
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22513  | https://doi.org/10.1038/s41598-022-27121-x

www.nature.com/scientificreports

Single‑lead ECG based autonomic 
nervous system assessment 
for meditation monitoring
Chanki Park 1, Inchan Youn 2,3,4* & Sungmin Han 2,3*

We propose a single‑lead ECG‑based heart rate variability (HRV) analysis algorithm to quantify 
autonomic nervous system activity during meditation. Respiratory sinus arrhythmia (RSA) induced by 
breathing is a dominant component of HRV, but its frequency depends on an individual’s breathing 
speed. To address this RSA issue, we designed a novel HRV tachogram decomposition algorithm 
and new HRV indices. The proposed method was validated by using a simulation, and applied to our 
experimental (mindfulness meditation) data and the WESAD open‑source data. During meditation, 
our proposed HRV indices related to vagal and sympathetic tones were significantly increased 
(p < 0.000005) and decreased (p < 0.000005), respectively. These results were consistent with self‑
reports and experimental protocols, and identified parasympathetic activation and sympathetic 
inhibition during meditation. In conclusion, the proposed method successfully assessed autonomic 
nervous system activity during meditation when respiration influences disrupted classical HRV. 
The proposed method can be considered a reliable approach to quantify autonomic nervous system 
activity.

Due to the increase in the number of mental disorders, various mental healthcare therapies (e.g., psychotherapy, 
digital therapeutics, and meditation) have been widely used to improve emotional  wellness1. Over the past few 
decades, mindfulness meditation has drawn much attention because of its benefits, such as emotion regulation, 
increased awareness, and improved cognitive  performance2–4, and it has been clinically used to reduce chronic 
pain, sleep disturbance, anxiety, distress, and  depression5–7. Many neuroscientific studies have investigated 
changes in the brain during  meditation2, and the activation of several brain regions, such as the frontopolar 
cortex, sensory cortex, insula, hippocampus, anterior cingulate cortex, mid-cingulate cortex, and orbitofrontal 
cortex, has been  observed8. These brain regions are related to meta-awareness, body awareness, memory pro-
cesses, and emotion regulation. In particular, the insular and mid-cingulate cortices play central roles in the 
central autonomic network, which controls the activity of parasympathetic and sympathetic  nerves9. Through 
this neurological pathway, it seems that body relaxation is induced during meditation.

As a technology-based therapy, biofeedback via a wearable device has been  developed10. Biofeedback devices 
help users carry out a therapeutic protocol (e.g., meditation) by means of their physiological signals as feed-
back. Electroencephalogram-based neurofeedback training is a representative biofeedback therapy that is used 
to treat various mental disorders, such as insomnia, anxiety, depression, and  addiction11. On the other hand, 
electroencephalogram-based digital meditation was proposed to enhance attention and working  memory12,13. 
Although neurofeedback treatment shows various clinical effects, an electroencephalogram sensor is incon-
venient. Recently, a new modality called skin sympathetic nerve activity has been developed to noninvasively 
observe the activity of sympathetic  nerves14,15. It can be simply recorded from the high frequency component 
(500–1000 Hz) of an analog electrocardiogram (ECG), but it is very vulnerable to motion artifacts due to its 
weak  amplitude16,17. Because it is easy to measure ECG signals with a high signal-to-noise ratio in daily life, 
heart rate variability (HRV)-based biofeedback training is drawing  attention18,19. In this study, we propose a 
single-lead ECG-based HRV analysis algorithm to investigate the changes in vagal and sympathetic tones dur-
ing meditation (see Fig. 1).
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ECG based cardiopulmonary coupling analysis and HRV analysis have been used to assess psychiatric con-
ditions. Cardiopulmonary coupling analysis measures the synchronization between the heartbeat interval and 
respiration by using the spectral coherence, cross entropy and phase locking value (PLV)20–22. This synchroniza-
tion phenomenon is called respiratory sinus arrhythmia (RSA), which is the modulation of efferent parasym-
pathetic nerves caused by baroreflexes (arterial baroreflex, lung stretch reflex, and Bainbridge reflex) during the 
inspiration  phase23–26. RSA is affected by the tidal volume and respiratory rate (RR)27–29, and its quantity reflects 
sleep quality and  apnea20,22. To capture other neurophysiological changes, HRV is widely used, and its frequency 
analysis reflects the balance between vagal and sympathetic tones. The former shows a fast response, and the 
latter dominates the low-frequency band of HRV and seems to be independent of the  baroreflex30.

Meditation (or relaxation) training leads to parasympathetic activation and sympathetic inhibition, and 
it is supported by several modalities, such as muscle sympathetic nerve  activity31, functional  MRI2, and 
 electroencephalogram32. Some HRV studies on meditation also reported an increase in high-frequency 
 power32–35, which indicates vagal tone, but other studies showed the opposite  results36–40. These contradictory 
results seem to be due to the influence of RSA. When the RR < 0.15 Hz, the RSA component moves from the 
high- to low-frequency region, and then the low- and high-frequency powers can be overestimated and underes-
timated,  respectively28. Hence, the fluctuation of an individual’s RR led to significant variation in HRV  analysis41, 
and there was no report on the identification of cardiac sympathetic inhibition during meditation.

To separate the RSA effect and other autonomic nervous system activities in HRV analysis, various decom-
position algorithms have been utilized, such as independent component  analysis42, adaptive noise  cancellers43, 
autoregressive moving average with exogenous input model (ARMAx)44, and orthogonal subspace projection 
(OSP)45,46. The adaptive noise canceller, ARMAx, and OSP share the same algorithmic structure, with OSP 
exhibiting the best  performance45. Even though these algorithms significantly enhance the reliability of HRV, 
they assume a linear relationship between the RSA component and a respiration signal, while in reality the rela-
tionship is  nonlinear47. As an alternative, a notch filter with a Gaussian bell shape (Gauss) was employed, but it 
assumed that the instantaneous RR is  constant48. In this study, to overcome the nonlinearity and nonstationarity 
of RSA, we proposed a novel HRV tachogram decomposition algorithm, and new HRV indices to quantify vagal 
and sympathetic tones during meditation (see Fig. 2).

The proposed method is described in the “Materials and methods” section. We compared the performance 
of decomposition algorithms using simulation, and observed the changes in the vagal and sympathetic tones 
during meditation through real ECG data in “Results” section. In “Discussion” section, the results are discussed.

Materials and methods
Since HRV reflects the balance of the autonomic nervous system, HRV analysis is frequently used to assess stress 
and psychiatric conditions. The first step of HRV analysis is QRS detection on the ECG. In this study, we bandpass 
filtered an ECG with 0.5–50 Hz by a 3rd-order Butterworth, and we employed the Pan-Tompkins algorithm to 
detect R-peaks of the  ECG49. The interval between successive R-peaks (RRI) is accumulated over a predefined 

Figure 1.  Meditation and single-lead ECG.

Figure 2.  Overall structure of the proposed method.
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time window. In this study, we adopted a 5 min time window for short-term HRV analysis. To detect ectopic 
beats and incorrect peaks, we calculated the k-th derivative of the instantaneous heart rate (HR)50 as follows:

where Rk is the k-th R-peak. When an HR’k was greater than a predefined threshold, Rk was excluded from the 
HRV analysis, and the corrected R-peaks were double-checked by human experts. Because the RRI is sampled at 
irregular time points (heartbeats), the RRI must be converted into an evenly sampled time series for frequency 
analysis. A uniformly sampled signal of the RRI, called a tachogram, was reconstructed using cubic spline inter-
polation, and we resampled the tachogram to 4 Hz, as in previous  studies44–46. For precise HRV analysis, it is 
necessary to distinguish the cardiac vagal tone modulated by respiration and other autonomic nervous system 
activities. Hence, we consider the original tachogram xRAW  as follows:

where xRSA and xR-f are the RSA and RSA-free tachograms, respectively. xR-f is obtained by removing xRSA from 
xRAW . The tachogram decomposition algorithm will be described in the next subsection. In this study, since we 
focus on the tachogram decomposition algorithm, we adopt only frequency domain HRV indices.

ECG‑derived respiration. To measure the respiration signal, various sensors have been utilized, such as a 
pressure transducer and a thermistor. These sensors provide accurate information but are both expensive and 
inconvenient to wear. As an alternative, several algorithms to estimate the respiration signal from biomedical 
signals, such as photoplethysmogram and ECG, have been  proposed51–54. In this study, we employed an ECG-
derived respiration (EDR) algorithm that captures the change in electrical impedance and the cardiac vector 
according to chest expansion. Here, we briefly review 4 frequently used EDR algorithms:  EDRA (R-wave ampli-
tude),  EDRQR (Q-R slope),  EDRRS (R-S slope) and  EDRSR (slope range). Each EDR algorithm uses a respiration-
related sample r(i) at the i-th heartbeat as follows:

• EDRA:  rA(i) = R-peak amplitude
• EDRQR:  rQR(i) = steepest ascent slope on Q-R wave
• EDRRS:  rRS(i) = steepest descent slope on R-S wave
• EDRSR:  rSR(i) =  rQR(i) −  rRS(i)

By interpolating the respiration-related samples, the EDR signal is generated. The overall procedure is 
explained in detail  in51.

Tachogram decomposition. Previous algorithms. To decompose raw tachogram xRAW  into xRSA and xR-f, 
various algorithms have been proposed, such as Gauss, ARMAx and OSP. Both the ARMAx and OSP algorithms 
assume xRSA as follows:

where RESP is a respiratory basis matrix. The trajectory  matrix46 or wavelet  coefficients45 of EDR have been 
utilized as the RESP matrix. In this study, the trajectory matrix was employed for the RESP. We assigned 3 s 
to the lag size of the trajectory matrix of the ARMAx, while the lag size of OSP was set to the minimum value 
between the minimum description length and the Akaike information criterion, with a maximum lag of 10 s. 
The RSA-free tachogram is estimated as follows:

The ARMAx and the OSP are described  in44–46 in detail. As another tachogram decomposition algorithm, 
a notch filter with Gaussian bell shape (Gauss) was proposed. Its magnitude-squared frequency response is:

where θ represents the notch frequency and corresponds to the average RR. α and β are fitting parameters and it 
can be computed from the spectrum of xRAW  by using a least square method. The filtered signal will be xR−f  , and 
xRSA is acquired by subtracting xR−f  from xRAW . The overall procedure of Gauss is described  in48.

Proposed algorithm. Based on the synchronization between the frequency of xRSA and the instantaneous RR, 
we designed a novel tachogram decomposition algorithm. Because it has a zero-phase response, we call it the 
zero-phase line enhancer (ZLE). The ZLE can be interpreted as an adaptive filter without phase  distortion55. As 
shown in Fig. 3, the ZLE has two parts: (a) instantaneous RR estimation and (b) time-variant forward–backward 
IIR notch filtering. To estimate the instantaneous RR, we employed a smoothed pseudo Wigner–Ville distribu-
tion of the EDR  signal56,57 as follows:

(1)HR′
k = 2

∣∣∣∣
Rk−1 − 2Rk + Rk+1

(Rk−1 − Rk)(Rk−1 − Rk+1)(Rk − Rk+1)

∣∣∣∣

(2)xRAW = xRSA + xR−f

(3)xRSA = RESP
(
RESPT · RESP

)−1

RESP · xRAW

(4)xR−f = xRAW − xRSA

(5)
∣∣H

(
ejω , θ

)∣∣2 = α ·
(
1− e−β·(ω−θ/fs)2

)
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where N represents the length of the EDR (N = 5 min∙60∙4 Hz). g[] and v[] are the time and frequency windows, 
respectively; a Kaiser window (γ = 20) was employed for g[] and v[]. From the time–frequency representation ω[k, 
n], we estimated the instantaneous RR θ[n] by using a recursive algorithm to minimize the problem of outliers. 
The maximum point among frequency bins adjacent to θ[n-1] was assigned to θ[n], as described in Algorithm 1.

The frequency component of xRAW  corresponding to the instantaneous RR θ[n] will be xRSA, and the ZLE 
removes xRSA by means of a tunable IIR notch  filter58 as follows:

where r is the pole-zero contraction factor, which determines the stop band. When r is closer to 1, the frequency 
response of the notch filter becomes narrower. We set r to 0.93, and then the stop band of H(z, θ[n]) is 0.047 Hz. 
As shown in Fig. 3, the time-variant forward–backward IIR notch filtering performs four sequential steps: 1—for-
ward IIR notch filtering, 2—time reversal, 3—backward IIR notch filtering, and 4—time reversal. The zero-phase 
response can be explained in the z-domain as follows:

(6)ω[k, n] =

N∑

m=−N

g[n]v[m]EDR
[
n+

m

2

]
EDR∗

[
n−

m

2

]
e
−j2πkm

N

(7)H(z, θ [n]) =
1+ r

2

1− 2cos
(
θ[n]/fs

)
z−1 + z−2

1− (1+ r)cos
(
θ [n]/fs

)
z−1 + rz−2

(8)F(z) = H(z, θ[n]) · XRAW (z)

Figure 3.  Tachogram decomposition process of ZLE. The ZLE is composed of (a) instantaneous RR θ[n] 
estimation and (b) time-variant forward–backward IIR notch filtering.
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where F(z) and B(z) mean forward- and backward-filtered signals, respectively. P(z) represents the time-reversed 
F(z). The filter output is the estimated RSA-free tachogram xR−f  , and the RSA tachogram is estimated as follows:

RSA indices. RSA has been utilized as a measure of cardiac vagal function. RSA can be quantified by car-
diopulmonary coupling analysis. In this study, we utilized the  PLV22,39,59. The PLV is broadly used to measure a 
phase interaction between two signals and is defined as follows:

where φ1(n) and φ2(n) represent the phases of the respiration signal (or EDR) and tachogram xRAW , respectively. 
The phases are calculated by a Hilbert transform. As another measure for RSA, the extent of RSA  (RSAE)27,39,60 
was calculated by the median value of RRI variation (longest RRI—shortest RRI) within each breathing cycle 
as follows:

where RRIk represents the subset of RRIs within the k-th breathing cycle. max and min are maximum and mini-
mum functions, respectively. K indicates the number of breaths taken in the time window (5 min). Because  RSAE 
is based on the RRI, the unit of  RSAE is ms.

HRV indices. In HRV analysis, the power spectrum of xRAW  is segmented into low-frequency (0.04–0.15 Hz) 
and high-frequency (0.15–0.4 Hz) bands, and each band power is called LF (low frequency) and HF (high fre-
quency)61. HF is regarded as an index for vagal tone, and LF reflects both sympathetic and vagal tones. To quan-
tify sympathetic tone, LF/HF is generally used. Since these HRV indices were insufficient to cover the aforemen-
tioned RSA issue, it is necessary to simultaneously use both power spectra of xR−f  and xRSA ; Subscripts R-f and 
RSA were used to distinguish each band power ( xR−f  :  LFR-f and  HFR-f, xRSA :  LFRSA and  HFRSA). To assess sym-
pathovagal balance, Varon et al. designed an HRV index  SBU based on the separated band  powers46 as follows:

Since xRSA and  HFR-f purely indicate vagal tone but  LFR-f is related to both vagal and sympathetic tones, we 
proposed the new HRV indices related to vagal (Eq. 17) and sympathetic (Eq. 18) tones as follows:

We employed Welch’s method to compute the power spectra.

Simulation. To compare the tachogram decomposition algorithms, we designed a simulated tachogram 
x̃RAW . First, to cover various situations, we considered three respiration types as follows:

where ψ̇(n) , the derivative of ψ(n) , means the simulated RR. ①, ②, and ③ represent the frequencies of a sine 
wave (0.15 Hz), linear chirp (0.04–0.4 Hz), and sinusoidal frequency modulated signal (0.04–0.4 Hz). Since 
not only the frequency but also the amplitude of the tachogram is modulated by  RR27–29, we devised an ampli-
tude modulation function for the simulated RSA component x̃RSA . Specifically, because the amplitude of the 

(9)P(z) = H∗(z, θ[−n]) · X∗
RAW (z)

(10)B(z) = H(z, θ[−n]) · H∗(z, θ[−n]) · X∗
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= |H(z, θ[−n])|2 · X∗
RAW (z)

(11)XR−f (z) = |H(z, θ[n])|2 · XRAW (z)

(12)xRSA = xRAW − xR−f

(13)PLV =
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1

N

N∑
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ej[ϕ1(n)−ϕ2(n)]

∣∣∣∣∣

(14)RSAE = med(VarRRI)

(15)VarRRI =
{
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(
RRIk

)
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(
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(16)SBU = LFR−f /(LFRSA +HFRSA)

(17)IDXPNA = HFR−f + LFRSA +HFRSA

(18)IDXSNA = LFR−f /
(
HFR−f + LFRSA +HFRSA

)

(19)ẼDR = cos(2πψ(n))

(20)RR = ψ̇(n) =

{
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2� a · n+ b
3� a · cos(2πωn)+ b
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tachogram with respect to RR  in29 was skewed to the right, we utilized the gamma distribution function as the 
amplitude modulation function m() as follows:

where Г(α) is the gamma function. α and β are shape and rate parameters (α = 2, β = 15). Note that when ψ̇(n) is 
constant the amplitude modulation function m() becomes constant. On the other hand, as the simulated RSA-
free tachogram x̃R-f, we employed white Gaussian noise as follows:

where σ 2 is the variance of the white Gaussian noise. We adjusted σ 2 so that the power ratio of x̃RSA and x̃R-f was 
equal (0 dB), and then the simulated tachogram x̃RAW  was given by their summation.

For rigorous comparison, we performed Monte Carlo simulation with 1000 independent simulations.

Database. To investigate the changes in HRV indices according to the tachogram decomposition algorithms 
during meditation, we utilized two real ECG databases: mindfulness meditation data and WESAD data.

Mindfulness meditation data. We collected a single-lead ECG and a respiration signal from 8 male and 8 female 
subjects (age = 28.5 ± 4.2 years) during mindfulness meditation. All subjects were novice meditators who had 
engaged in meditation within 1–2 times. All subjects rested for 10 min and then performed mindfulness medi-
tation for 40 min under the guidance of a meditation teacher. During mindfulness meditation, subjects were 
guided to maintain awareness of their breathing and sensations without judgment. Breathing speed was not 
restricted. All subjects closed their eyes and remained in a sitting position to minimize motion artifacts in 
the ECG. They completed a visual analog scale (VAS) for stress, tension, and concentration before and after 
mindfulness meditation. Each ECG was measured by a wearable ECG patch (EP200, Life Science  Technology®, 
Seoul, Korea), and the sampling rate was 250 Hz. The reference respiration signal was recorded by a respiratory 
transducer (RSPEC-R,  Biopac®, California, USA) with a sampling rate of 250 Hz. We used the reference respira-
tion signal to evaluate EDR and measure vital signs and RSA indices, and we employed EDR for the tachogram 
decomposition algorithms. Informed consent was obtained from all subjects, and the institutional review board 
of the Korea Institute of Science and Technology (KIST) approved all procedures in this study (KIST-2019-015, 
July. 19, 2019). Informed consent was obtained from all participants prior to the experiment, and all experiments 
were conducted in strict accordance with KIST ethics guidelines and the declaration of Helsinki.

WESAD data. We used open-source data (WESAD, Wearable Stress and Affect Detection) to verify the pro-
posed method in a public domain. This dataset contains the ECGs of 15 subjects (age = 27.5 ± 2.4 years), and its 
sampling rate is 700 Hz. The experimental protocol consisted of four different affective states (neutral, stress, 
amusement, meditation), and each emotion was mapped onto a two-dimensional affective space (arousal and 
valence) by using self-reports (SAM, Self-Assessment Manikins). The WESAD data are described in detail  in62.

Statistical evaluation. Since the simulation was performed with white Gaussian noise, ANOVA and t tests 
were used to compare the tachogram decomposition algorithms. In the case of real data (mindfulness medita-
tion and WESAD data), nonparametric statistical tests were utilized because the number of subjects was not 
large. Specifically, the Wilcoxon signed rank test was employed when the two groups had the same sample size, 
and the Mann–Whitney U test was used otherwise. We defined p < 0.000005 as statistically significant. To depict 
the distribution, we utilized a box plot where the top and bottom boxes represent the 75th and 25th percentiles, 
and the center, top, and bottom lines represent the 50th, 90th, and 10th percentiles, respectively.

Results
Simulation. For each simulation type (RR: constant, linear function, and sinusoidal function), we calculated 
the Pearson correlation coefficient and root mean square error (RMSE) between x̃R-f and xR-f of the tachogram 
decomposition algorithms (Gauss, ARMAx, OSP, and ZLE). Figure 4 depicts the box plots of correlation coef-
ficients and RMSEs ((a): a sine wave, (b): linear chirp, and (c): sinusoidal frequency modulated signal). For 
each simulation type, we conducted one-way ANOVA with Bonferroni correction to compare four algorithms 
(Gauss, ARMAx, OSP, and ZLE), and significant differences (p < 0.000005) were observed in both the Pearson 
correlation coefficients and RMSEs for all simulation types. For pairwise comparisons, post hoc tests were per-
formed by using paired t tests, and all algorithm comparisons showed significant differences (p < 0.000005). 
The OSP showed the lowest RMSE and highest correlation coefficient when the simulated RR was constant (see 
Fig. 4a), but the ZLE had the lowest RMSE and highest correlation coefficient for other RR types (see Fig. 4b,c). 
It is notable that ZLE was robust to the fluctuation of instantaneous RR but contrastively Gauss did not work 
well in time-varying RR.

(21)x̃RSA(n) = m(ψ̇(n)) · cos(2πψ(n))

(22)m
(
f
)
= Gamma(α,β) = βα(f )α−1e−f ·β/Ŵ(α)

(23)x̃R−f = wGn
(
σ 2

)

(24)x̃RAW = x̃RSA + x̃R−f
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EDR evaluation. We evaluated the performance of the aforementioned EDRs  (EDRA,  EDRQR,  EDRRS, and 
 EDRSR) by using the reference respiration signal of the mindfulness meditation data. Because there was a phase 
difference between EDR and reference respiration signal, we utilized two measures that were not significantly 
affected by the phase difference. One is the PLV between each EDR and the reference respiration signal, and the 
other is the mean absolute error (MAE) between RRs calculated by each EDR and the reference respiration sig-
nal. The PLV and MAE reflect the similarity of phases and the accuracy of RR estimation, respectively. As shown 
in Table 1,  EDRSR showed the best performance as in previous  study51, so we employed  EDRSR in the following 
analysis.

Mindfulness meditation data. Before applying the tachogram decomposition algorithms, we observed 
the effect of mindfulness meditation through various measures: VAS for stress, RSA indices, and vital signs. 
First, we confirmed the stress reduction after meditation through the VAS for stress (5.35 ± 1.77 → 2.47 ± 1.01). 
Second, we calculated the vital signs and RSA indices with 5 min intervals, and their box plots are depicted in 
Fig. 5. The horizontal lines represent the median values of the (a) HR, (b) RR, (c)  RSAE, and (d) PLV. As medita-
tion progressed, vital signs (HR and RR) decreased, and both the  RSAE and PLV increased. To assess the changes 
in the HR, RR,  RSAE and PLV, we performed statistical tests for these indices between the rest and meditation 
phases with the Mann–Whitney U test. Statistically significant differences (p < 0.000005) were observed in the 
instantaneous RR and  RSAE. For each tachogram decomposition algorithm (ARMAx, OSP, and ZLE), we calcu-
lated Pearson correlation coefficients between xRAW  and xR-f, and their box plots and median values are shown in 
Fig. 6 (green boxes and dotted line: Gauss, blue boxes and dashed line: ARMAx, yellow boxes and dash dotted 
line: OSP, and red boxes and solid line: ZLE). A higher correlation coefficient indicates that xR-f is less filtered or 
less distorted.

We computed the power spectra of tachograms and calculated HRV indices. Figure 7 shows the box plots 
and median values of the proposed HRV indices: (a)  IDXPNA and (b)  IDXSNA. The boxes and lines represent (a) 
 IDXPNAs and (b)  IDXSNAs of Gauss (green boxes and dotted line), ARMAx (blue boxes and dashed line), OSP 
(yellow boxes and dash-dotted line), and ZLE (red boxes and solid line). To assess the trend of the HRV indices, 
we divided each record (50 min) into 1 rest phase and 4 meditation phases of equal length (10 min) and then com-
pared the rest and each meditation phase by using a Wilcoxon’s two-sample signed rank test (see Table 2). Table 2 
depicts the mean and standard deviation of HRV indices. HF and  IDXPNA are the HRV indices for vagal tone, and 
other indices (LF/HF,  SBU and  IDXSNA) indicate sympathetic tone. No statistically significant differences were 
observed in HFs, but all  IDXPNAs of ZLE were significantly increased during meditation (p < 0.000005). Unlike 
ZLE,  IDXPNAs of previous tachogram decomposition algorithms did not significantly decrease at 20–30 min. For 
the HRV indices related to sympathetic tone, the LF/HF of the raw tachogram (xRAW ) significantly increased at 
30–50 min, which seems to be caused by RSA, but all  SBUs and  IDXSNAs of ZLE were significantly diminished 

Figure 4.  Correlation coefficient and RMSE between simulated x̃R−f  and filtered xR−f  (simulated RR: (a) 
constant, (b) linear function, and (c) sinusoidal function).

Table 1.  EDR evaluation. PLV and MAE between the reference respiration signal and each EDR  (EDRA, 
 EDRQR,  EDRRS, and  EDRSR). PLV and MAE indicate the phase synchronization and RR estimation error, 
respectively.

Meditation phase EDRA EDRQR EDRRS EDRSR

PLV 0.7136 0.7389 0.7323 0.7410

MAE (Hz) 1.2927 0.8934 0.9700 0.8689
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(see Fig. 7; Table 2). Although, after 40 min, all  SBUs and  IDXSNAs of all algorithms except for Gauss were signifi-
cantly decreased, but no statistically significant differences were observed in most  SBUs and  IDXSNAs of previous 
tachogram decomposition algorithms (Gauss, ARMAx, and OSP).

WESAD data. The WESAD data contains ECGs with 4 affective states: neutral, stress, amusement, and 
meditation. The SAM self-reports showed that the lowest arousal scores (2.3 ± 1.4) occurred in the meditation 
state. As shown in Fig. 8, the RSA indices  (RSAE and PLV) and vital signs (HR and RR) had the highest and 
lowest values in the meditation state, respectively. For HR, RR,  RSAE and PLV, we performed statistical tests 
between the neutral and meditation states by using Mann–Whitney U tests. Statistically significant differences 
(p < 0.000005) were observed in all comparisons except HR. This is similar to the results of the previous subsec-
tion. Figure 9 depicts the box plots and median values of the proposed HRV indices: (a)  IDXPNA and (b)  IDXSNA. 
The boxes and lines depict (a)  IDXPNAs and (b)  IDXSNAs of Gauss (green boxes and dotted line), ARMAx (blue 
boxes and dashed line), OSP (yellow boxes and dash-dotted line), and ZLE (red boxes and solid line). We evalu-
ated the change between the neutral and other emotions of the HRV indices by using the Mann–Whitney U test. 
The mean and standard deviation of HRV indices are shown in Table 3. No statistically significant differences 
were observed in HFs, but  IDXPNA of ARMAx and ZLE significantly increased during meditation, in parallel 

Figure 5.  Vital signs (HR and RR) and RSA indices  (RSAE and PLV) for mindfulness meditation. Box plots of 
(a) HR, (b) RR, (c)  RSAE, and (d) PLV.

Figure 6.  Correlation coefficient between raw tachogram (xRAW ) and each RSA-free tachogram ( xR-f); xR-f of 
Gauss (green boxes and dotted line); xR-f of ARMAx (blue boxes and dashed line); xR-f of OSP (yellow boxes and 
dash-dotted line); xR-f of ZLE (red boxes and solid line).
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with the RSA indices. Similar to the results of the previous subsection,  SBU and  IDXSNA of the ZLE significantly 
(p < 0.000005) decreased during meditation, but no statistically significant differences were observed in  SBU and 
 IDXSNA of other decomposition algorithms (Gauss, ARMAx and OSP) as shown in Fig. 9 and Table 3.

Discussion
The tachogram of HRV consists of various oscillations caused by complicated interactions between the heart and 
brain. In particular, the oscillation caused by RSA often forms most of the raw tachogram xRAW . For the precise 
quantification of autonomic nervous system activity, it is necessary to decompose the raw tachogram into RSA 
and RSA-free tachograms. In this study, we proposed the novel tachogram decomposition algorithm (ZLE) 
and new HRV indices  (IDXPNA and  IDXSNA). We evaluated the performance of the proposed method through 
simulations, mindfulness meditation data, and WESAD data.

RSA, which is a synchrony between the heartbeat interval and breathing, reflects cardiac vagal control. To 
quantify RSA, we employed the PLV and  RSAE. Although the  RSAE and PLV capture different features (phase 
interaction and RRI variation), these indices increased during meditation (see Figs. 6, 9) as in previous  study39, 
which indicates parasympathetic activation. In HRV analysis, all  IDXPNAs of ZLE showed significant increases 

Figure 7.  Changes in proposed HRV indices ((a):  IDXPNA and (b):  IDXSNA) during mindfulness meditation. 
Gauss (green boxes and dotted line); ARMAx (blue boxes and dashed line); OSP (yellow boxes and dash-dotted 
line); ZLE (red boxes and solid line).

Table 2.  Mean ± standard deviation of HRV indices (HF,  IDXPNA, LF/HF,  SBU, and  IDXSNA). Bold text 
represents a statistically significant difference between rest and each meditation phase (p < 0.000005). HF and 
 IDXPNA are the HRV indices for vagal tone, and other indices (LF/HF,  SBU and  IDXSNA) indicate sympathetic 
tone. In all meditation phases, all  IDXPNAs of ZLE were significantly increased, and statistically significant 
decreases were observed in all  SBUs and  IDXSNAs of ZLE.

HRV index
Tachogram decomposition 
algorithm Rest (baseline) 10–20 min 20–30 min 30–40 min 40–50 min

HF – 0.325 ± 0.356 0.453 ± 0.518 0.427 ± 0.465 0.456 ± 0.239 0.350 ± 0.351

IDXPNA

Gauss 0.572 ± 0.386 1.590 ± 1.266 1.741 ± 1.674 2.642 ± 2.795 2.479 ± 2.172

ARMAx 0.445 ± 0.400 1.718 ± 1.389 1.921 ± 1.960 2.825 ± 2.890 3.033 ± 2.718

OSP 0.396 ± 0.376 1.498 ± 1.299 1.668 ± 1.797 2.368 ± 2.616 2.593 ± 2.540

ZLE 0.392 ± 0.354 1.760 ± 1.567 1.866 ± 1.842 2.924 ± 3.229 3.056 ± 2.771

LF/HF – 2.793 ± 2.231 8.570 ± 12.101 9.234 ± 10.387 13.545 ± 10.691 17.384 ± 17.838

SBU

Gauss 1.850 ± 2.219 1.039 ± 0.994 0.864 ± 0.856 0.549 ± 0.450 0.629 ± 0.638

ARMAx 1.629 ± 1.315 0.675 ± 0.528 0.952 ± 1.736 0.609 ± 0.640 0.490 ± 0.490

OSP 3.067 ± 5.087 1.230 ± 1.092 2.142 ± 5.996 1.476 ± 2.142 0.899 ± 0.866

ZLE 4.016 ± 9.224 0.614 ± 0.481 0.626 ± 0.650 0.498 ± 0.704 0.402 ± 0.610

IDXSNA

Gauss 0.611 ± 0.431 0.526 ± 0.409 0.454 ± 0.312 0.394 ± 0.276 0.433 ± 0.289

ARMAx 1.155 ± 0.778 0.559 ± 0.407 0.779 ± 1.375 0.515 ± 0.486 0.421 ± 0.369

OSP 1.561 ± 1.233 0.874 ± 0.637 1.464 ± 3.729 1.027 ± 1.278 0.706 ± 0.618

ZLE 1.745 ± 1.732 0.489 ± 0.332 0.497 ± 0.486 0.406 ± 0.506 0.336 ± 0.470
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in contrast to HFs (see Tables 2, 3), and  IDXPNA appeared to be better than HF in identifying parasympathetic 
activation.

Sympathetic inhibition during meditation is supported not only by literature but also by experimental analysis. 
Breathing meditation and slow breathing have been reported to improve pulmonary gas exchange  performance63 
and lower blood  pressure64, galvanic skin  response65 and muscle sympathetic nerve  activity66–68. Reductions in 
vital signs (HR and RR) and self-report scores (stress and arousal) were also observed during meditation in our 
experiments, as shown in Figs. 6 and 9. Despite much evidence for sympathetic inhibition, the LF/HF of the clas-
sical HRV was noticeably increased during  meditation35–40 (see Tables 2, 3); it seems to be due to the influence of 
RSA. To cancel the interference of RSA, C. Varon et al. suggested  SBU

46 and we proposed  IDXSNA. Although  SBU 
 (LFR-f/(LFRSA +  HFRSA)) is similar to  IDXSNA  (LFR-f/(LFRSA +  HFRSA +  HFR-f)),  IDXSNA includes RSA-free vagal tone 
information  (HFR-f). Since RSA is insufficient to represent a whole cardiac vagal  tone69, the proposed  IDXSNA 
can be considered a more reasonable index to quantify sympathetic tone. In real meditation data, both  SBU and 
 IDXSNA of ZLE successfully identified sympathetic inhibition, and it may be the first report on the identification 
of cardiac sympathetic inhibition during meditation. As a result, both  SBU and  IDXSNA appear to be more reliable 
than classical LF/HF to identify sympathetic inhibition.

ARMAx and OSP share the same scheme, which finds a weight vector (w = (RESPT∙RESP)−1RESP∙X) and 
subtracts xRSA from the original tachogram xRAW 

45. When the RESP is the trajectory matrix of EDR, the ARMAx 
and OSP can be interpreted as adaptive noise cancellers with a least square solution; then, the EDR and the 
RSA component (xRSA) can be regarded as a noise reference signal and true noise, respectively. The algorithm 
performance is determined by a linear correlation between xRSA and the  EDR70, but their true relationship is 
 nonlinear47. Specifically, both the amplitude and frequency of the original tachogram are modulated by the RR 

Figure 8.  Vital signs (HR and RR) and RSA indices  (RSAE and PLV) for 4 affective states. Box plots of (a) HR, 
(b) instantaneous RR, (c)  RSAE, and (d) PLV.

Figure 9.  Changes in HRV indices ((a):  IDXPNA and (b):  IDXSNA) of tachogram decomposition algorithms 
according to 4 affective states. Gauss (green boxes and dotted line); ARMAx (blue boxes and dashed line); OSP 
(yellow boxes and dash-dotted line); ZLE (red boxes and solid line).
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and tidal  volume27–29, and such modulations cannot be expressed by a linear transform of EDR. As an alternative, 
Gauss was suggested, which assumes paced  respiration48, but instantaneous RR generally changes with time. In 
the simulation, previous decomposition algorithms (Gauss, ARMAx, and OSP) performed well when RR was 
constant, but their performance was insufficient in time-varying RR. However, ZLE was robust to the fluctuations 
of simulated RR (see Fig. 4). Note that abrupt changes in RR often occur during breathing meditation. In fact, 
the HRV indices  (IDXPNA,  SBU, and  IDXSNA) of ZLE certainly identified both parasympathetic activation and 
sympathetic inhibition during meditation when no statistically significant differences were observed in some 
 IDXPNAs and most  IDXSNA of both ARMAx and OSP (see Tables 2, 3). Therefore, the ZLE seems to be the most 
reliable tachogram decomposition algorithm when RR dynamically changes.

Despite the promising performance of the proposed ZLE and HRV indices, they have limitations. First, if 
some oscillation of the RSA-free tachogram (xR-f) overlaps with the stop band of the notch filter in the frequency 
domain, then the corresponding oscillation will be suppressed. This filtering loss can be observed through the 
correlation coefficient between xRAW  and xR-f when the influence of RSA was small (e.g., resting state). As shown 
in Fig. 6, the loss of ZLE seems to be insignificant. Second, the proposed method did not identify sympathetic 
activation. In the stress state, sympathetic nerves are activated, but none of the  SBUs or  IDXSNAs show a significant 
increase. In future works, we plan to advance the proposed method for stress assessment.

Conclusions
To precisely assess autonomic nervous system activity, we proposed a novel tachogram decomposition algorithm 
(ZLE) and new HRV indices  (IDXPNA and  IDXSNA). ZLE clearly decomposed xRAW  into xRSA and xR-f, and  IDXPNA 
and  IDXSNA identified parasympathetic activation and sympathetic inhibition during meditation, respectively. 
This study may be the first report on the identification of cardiac sympathetic inhibition during meditation (or 
slow breathing). Although the overlapping issue of the ZLE still remains, the ZLE was more robust than previ-
ous tachogram decomposition algorithms (Gauss, ARMAx and OSP) when RR dynamically fluctuates. Since the 
proposed approach requires only a single-lead ECG, we expect that it will be used in various fields, such as the 
internet of Medical Things (IoMT), digital healthcare, digital meditation, and digital therapeutics.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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