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Photo‑oscillations in MgZnO/ZnO 
heterostructures
Jesús Iñarrea 

We theoretically examine the characteristics of microwave‑induced magnetoresistance (MIRO) 
and photovoltage oscillations in MgZno/ZnO heterostructures. We demonstrate that both kind of 
oscillations, although described with different physical properties, are intimately related sharing the 
same physical origin. We use the radiation driven electron orbit model showing that the interplay 
of radiation driven swinging Landau orbits and the scattering processes are at the heart of the 
oscillations in both scenarios. Thus, our simulations show that all photo‑oscillations present the main 
features of MIRO: they are periodic with the inverse of the magnetic field and the oscillations minima 
are 1/4 cycle shifted.

Microwave-induced resistance oscillations (MIRO)1,2, envisaged by  Ryzhii3,66 in the 70’s, are one of the most 
important effects when it comes to radiation-matter interaction in two dimensional electron systems (2DES). 
These peculiar oscillations present some distinctive features that serve to identified them. For instance, we can 
highlight, that they are periodic with the inverse of the magnetic field (B), the oscillations minima are shifted 
in 1/4 of the oscillation cycle and their amplitude exhibits a sublinear law with the power radiation (P) that at 
low power values gets linear. Closely related with the MIRO’s power dependence there is another remarkable 
effect such as zero resistance states, (ZRS). They shows up when P is high  enough1. Despite the fact that a lot 
of  experimental4–29,67 and  theoretical30–47 works have been carried out, the physical origin of MIRO and ZRS 
remain still unclear.

MIRO were discovered two decades ago in a high mobility GaAs/AlGaAs heterostructure when measur-
ing irradiated magnetoresistance under a vertical magnetic field (B) at very low temperatures, T ∼ 1K  . Later 
on, similar oscillations were discovered when measuring another physical quantity such as  photovoltage48,50,51. 
These novel oscillations presented the same peculiar features as MIRO did, suggesting similar, or at least related, 
physical  origin52,53. MIRO have been observed in a bunch of different platforms, all of them holding a system 
of 2D carriers being irradiated from microwaves to terahertz under moderate B. These platforms include het-
erostructures such as, GaAs/AlGaAs1,2, MgZnO/ZnO54, GeSi/Ge55 and more recently hexagonal boron nitride 
encapsulated  graphene56–59.

In this article, we present theoretical results on photo-oscillations of irradiated magnetoresistance ( Rxx ) and 
photovoltage using as platform the MgZnO/ZnO  heterostructure54. This heterostructure is able to host a 2DES 
reaching a mobility about 1× 106 cm2/Vs with the improvements in the growth  techniques54,60. This makes 
MgZnO/ZnO a good candidate to observe  MIRO54. The goal of this work is to present a common microscopic 
theory explaining the radiation-induced oscillations experimentally observed in both Rxx and photovoltage. This 
theory stems from the previous model of the radiation-driven electron orbits model30,31,43 which in turn is based on 
two main effects: the radiation-driven electron orbit motion and the corresponding scattering of electrons with 
impurities. According to our model the interplay of both effects would be at the heart of MIRO and photovoltage 
oscillations. Another important point that makes MgZnO/ZnO heterostructures very interesting and unique 
is that the source of scattering is different with respect to the most commonly used AlGaAs/GaAs platforms. In 
the latter case the main source of scattering is long-range potential centers such as remote charged impurities. 
However in the former, short-range potential scattering centers such as alloy impurities and surface roughness 
are the predominant contributors to disorder. In the present work, we have treated this kind of scattering with 
a model of a neutral impurity.

Theoretical model
The radiation-driven electron orbits model is a previously developed theoretical approach to explain both MIRO 
and ZRS that were observed in irradiated GaAsAl/GaAs heterostructures. One of the main results of this theory 
is that the Landau orbits are driven harmonically by radiation and the corresponding guiding center describes 
harmonic and classical trajectories on the 2D system. Accordingly, the interplay of this driven-harmonic motion 
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and scattering with sample disorder are at the core of photo-oscillations. Previous to irradiating the sample, 
electrons interact via scattering with the system disorder giving rise to resistance. In principle, the scattering 
is performed randomly in any direction leading to no net effect. Nevertheless, if there exists a DC electric field 
on the 2D sample, that can either be externally applied or built-in48, a definite direction is determined that, on 
average, will be followed by the electron when interacting with scatterers. In each scattering jump the scattered 
electron advances an average distance, �X0 along the DC field  direction49. Thus, a certain current shows up that 
can be measured in terms of magnetoresistance Rxx1,2 or  photovoltage48.

The scattering scenario in the dark is deeply altered when the sample is illuminated because the Landau 
orbits  oscillate30,31,43. This novel situation can be experimentally observed via Rxx1,2 or, more recently, via 
 photovoltage48,54. Now, under radiation, the advanced distance or spatial shift, due to scattering, turns into a 
harmonic function according to the radiation-driven electron orbit  model30,31,43,

where w and wc are the radiation and cyclotron frequencies respectively and A is the oscillation amplitude,

where E0 is the radiation electric field amplitude. According to Eq. (1), the radiation-driven Landau states, per-
form a swinging motion where the electrons interact with the lattice ions resulting in a damping process. The 
latter is phenomenologically introduced through the γ damping  term30,31,43.

If we now focus on the irradiated Rxx , we have to calculate first the corresponding conductivity σxx following 
a semiclassical Boltzmann  approach61–63,

being E the energy, ρi(E) the density of initial Landau states and WI is the scattering rate of electrons with sample 
disorder. According to the Fermi’s golden rule: WI = Ni

2π
�
| < φf |Vr |φi > |2δ(Ei − Ef ) , where Ni is the number 

of impurities, φi and φf  are the wave functions corresponding to the initial and final Landau states respectively 
and Vr is the disorder scattering potential. Ei and Ef  stand for the initial and final energies. The Vr matrix ele-
ment is given  by61,63:

and the term Ii,f 61,63,

where X0 and X ′

0 are the guiding centers of the initial and final Landau states respectively and qx the x-component 
of −→q  , the electron momentum change after the scattering event.

In the MgZno/ZnO system the main source of disorder and scattering is no longer long-range Coulomb 
potential centers such as remote charged impurities in AlGaAs/GaAs heterostructures. Now, short-range poten-
tial disorder is the main source of scattering. The heterointerface between MgZnO and ZnO takes in most of the 
disorder due to the Mg atoms that diffuse into the ZnO inversion layer. Thus, to calculate WI we have considered 
a simple model of a 2D neutral  impurity64 (Mg atoms) based on a circular barrier of radius a. This constant 
potential is given by: Vr = V0 if r ≤ a and Vr = 0 if r > a . Thus, V0 plays the role of the scattering potential. In 
the calculation of WI the Fourier transform V(|

−→q |) of the potential Vr , needs to be obtained and accordingly 
is given  by64,

where J1 is the first order Bessel function and S is the sample surface. Now we consider that |−→q | is small and thus 
V(q) no longer depends on q and the scattering becomes isotropic. Then V(|

−→q |) takes the form, 
V(|

−→q |) ≃ πa2V0/S . In our simulations we have used for a the effective Bhor  radius64 that in the case of ZnO is 
of the order of 2 nm. For V0 we have used for a neutral impurity an estimate  of61,65 V0 ∼ 50 meV. Finally, Rxx is 
calculated according to the usual tensorial relations, Rxx = σxx

σ 2
xx+σ 2

xy
 , where σxy ≃ nie

B  , ni being the electrons den-
sity, and e the electron charge. Then, and according to Eq. (3), the distance �X is direct responsible of the rise 
of MIRO when measuring Rxx.

The joint effect of radiation-driven Landau states and impurity scattering as origin of photo-oscillations can 
be revealed by measuring photovoltage instead of irradiated Rxx59. As we have indicated above, in order to obtain 
a net scattering we need a predominant direction along which the scattering jump takes place. This direction is 
determined by a DC electric field acting on the sample. In the case of Rxx this DC field is externally  applied1,2. 
Nevertheless, in the case of photovoltage it can be either built-in48 due, for instance to the presence in the sample 
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of metallic connection pads, or externally  applied56. To theoretically study photovoltage in MgZno/ZnO systems 
we have applied a model previously used for encapsulated  graphene59. In it, one of the squared sample edges is 
connected to an external positive DC voltage, +V0 and then a definite scattering direction is determined in the 
sample (see Fig. 1). As a result two lines of opposite charge rise at facing sides. The lines width is of the order 
of the scattering spatial shift between Landau  states30,31,43 �X0 . Then, a voltage drop, Vdark , is created along the 
sample and can be experimentally measured. An expression for Vdark can be obtained, from basic electrostatics,

Figure 1.  Schematic diagram of the microscopic model of dark voltage and photovoltage in MgZnO/ZnO 
heterostructures. The scattering direction is determined by the external voltage +V0 . (a) In the dark case the 
scattered electron mostly jump, between Landau orbits, in the direction of the positive voltage. As a result two 
lines of opposite charges build up at facing sides of the sample. (b) With radiation, the scattering jump distance 
changes due to the swinging motion of driven Landau orbits giving rise to radiation-induced photovoltage 
oscillations. The case of a shorter distance jump regarding the dark case is shown.

Figure 2.  (a) Calculated irradiated (black curve) and dark (red curve) Rxx vs B. The radiation frequency is 
95 GHz and T = 1.0 K. SdH oscillations are observed in both curves and in the irradiated one MIRO. (b) 
Irradiated Rxx vs the inverse of B. The corresponding curve is perfectly periodic. (c) Calculated MIRO amplitude 
�Rxx vs B. The labels in the figure correspond to the extrema positions (maxima and minima). The inset shows 
the basic experimental setup.
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where e is the electron charge, ǫ is the ZnO permittivity and n2D is the 2D charge density on the lines. n2D can be 
expressed in function of the density of states per unit area around the Fermi energy D(EF) , n2D(EF) = 2D(EF)�EF , 
where �EF is an energy interval around the Fermi energy. Thus, D(EF) accounts for the SdH oscillations that 
show up in the photovoltage. Under irradiation �X0 turns into a harmonic  function44 �X = �X0 − A sin

(

2π w
wc

)

 
and instead of Vdark there is a photovoltage, Vph given by an expression similar to Vdark but with �X instead of 
�X0.

Results
In Fig. 2 upper panel we exhibit two curves of Rxx vs B for MgZnO/ZnO. The black curve corresponds to irradi-
ated Rxx and the red curve to the dark case. The radiation frequency is 95 GHz and T = 1.0 K. In both curves 
we can observe SdH oscillations and in the irradiated also MIRO, as occurs in other semiconductor platforms. 
The main photo-oscillations shows up at higher B regarding AlGaAs/GaAs due to the bigger effective mass. In 
our simulations for MgZnO/ZnO we have used m∗ = 0.35me where me is the bare electron  mass54. In contrast, 
for AlGaAs/GaAs the usual effective is around m∗ = 0.067me and the oscillations show up at smaller B. For the 
electron density we have used ne = 5× 1011 cm−2 and a mobility of 1× 105 cm2/Vs. These are similar values 
as the ones of the  experiments54. In the middle panel we represent irradiated Rxx vs the inverse of B. The cor-
responding curve is perfectly periodic, as expected fulfilling one of the distinctive MIRO features. The vertical 
lines at the minima positions act as a help to check the oscillations periodicity with 1/B. In the lower one we 
exhibit the oscillations amplitude �Rxx vs B, so that he extrema positions can be more easily identified. The labels 
in the figure correspond to the extrema (maxima and minima). The oscillations minima show the shift of 1/4 in 
the oscillation cycle, which is another peculiar MIRO feature. Thus, their position varies as w/wc = 1/4+ j , j 
being a positive integer. The inset shows the basic experimental setup. The calculated results are in qualitatively 
agreement with  experiment54.

In Fig. 3 we plot the radiation frequency dependence of irradiated magnetoresistance in MgZnO/ZnO. In the 
upper panel we present irradiated Rxx vs B for nine different frequencies from 80 to 128 GHz. All the curves are 
1/4 cycle shifted irrespective of the frequency. We observe that MIRO displace to higher B as frequency increases, 
increasing as well the number of oscillations. The extrema change their positions in the B axis according to a 

(7)Vdark =
n2De�X0

2πǫ

Figure 3.  Frequency dependence of irradiated Rxx vs B. In the upper panel we exhibit irradiated Rxx vs B for 
nine different frequencies. Frequencies run from 80 to 128 GHz. Oscillations displace to higher B as frequency 
increases. In the lower panel the five groups of points correspond to the extrema positions labelled in Fig. 2. 
They show the dependence of extrema positions with B. The fits show that this dependence follow a straight line 
in all cases.
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definite dependence; for the minima according to w/wc = 1/4+ j , j and for the maxima, w/wc = 3/4+ j , j. 
This dependence is revealed in the lower panel where we represent B versus radiation frequency for five cases 
corresponding to the extrema labelled in Fig. 2 lower panel. We have carried out fits on every group of points 
obtaining very clear straight lines, as expected according to the two previous formula that relate w and wc . The 
variation of extrema positions with B according to a straight line is another genuine characteristic of MIRO 
and has been experimentally observed in previous semiconductor platforms. Again the calculated results are in 
qualitatively good agreement with the experimental  ones54.

Figure 4 shows the power dependence of irradiated magnetoresistance in MgZnO/ZnO. In the upper panel 
we present irradiated Rxx vs B for ten different power values ranging from 0 to 1350 µ W. As the power increases 
the MIRO amplitude rises too following a square root law: �Rxx ∝ P0.5 . The P increase does not affect the oscil-
lations position that keep constant. The power Law dependence is exhibited in the lower panel where we present 
�Rxx amplitude vs P. We fit the calculated points obtaining a square root dependence (dashed red curve) of 
�Rxx with P: �Rxx = 0.89P0.48 . Despite the controversy between linear and square root dependence, we have 
to admit that a good number of experiments show a mixed behaviour between linear and sublinear. The most 
recent experiments with encapsulated monolayer  graphene56, show a linear dependence at low power and as the 
latter increases, the dependence becomes sublinear.

We now focus on the photovoltage results. Thus, in the upper panel of Fig. 5 we exhibit photovoltage vs B for 
a frequency of 95 GHz and T = 1 K. The curve is qualitatively very similar to the one of irradiated Rxx in Fig. 2a. 
In the middle panel we exhibit photovoltage amplitude vs B. Both curves in (a) and (b) present the main charac-
teristics of MIRO that were already obtained when calculating magnetoresistance: photovoltage turns out to be 
periodic with 1/B (not shown in the figure) and minima positions are 1/4 cycle shifted. The extrema positions 
coincide with the ones obtained in irradiated Rxx . Finally in the lower one we observe that photovoltage follows 
a square root law when it comes to radiation power dependence.

Conclusions
Summing up, we have theoretically studied the microwave-induced resistance oscillations and photo oscillations 
experimentally found in MgZnO/ZnO heterostructures. We have used the radiation-driven electron orbit model 
to depict a common microscopic model for both kind of oscillations. We have come to the conclusion that the 
interplay between the radiation-driven Landau orbits that perform harmonic trajectories and the interaction with 

Figure 4.  In the upper panel we present the radiation power dependence of irradiated Rxx vs B. Ten curves 
are exhibited corresponding to ten different power values ranging from the dark case to 1350 µ W. As P rises 
the oscillations amplitude increases too. On the other hand P does not alter the oscillations position that keep 
constant as P increases. In the lower panel we presene the irradiated Rxx amplitude vs P. T = 1 K.
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the sample disorder are at the origin of both photo-oscillations. Thus both show the main distinctive characteris-
tics of previous MIRO. They are periodic with the inverse of the magnetic field and they are 1/4 cycle shifted. The 
calculated results both, magnetoresitance and photovoltage are in qualitative good agreement with  experiments54 
except in the part of power dependence where experiments shows a linear behavior at low radiation power.

Data availability
All data generated or analysed during this study are included in this published article.
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