., Zhang, Z. & Karniadakis, G. E. Learning nonlinear operators via deeponet based on the universal approxi-

mation theorem of operators. Nat. Mach. Intell. 3, 218–229 (2021).
	33.	 Markidis, S. The old and the new: Can physics-informed deep-learning replace traditional linear solvers?. Frontiers in big Data 92 

(2021).
	34.	 Rodrigues, M. High-Flux Experiments and Simulations of Pulse-Mode Position-Sensitive CdZnTe Pixelated Detectors. Ph.D. thesis, 

University of Michigan (2012).
	35.	 Banerjee, S., Rodrigues, M., Vija, A. H. & Katsaggelos, A. K. A learning-based physical model of charge transport in room-

temperature semiconductor detectors. IEEE Trans. Nucl. Sci. 69, 2–16. https://​doi.​org/​10.​1109/​TNS.​2021.​31304​86 (2022).
	36.	 Shockley, W. & Read, W. Jr. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835 (1952).
	37.	 Hall, R. N. Electron–hole recombination in germanium. Phys. Rev. 87, 387 (1952).
	38.	 Rodrigues, M. & He, Z. Properties and spectroscopic performance of semiconductor detectors under high-flux irradiation. In 

Medical Applications of Radiation Detectors, vol. 8143, 81430A (International Society for Optics and Photonics) (2011).
	39.	 Prettyman, T. Method for mapping charge pulses in semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 

Accelerators Spectrometers Detectors Associated Equipment 422, 232–237 (1999).
	40.	 Ruat, M., d’Aillon, E. G. & Verger, L. 3d semiconductor radiation detectors for medical imaging: simulation and design. In 2008 

IEEE Nuclear Science Symposium Conference Record, 434–439 (IEEE) (2008).

http://arxiv.org/abs/2003.04919
https://doi.org/10.1109/TNS.2021.3130486


15

Vol.:(0123456789)

Scientific Reports |          (2023) 13:168  | https://doi.org/10.1038/s41598-022-27125-7

www.nature.com/scientificreports/

	41.	 Picone, M., Glière, A. & Massé, P. A three-dimensional model of cdznte gamma-ray spectrometer. Nucl. Instrum. Methods Phys. 
Res. Sect. A Accelerators Spectrometers Detectors Associated Equipment 504, 313–316 (2003).

	42.	 Kolobov, V. I. Fokker-planck modeling of electron kinetics in plasmas and semiconductors. Comput. Mater. Sci. 28, 302–320 (2003).
	43.	 Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, New York, 2006).
	44.	 Prokesch, M. CdZnTe for gamma and x-ray applications. Solid-State Radiation Detectors: Technology and Applications, 17–48 

(2015).
	45.	 Musiienko, A. et al. Deciphering the effect of traps on electronic charge transport properties of methylammonium lead tribromide 

perovskite. Sci. Adv. 6, eabb6393 (2020).
	46.	 Musiienko, A. et al. Dual-wavelength photo-hall effect spectroscopy of deep levels in high resistive cdznte with negative differential 

photoconductivity. J. Appl. Phys. 123, 161502 (2018).
	47.	 Shockley, W. Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635–636 (1938).
	48.	 Ramo, S. Currents induced by electron motion. Proc. IRE 27, 584–585 (1939).
	49.	 Knoll, G. F. Radiation Detection and Measurement (Wiley, New York, 2010).
	50.	 He, Z. Review of the shockley-ramo theorem and its application in semiconductor gamma-ray detectors. Nucl. Instrum. Methods 

Phys. Res. Sect. A Accelerators Spectrometers Detectors Associated Equipment 463, 250–267 (2001).
	51.	 Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning internal representations by error propagation (California Univ San Diego 

La Jolla Inst for Cognitive Science, Tech. Rep) (1985).
	52.	 Werbos, P. J. Backpropagation through time: What it does and how to do it. Proc. IEEE 78, 1550–1560 (1990).
	53.	 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. (2014) arXiv preprint arXiv:​1412.​6980.
	54.	 Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org. 

(2015)

Author contributions
S.B., M.R. and A.K.K. conceived the idea. S.B. implemented the idea and conducted all the simulations. All 
authors analyzed the results. S.B. and M.B. wrote the manuscript. All authors reviewed and approved the final 
version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://arxiv.org/abs/1412.6980
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Learning-based physical models of room-temperature semiconductor detectors with reduced data
	Methods
	Classical approach for detector modeling. 
	Learning-based full model of detector. 
	Learning-based physical models of detector with reduced data. 
	Physical Model-1. 
	Physical Model-2. 
	Physical Model-3. 
	Physical Model-4. 
	Implementation details. 


	Results
	Numerical experiments with Physical Model-1. 
	Numerical experiments with Physical Model-2. 
	Numerical experiments with Physical Model-3. 
	Numerical experiments with Physical Model-4. 
	Comparison of the different Physical Models. 

	Discussion
	Conclusion
	References


