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A multi‑task convolutional 
neural network for classification 
and segmentation of chronic 
venous disorders
Bruno Oliveira 1,2,3,4,5*, Helena R. Torres 1,2,3,4,5, Pedro Morais 4,5, Fernando Veloso 1,2,4,5,6, 
António L. Baptista 4, Jaime C. Fonseca 3,5 & João L. Vilaça 4,5

Chronic Venous Disorders (CVD) of the lower limbs are one of the most prevalent medical conditions, 
affecting 35% of adults in Europe and North America. Due to the exponential growth of the aging 
population and the worsening of CVD with age, it is expected that the healthcare costs and the 
resources needed for the treatment of CVD will increase in the coming years. The early diagnosis of 
CVD is fundamental in treatment planning, while the monitoring of its treatment is fundamental 
to assess a patient’s condition and quantify the evolution of CVD. However, correct diagnosis relies 
on a qualitative approach through visual recognition of the various venous disorders, being time‑
consuming and highly dependent on the physician’s expertise. In this paper, we propose a novel 
automatic strategy for the joint segmentation and classification of CVDs. The strategy relies on a 
multi‑task deep learning network, denominated VENet, that simultaneously solves segmentation and 
classification tasks, exploiting the information of both tasks to increase learning efficiency, ultimately 
improving their performance. The proposed method was compared against state‑of‑the‑art strategies 
in a dataset of 1376 CVD images. Experiments showed that the VENet achieved a classification 
performance of 96.4%, 96.4%, and 97.2% for accuracy, precision, and recall, respectively, and a 
segmentation performance of 75.4%, 76.7.0%, 76.7% for the Dice coefficient, precision, and recall, 
respectively. The joint formulation increased the robustness of both tasks when compared to the 
conventional classification or segmentation strategies, proving its added value, mainly for the 
segmentation of small lesions.

Chronic Venous Disorders (CVD) of the lower limbs are one of the most prevalent medical conditions in the 
adult population worldwide, representing 1–2% of the healthcare budgets in Western European countries and 
North  America1–3. In the initial stages, symptoms associated with CVD include leg pain, discomfort, heaviness, 
and swelling. Due to the visual impact of this condition on the patient’s skin, it also results in low self-esteem, 
isolation, and depression, all of which impact the patient’s quality of life. As the disease worsens to varicose veins, 
edema, skin changes, and ulceration, the quality of life is reduced and the demand for treatment  increases2,4,5. 
Due to the variety of signs and symptoms associated with CVD severity, correct diagnosis is essential to provide 
accurate treatment to the patients and to help in the management of medical  resources6–9.

The signs of CVD are typically evaluated in terms of a structured clinical classification protocol named 
CEAP (Clinical, Etiologic, Anatomic, Pathophysiologic)6,7. This protocol incorporates a wide range of signs and 
symptoms of CVDs to describe their severity, ranging from C0 (no visible signs of venous disease) to C6 (active 
venous ulcer) (Fig. 1). While the CEAP scoring protocol is useful to classify the stages of CVD, it is relatively 
static, and thus, insufficient for a physician to determine quantitative changes in severity over time in response 
to the  therapy10,11. Thus, the Venous Clinical Severity Scoring (VCSS) was proposed to supplement the CEAP 
protocol. The VCSS system evaluates 10 clinical characteristics scored from 0 to 3 (absent, mild, moderate, severe) 
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to produce a 30-point scale of CVD severity that enables a more sensible evaluation of the treatment  response10,11. 
Although both CEAP and VCSS protocols allow the physicians to report CVD diagnosis, infer the patient condi-
tion, and offer indicative information for the treatment, they require a physical examination and visual inspection 
of the patient’s skin to detect the occurrence and extent of all  lesions4,11. Nevertheless, this process is challenging 
and is still totally dependent on the physician’s expertise, frequently resulting in incomplete recognition of all 
CVD signs and, consequently, undertreated  CVDs7,12. Moreover, with the current scoring methods, a continuous 
quantification of the treatment evolution is still hampered.

The research on imaging tools for the examination of skin lesions has already demonstrated its clinical inter-
est with increased diagnostic  accuracy13–16. To help the diagnosis and monitoring treatment evolution of CVD, 
digital photographs are regularly captured and stored by healthcare  professionals17–19. These photographs allow 
an easier evaluation of the patient’s condition by comparing the classification (i.e. according to CEAP and VCSS) 
and lesion extension in different  periods17,19,20. References on the clinical images (e.g. ruler, taper) can also be 
used to ease the correlation with real-world  units17. Nevertheless, skin images are difficult to classify and segment 
since the CVD lesions vary in shape and  size13,14. To overcome similar medical problems, automated skin lesion 
segmentation and classification methods have been proposed in the literature. Among them, deep convolutional 
neural networks (DCNN) have achieved significantly improved performance in segmentation and classification 
tasks on skin images when compared with other image processing  strategies14,17.

DCNN architectures such as  VGGNet21, Fully Convolution Neural  networks22, or U-Net23 architec-
tures, proved to be effective in the diagnosis of skin lesions and reached predicted levels on par with 
 dermatologists14,24–27. However, specifically for CVD images, few automatic strategies were still proposed, tar-
geting mainly skin ulcer  segmentation17,20,28, or CVD severity  classification29–31. The interpretation of images 
with these skin lesions is particularly difficult. First, contrary to other medical images (e.g. CT, MRI) where 
standard and calibrated equipment is available, digital cameras are normally used by physicians to record photos 
of CVD lesions. Second, CVD presents a wide range of sizes and shapes, ranging from small vessels with 1 mm 
of caliber to varicose veins often protruding from the skin to skin ulcers with well-defined features. Interestingly, 
and although not validated in CVD, for high variable segmentation/classification situations, multi-task learning 
techniques have recently demonstrated their added value to empower network  training32–36. These methodolo-
gies combine information from different tasks, boosting the generalization ability of the network, and showing 
improvement in the overall method’s performance. For CVD analysis, and in opposition to state-of-the-art skin 
lesion methods where both segmentation and classification are normally performed independently, this joint 
strategy could potentiate the results of each task while fulfilling the current requirements of normal clinical 
practice with both CVD classification and segmentation.

In this study, we propose a novel framework based on DCNN to segment CVD and classify its severity from 
medical images. Our proposed network, named as VENet, explores the advantages of multi-task learning by 
jointly learning both classification and segmentation tasks. This strategy is inspired by the U-Net architecture 
but redirects the high-level features from the deep stages into a new classification branch. Overall, this strategy 
has the potential to improve the accuracy of both tasks by sharing the same feature map and promoting each 
other during the training phase. VENet takes CVD images as input and outputs the CVD severity classification 
(according to CEAP) and segmentation results of the lesions from different severity levels, namely telangiectasias 
and reticular veins, varicose veins, and ulcers. For the development of the proposed framework, a new clinical 
dataset of CVD was constructed. The main contributions of this work are described as follows:

- A novel automatic methodology for segmenting and classifying CVD in clinical photographic images. To 
the best of our knowledge, this is the first attempt to perform simultaneously CVD lesions segmentation and 
classification;

- A new DCNN, VENet, for multi-class joint segmentation and classification of skin images in an end-to-end 
manner. With the joint learning of the classification and segmentation task, VENet has the potential to improve 
the robustness of both tasks;

- A validation of the proposed VENet pipeline against state-of-the-art single-task and multi-task segmenta-
tion and classification methods;

Figure 1.  Chronic venous disorders (CVD) stages of development with respective severity classification 
(CEAP).
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This paper is structured as follows. Section “Methods” describes the methodology of the proposed framework, 
with implementation details presented in Sect. “Implementation details”. Section “Experiments” introduces the 
validation experiments, followed by results in Sect. “Results”. In Sect. “Discussion”, the performance of each 
module of the proposed framework is discussed and compared with state-of-the-art results. The conclusions 
are given in Sect. “Conclusion”.

Methods
General overview. The proposed framework integrates classification and segmentation tasks in an end-to-
end DCNN methodology. Initially, an RGB image is fed into the VENet, which produces two different outputs, 
namely a vector of probabilities and a set of segmentation masks for different CVD lesions. Specifically, the 
probability vector contains the severity level probability of the patient’s condition, according to 5 levels of sever-
ity: level 0—no visible signs of venous disease; level 1—telangiectasias /reticular veins; level 2—varicose veins; 
level 3—edema and skin changes including pigmentation and eczema; and level 4—healed/active venous ulcers 
(Fig. 1). Additionally, for each severity, a segmentation mask is generated with the pixel value corresponding to 
the probability of being a lesion with that severity.

The general overview of the proposed architecture is presented in Fig. 2. It is divided into four conceptual 
blocks. In the first (Sect. “Data augmentation”), data augmentation techniques are explored. This data is then 
fed to VENet, which architecture is fully explained in the second block (Sect. “VENet architecture”). Next, in the 
third block (Sect. “Loss function”), the multi-task loss developed to allow VENet to jointly learn the segmenta-
tion and classification tasks are described. Lastly, the post-processing strategy is presented in the fourth block 
(Sect. “Post-processing”).

Data augmentation. To deal with CVD variability, DCNN-based approaches require a large amount of 
data to correctly perform a specific  task17,24. However, access to a generalized medical dataset is challenging. 
Thus, to improve the generalization capacity of VENet and overcome overfitting problems, data augmentation 
was performed. In fact, data augmentation techniques have been shown to improve the efficacy of DCNN for 
the diagnosis of skin  lesions14,24. Two different types of data augmentation were implemented, namely spatial-
based (i.e. random flip, rotation, scaling, grid distortion, optical distortion, and elastic transformations) and 
pixel-based techniques (i.e. random gaussian noise, brightness, contrast, and gamma transformations). While 
spatial-based augmentation aims to deal with the variability of lesion shapes as well as the usage of different 
digital cameras, pixel-based augmentations are used to improve the robustness of the VENet concerning the 
acquisition conditions (e.g. lighting variability) and lesions’ appearance.

Figure 2.  Overview of the proposed VENet for CVD severity classification and lesion segmentation. 
(A) Encoding path; (B) Classification head; (C) Decoding path; (D) Segmentation head.
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VENet architecture. The augmented data is sent as the input of the VENet for CVD segmentation and clas-
sification. The VENet architecture utilizes the U-Net as the backbone, and it is divided into four parts, namely 
the encoding path, the classification head, the decoding path, and the segmentation head (Fig. 2).

Encoding path. The VENet encoding path is composed of downsampling blocks to extract high-level features. 
Each block of the encoding path is composed of two convolutional layers, with each layer consisting of a con-
volution, followed by batch normalization and a leaky rectified linear unit (Leaky ReLU). The downsampling is 
implemented using a strided convolution on the first layer of each encoding block. The initial number of feature 
maps is defined to be 32, which is double in each downsampling strided convolution operation. Moreover, to 
limit the computational cost of the model, the number of feature maps is limited to 480 (Fig. 2A). Note that, the 
generated features from the encoding path are shared by both classification and segmentation heads.

Classification head. For image classification tasks, state-of-the-art results are obtained using DCNN for high-
level feature extraction followed by a classification head constituted with fully connected layers to get the final 
classification  vector25,37. Here, the introduction of subsampling layers improves the efficacy of the network since 
it eliminates the redundancy of features, reducing overfitting and minimizing computational  cost22,38. We pro-
pose to use the VENet encoding path to extract high-level features for CVD classification. Thus, a classification 
head is added to the bottom of the VENet. The high-level features are fed into the classification head composed 
of a convolution block, followed by an adaptive average pooling layer to allow VENet to deal with different input 
sizes. Finally, the features are fed into the final block composed of a fully connected layer, a Leaky ReLU activa-
tion function, another fully connected layer, and a softmax layer to get the diagnostic probability of each CVD 
severity level (Fig. 2B).

Decoding path. The VENet decoding path is constituted by upsampling blocks to restore the feature maps to 
the original input size, allowing the interpretation of low-level features. Each block of the decoding path is com-
posed of two convolutional layers, a batch normalization, and a Leaky ReLU activation function. Between each 
decoding block, a subsampling operation is implemented as a convolution transposed. This makes the encoding 
and decoding path symmetric. To allow the propagation of spatial information, skip connections are established 
between the encoding path and the decoding path at the same level. To implement the skip connections, a con-
catenation of the feature maps of encoding blocks and decoding blocks is used (Fig. 2C)23.

Segmentation head. In the segmentation head of VENet, the feature maps from the last block of the decoding 
path are fed into three consecutive convolution layers, with each layer consisting of a convolution, followed by 
batch normalization and a Leaky ReLU. A softmax layer is used to obtain the final instance-level probability 
maps. The final number of probability maps is defined to match the number of CVD lesions categories. Moreo-
ver, to allow deep supervision of the training process, probability maps from each decoding block are generated 
using a convolution layer followed by a softmax layer. The deep supervision allows the incorporation of the 
gradients from the backpropagation process deeper into the VENet easing the training  process39,40(Fig. 2D).

Loss function. We use a multi-task loss with two parts, namely the classification and segmentation  losses41,42. 
Similar to other classification  frameworks43,44, we use multi-class cross-entropy for the classification loss. Thus, 
with cǫ[1, 2 . . . ,C] being the class index and C representing the number of CVD severity classes, the classifica-
tion loss, Lclass , is given by:

where y represents the one-hot ground truth label for each class c , and ŷc is the VENet softmax output of the 
classification head for the same class c.

For the segmentation task, we combine the cross-entropy loss with the DICE loss. Cross-entropy loss already 
showed to allow a smooth convergence, although being ineffective in the case of imbalanced data for segmenta-
tion (i.e. where the background is larger than the lesions). This limitation is minimized with the inclusion of DICE 
loss, which focuses on the shape similarity between the predicted mask and the ground truth CVD segmentation 
 maps39,41. The DICE loss ( LDICE ) is described as:

where pic is the softmax output of the VENet segmentation head, gic the value of one hot encoding of the ground 
truth segmentation map for the pixel iǫ[1, 2, ..., I] , and class c, with I the number of pixels per image, and ε a 
constant value to overcome division by 0. Thus, the segmentation loss, Lseg is given by:

with LCE(g , p) = −
∑C

c=1 g
i
c × log

(
pic
)
 being the CE loss for the segmentation task. Additionally, to enable the 

deep supervision of the training, the final segmentation loss is the weighted sum of the losses from all resolution 
outputs of VENet (i.e. from the decoding blocks and segmentation head), given by:
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ŷc
)
,

(2)LDICE
(
g , p

)
= −

1

C
×

C∑

c=1

2×
∑I

i=1 g
i
c × pic∑I

i=1 g
i
c +

∑I
i=1 p

i
c + ε

,
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where wdeepr
 is the weight for the softmax output of the r VENet resolution, rǫ[1, 2, ...,R], and R is the number of 

outputs of the VENet. Thus, wdeep =
{
wdeep1...

,wdeepR

}
 is the vector of weights for the deep segmentation supervi-

sion loss. Note that, since segmentation prediction masks of different stages have different sizes and cannot be 
compared directly to the ground truth segmentation map, downsampling of the ground truth segmentation for 
each level is performed. Finally, the multi-task loss function is defined as:

where �class, �seg is used to weigh each task loss. The minimization of the proposed multi-task loss during the 
learning problem described in Sect. “Implementation details” allows VENet to jointly learn to classify and seg-
ment CVD.

Post‑processing. From the output of the segmentation head of the VENet, the final predictions are obtained 
by selecting the label with maximum probability in each pixel. After, isolated segmented pixels are eliminated. In 
the end, a severity classification and lesion segmentation of the CVD images are obtained.

Implementation details
All the images were initially resized to have a minimal side equal to 384 pixels, followed by a center crop to have 
the final size of [384 × 384]. Note that, the cropping operation was reviewed to guarantee that pixels correspond-
ing to a lesion were not removed. After, normalization for the range [0, 1] was performed. For the spatial-based 
augmentation, the input images were randomly flipped, either horizontally, vertically or both, with a probability 
of 0.3. A rotation by an angle selected randomly from a Gaussian distribution in the range [− 180°, 180°] with 
a probability of 0.2, and an image scale selected randomly from a Gaussian distribution in the range [− 0.3, 
0.3] with a probability of 0.2, was also applied. A grid distortion with a probability of 0.5 with distortion limits 
in the range [− 0.3, 0.3], an optical distortion with a probability of 1 with distortion limits in the range [− 0.3, 
0.3], and a shift limit in the range [− 0.05, 0.05] were also used. Finally, elastic transformations with an alpha of 
120º, sigma of 6, and alpha affine in the range [− 6, 6] were also implemented. For the pixel-based augmenta-
tions, Gaussian noise was added to the input image with a variance range of [0, 0.1] with a probability of 0.1. 
Random brightness and contrast augmentations selected randomly from factors in the range [− 0.25, 0.25] with 
a probability of 0.15 were also introduced. Finally, random gamma transformation with a probability of 0.3 
selected from gamma limits in the range [70, 150] was also used. The augmentations were performed using the 
Albumentations  framework45.

For the multi-task loss,�class and �seg  were defined to be 0.5 and 1, respectively, which showed to achieve stable 
performance. Moreover, the weights wdeep are defined according to wdeepr = (1/2r)/

∑R
i=1 1/2i thus giving less 

importance to segmentation predictions of lower resolution. The training of VENet was performed simultane-
ously for both classification and segmentation tasks in 1000 epochs with a mini-batch size of 4 and using the 
Adam optimizer with an initial learning rate of 0.0001 and a learning rate decay following the “poly” learning 
rate policy ( lr = 1− (1− epoch/max_epoch)power ) with power defined to 0.946.

Experiments
Data. A clinical database containing 1376 photographs of patients with CVD in lower limbs was constructed. 
The data was collected from normal clinical practice, where 522 images were obtained from two public datasets, 
namely 217 images from  ULCER47 and 305 from the SD-19848. These images correspond to lesions from 5 differ-
ent levels of CVD severity. All images were obtained using a digital camera. The distribution of images per sever-
ity level is described in Table 1. The included CVD images, excepting level 3 related images (i.e. lesions may cover 
the entire leg), contain pixel-level lesion annotations obtained by manual analysis of one experienced observer 
which were further validated by a licensed physician. Figure 3 illustrates examples of the different image sources 
and corresponding segmentations.

Evaluation metrics. The proposed strategy was evaluated through the following metrics: Accuracy (ACC), 
Recall (REC), Precision (PRE), and Area Under the Curve (AUC) of Receiver Operating Characteristic (ROC). 

(4)Lseg_deep =

R∑

r=1

wdeepr
× Lseg r ,

(5)LVENet = �class × Lclass + �seg × L
seg_deep

,

Table 1.  Distribution of the dataset images per severity level.

Severity level Ours ULCER SD-198 Total

0 – No visible or palpable signs of venous disease 223 0 0 223

1 – Telangiectasias or Reticular veins 237 0 0 237

2 – Varicose veins 127 0 0 127

3 – Edema, Pigmentation and other changes in skin and subcutaneous tissue 241 0 305 546

4 – Venous ulcers 26 217 0 243

TOTAL 854 217 305 1376
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Moreover, for the classification, the balanced F1-score (F1-score) was used to evaluate the performance of the 
classification task. For the segmentation task evaluation, the Jaccard (JAC) and Dice coefficient (DICE) was also 
used to evaluate the similarity between the predicted and ground truth label map. Due to the multi-class seg-
mentation and classification tasks, the average of the metric score from all classes was computed.

Evaluation strategies. To evaluate the accuracy and robustness of the proposed VENet, several experi-
ments were conducted, namely ablation studies (Sect. “Ablation studies”), a comparison against other conven-
tional DCNN methodologies for lesion classification (Sect.  “Classification DCNN”) and lesion segmentation 
tasks (Sect. “Segmentation DCNN”), and a comparison against other multi-task methodologies (Sect. “Multi-
task DCNN”). All the networks were trained using the parameters described in Sect. “Implementation details”, 

Level 0 - No visible or palpable signs of venous disease

Level 1 – Telangiectasias or Reticular veins

Image Label map Image Label map

Level 3– Edema, Changes in skin and subcutaneous tissue

Image Label map Image Label map

Level 4– Venous Ulcers

Image Label map Image Label map

Level 2 – Varicose Veins

Figure 3.  Examples of images used for the development of the proposed framework. Each row represents a 
different level of CVD severity. Note that, for severity levels with pixel annotations, two images are showed with 
the corresponding label map. For severity levels 0 and 3 with no manual annotations, four different images were 
presented.
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except for the learning rate, which was adapted depending on the training loss curve of each network. The 
results were computed using Python code running on an Intel (R) i7 CPU at 2–8 GHz with 16 GB of RAM and 
an NVIDIA GTX 1070 GPU with 8 GB of memory and cuDNN 10.1 libraries. The proposed VENet and all the 
other conventional neural network architectures were implemented using the MONAI  framework49 with the 
Pytorch library  backend50. To measure the statistical significance of the classification results, a one-sided McNe-
mar’s test in 2 × 2 tables (p < 0.05) was used. For the comparison of overall correctness, a joint 2 × 2 table was 
generated, which included all samples and showed the numbers of samples where none, one, or both methods 
produced a correct diagnosis. The statistical significance of the segmentation results of VENet was measured 
against all the other strategies in terms of DICE, PRE, and REC using a one-sided paired t test (p < 0.05). The 
D’Agostino-Pearson test was used to test the normality of the data. 

Ablation studies. Ablation experiments were performed to analyse the effect of the optimization approach, 
image augmentation techniques, loss function, deep supervision training, batch size, and the number of convo-
lution kernels of VENet. First, the dataset was randomly divided into training, validation, and testing datasets, 
respectively 80%, 10%, and 10% of the initial dataset. Then, for each experiment, one component of the proposed 
method was replaced while keeping the remaining ones. Next, the modified VENet was trained and evaluated 
on the training and validation datasets, respectively. Note that, for the level 3 images (i.e. without mask), the 
segmentation loss component is neglected.

Classification DCNN. The performance of the EfficientNet-b451,  Resnet10143,  DenseNet16144, and the encod-
ing block of VENet (i.e. henceforward called VENetC) on the classification task was evaluated against our clas-
sification method with the multi-task approach. During these experiments, the dataset from the ablation studies 
mentioned above was used for training, while the testing dataset was used to obtain the final results.

Segmentation DCNN. The VENet’s segmentation performance was compared against the  SegResNet52, 
 DeepLabV353, Fully Convolution Networks (FCN)22, and the VENet segmentation block only (i.e. henceforward 
called VENetS). The training of all networks was performed on the training dataset, while the results presented 
were computed on the testing dataset. Note that, for the level 3 images (i.e. without mask), the segmentation loss 
component is neglected during training.

Multi‑task DCNN. The proposed VENet was compared against state-of-the-art multi-task learning methods 
in this experiment. Specifically, four different methodologies were tested, namely  MTCSN35, DSI-Net36, Le et. 
al.34, and Che et al.54. All the multi-task frameworks were trained with a similar configuration to guarantee a fair 
comparison among methodologies. Note that, the convergence of all networks was manually verified. All results 
were measured on the testing database.

Results
Ablation studies. Table 2 depicts the method’s performance for the different methodological steps. Overall, 
the proposed strategy presented the best performance for all metrics, except for the PRE. The proposed method 
showed results in the test dataset of 78.3% DICE, with an ACC of 81.7% and REC of 77.6% for the segmentation 
task. Regarding the classification, an ACC of 97.8%, PRE of 97.6%, REC of 98.5%, and F1-score of 97.8% were 
obtained. The ADAM optimizer showed slightly superior performance than the SGD, while better results were 

Table 2.  Segmentation and classification performance of the ablation studies (mean). SGD Stochastic gradient 
descendent optimizer with Nesterov momentum (μ = 0.95). Loss Seg. only DICE – without cross entropy loss 
on Eq. (3) Loss Seg. only CE – without dice loss on Eq. (3) For each ablation experiment, one component of 
the proposed method was replaced or disable. For each row, the model column describes the component that 
was changed. Bold values indicate best performance.

Model

Segmentation Classification

DICE JAC PRE REC ACC PRE REC F1-score

Proposed 78.3 67.0 81.7 77.6 97.8 97.6 98.5 97.8

SGD 77.1 65.7 81.6 76.3 97.8 97.6 97.9 97.8

Initial conv = 16 74.1 62.4 82.1 72.3 97.1 96.7 97.5 97.1

Batch size = 2 67.3 54.8 81.6 63.5 89.8 89.6 87.4 89.9

Instance normalization 76.1 64.4 80.8 75.0 94.9 93.7 94.4 94.9

Loss seg. only DICE 69.8 58.0 85.0 65.2 97.1 97.7 96.6 97.1

Loss seg. only CE 65.0 53.0 89.4 56.7 94.9 95.3 95.0 94.9

Dropout 0.2 76.9 65.4 82.1 75.7 95.6 96.0 96.9 95.5

No contrast augmentation 77.4 66.1 82.3 75.9 95.6 96.3 95.9 95.6

No geometric augmentation 72.8 60.7 80.7 70.8 92.7 93.2 91.8 93.1

No loss deep supervision 75.4 63.5 80.9 73.5 94.9 95.6 94.5 95.0
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obtained with the data augmentation strategies. Moreover, it is also shown that the introduction of deep supervi-
sion improved the VENet performance.

Classification DCNN. Table 3 shows the comparison between the performance of the proposed VENet and 
other conventional DCNN architectures for the classification task. Generally, VENet presents the best average 
results against all the other networks, with an ACC, PRE, and REC of 96.4%, 96.4%, and 97.2% respectively. 
When comparing against VENetC, an improvement in the overall accuracy was shown. Still, no significant dif-
ferences were observed between VENet and VENetC. Figure 4 shows the confusion matrix of VENet, showing 
that most of the classification errors originated from images with severity level 3. Figure 5B compares the loss 
curves of the training of single-task and multi-task networks for the classification task. VENet presented a lower 
loss value after convergence on both training and testing datasets.

Segmentation DCNN. Table 4 presents the results of the performance of the proposed VENet when com-
pared against other conventional segmentation strategies. Overall, VENet showed the best performance in com-
parison with all the other evaluated strategies with an average DICE of 75.4%, a PRE of 76.7%, and a REC of 
76.7%. The average DICE of VENet was 2.7% higher than the VENetS architecture. The segmentation results 
for each lesion separately show that VENet presents the best results against all the other DCNN architectures, 
with an average DICE of 70.8%, 62.8%, and 92.5% for the telangiectasias and reticular veins, varicose veins, and 
venous ulcers, respectively. Figure 5A compares the loss curves of the training of single-task and multi-task 
networks for the segmentation task. Again, analysing Fig. 5B, a better generalization ability of VENet against the 
single-task segmentation strategies was observed. Figure 6 shows example results for all the evaluated DCNNs. 

Multi‑task DCNN. Table 5 compares the performance of the VENet methodology against other state-of-
the-art multi-task DCNNs. Overall, the VENet architecture presents the best performance for the segmentation 
of the CVD lesions, with an increment of 4% against DSI-Net, which achieved the second-best performance. 
Nevertheless, for the classification task, both DSI-Net and Che et al. frameworks achieved better performance 
with an accuracy of 97.8 and 97.1 against the 96.4 achieved by VENet.

Table 3.  Comparision of the VENet performance against conventional DCNN for CVD classification task 
(mean ± S.D.). α p < 0.05. Two-sided McNemar’s test against the proposed VENet strategy. Bold values indicate 
best performance.

Model ACC PRE REC F1-score AUC 

VENet 96.4 96.4 ± 5 97.2 ± 2.6 96.3 99.6 ± 0.5

VENetC 94.9 93.8 ± 5.8 96 ± 3.9 94.9 99.1 ± 0.8

DenseNet161 93.5α 93.3 ± 6.5α 92.5 ± 5.8α 93.5α 96.5 ± 5.1α

Resnet101 94.2 92.6 ± 8.5 95.4 ± 4.8 94.1 99.2 ± 0.7

EfficientNetB4 93.5α 93.3 ± 8.3α 93.5 ± 2.2α 93.4α 98.5 ± 1.1α

Figure 4.  Confusion matrix of the proposed VENet for the classification of CVD images from the validation 
dataset. (A) Confusion matrix in each row represent the true label, while the column represents the VENet 
predicted classification. (B) Example pf wrong classified images by VENet.
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Discussion 
The proposed study presents a fully automated DCNN approach for severity classification and lesion segmenta-
tion from CVD images. Such a tool can potentiate diagnostic accuracy and enable the quantification of the treat-
ment evolution. To the best of our knowledge, this is the first attempt to perform simultaneously CVD lesions 
segmentation and classification. Overall, the presented method showed high accuracy against state-of-the-art 
CVD lesion classification and segmentation techniques (i.e. single-task and multi-task). Indeed, the joint learn-
ing promoted the encoding path of VENet to extract more relevant features from the input images, leading to 
the generalization of the method, and ultimately resulting in increased robustness in both tasks. Specifically, 
for the segmentation, a statistically significant improvement in the performance was obtained, mainly for the 
segmentation of small lesions. For the classification task, although no statistical differences were measured, more 
stable training and an increase in classification robustness were also registered.

To validate the described pipeline, ablation analysis was performed. Table 2 proves the importance of each 
described component, achieving better results for most of the studied parameters of the base configuration, 
except for the PRE where isolated loss segmentation functions (i.e. only cross-entropy or DICE) showed superior 
performance. Indeed, cross-entropy is less susceptible to lesion size variations, allowing to have a more stable 
loss convergence during  training55. Still, its low performance with imbalanced segmentation data also resulted in 
worse performance for the DICE metric. The introduction of data augmentation resulted in a significant impact 
on the performance of the VENet. Interestingly, geometric-based augmentation techniques proved to be more 
relevant for the final method’s performance when compared to contrast-based augmentation ones. The original 
dataset images were obtained from different sources and under different light conditions. This already introduces 
variability, which reduces the impact of contrast-based augmentation techniques on the method’s performance. 
On the contrary, venous disorders have high shape variability that is not represented in the original dataset. This 
limitation is reduced with the introduction of geometric-based data augmentation techniques. Note that, besides 
the deep supervision is focused on the decoding path, and consequently on the segmentation task of VENet, its 
absence resulted in a decrement in the accuracy of both tasks. This demonstrates that the joint learning of both 
tasks promoted the quality of the shared features extracted along the encoding path.

Figure 5.  Comparison of loss curves of the training of single task DCNN (VENetS and VENetC for 
segmentation and classification, respectively) against the proposed multitask VENet. (A) Loss curves on the 
training/validation dataset for the segmentation task; (B) Loss curves on the training/validation dataset for the 
classification task. Note that, to ease interpretation, the segmentation loss curve was shifted up to have 0 as the 
minimum value.

Table 4.  Comparison of the VENet performance against conventional DCNN for the CVD segmentation task. 
The results for the segmentation of each studied CVD lesion are presented separately. Moreover, the overall 
column presents the average of the individual lesion results (mean ± S.D.) β p < 0.05, Paired t test against the 
proposed VENet strategy. Bold values indicate best performance.

Model

Telangiectasias reticular veins Varicose veins Venous ulcers Overall

DICE PRE REC DICE PRE REC DICE PRE REC DICE PRE REC

VENet 70.8 ± 10.6 70.3 ± 16.4 75.3 ± 13.6 62.8 ± 12.1 65.4 ± 8.9 63.1 ± 16.7 92.5 ± 6.3 94.4 ± 4.4 91.6 ± 9.9 75.4 ± 9.7 76.7 ± 9.9 76.7 ± 13.4

VENetS 68.1 ± 11.7β 72 ± 16.4 68.7 ± 16.2β 58.8 ± 16.9β 67.4 ± 12.5 55.8 ± 21.9β 91.3 ± 6.1 93.4 ± 6.2β 90.1 ± 9.7 72.7 ± 11.6β 77.6 ± 11.7 71.5 ± 15.9β

SegResnet 68.3 ± 11.5β 73 ± 17.5 69.8 ± 17.3β 62 ± 13.3 62.4 ± 10.6 64.2 ± 19.6 91.7 ± 8.3 92.8 ± 10.6 91.8 ± 9 74 ±  11β 76 ± 12.9 75.2 ± 15.3β

Deeplabv3 63.3 ± 12.2β 60.4 ± 15.7β 69.9 ± 13.7β 50.5 ± 24.1β 60.9 ±  9β 51.3 ± 25.7 88.6 ± 20 92.4 ± 4.1 86 ± 21.4 67.5 ± 18.8β 71.2 ± 9.6β 69.1 ± 20.2β

FCN 61 ± 12.9β 67.8 ± 15.5β 59.5 ±  17β 60.7 ± 10.2β 64.2 ± 8.1 60.4 ± 17.5 92.3 ± 6.6 96.3 ± 3.5β 89.4 ± 10.9β 71.3 ± 9.9β 76.1 ± 9 69.8 ± 15.1β
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Table 3 validates the performance of VENet for the classification of CVD severity. Comparing both VENet and 
VENetC (i.e. encoding path plus classification head), although an improvement in the classification performance 

Figure 6.  Segmentation examples of the proposed VENet and other conventional DCNN for the segmentation 
of CVD lesions, namely telangiectasias and reticular veins, varicose veins, and venous ulcers. The DICE metric 
is also provided for each segmentation result. The blue, red, and green colors represent the true positives, false 
positives, and false negatives, respectively.
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was achieved, no significant differences were found. Still, a better generalization ability of the VENet during 
training was verified (Fig. 5B). With the multi-task approach, the different tasks can provide regularization to 
each during the training  phase25,42. Thus, the common features that lead to the optimized result of the VENet for 
both tasks are searched. This increases the robustness against the high variability between lesion types. Since the 
CVD lesions’ size are usually minor in the early stages, only a small region of the image can be occupied, which 
may lead the classification network to neglect them. Thus, by combining both tasks, the segmentation head can 
focus the classification network on the lesion’s spots, improving the overall robustness of the classification task 
during training.

Regarding the segmentation task, when looking individually for each lesion, VENet outperformed all the 
evaluated DCNN with an overall significantly better DICE and REC, with an improvement of approximately 
2.5%, 4%, and 1.2% when comparing with VENetS for the segmentation of telangiectasias and reticular veins, 
varicose veins, and ulcers, respectively. Specifically, the second-best performance was obtained by SegResNet, 
suggesting that the incorporation of such architecture as the backbone of the multi-task framework could be an 
interesting solution. Thus, VENetS was ineffective in detecting equally good features among the different lesion 
types when compared with VENet. By assessing Fig. 6, it is possible to observe the advantages and consistency of 
the proposed methodology in the detection of all lesions. Altogether proved that the joint training of both tasks 
potentiate the generalization ability of the network, enabling the extraction of more relevant information from the 
CVD images. Thus, the benefit of jointly performing both classification and segmentation is  demonstrated32,33,41,56. 
Note that, this benefit is stronger for the segmentation task than for the classification task where no statistical 
differences were found when compared against the single-task strategy. Comparing VENet against VEnetS per 
lesion performance, significantly better results were obtained for the segmentation of telangiectasias/reticular 
veins, and varicose veins. Thus, this suggests the superior performance of VENet for the segmentation of these 
smaller lesions.

Making a quantitative analysis of the results, an ACC of 96.4% with a PRE of 96.4% and REC of 97.2% was 
achieved for the classification of CVD severity, demonstrating the advantage of the described strategy for normal 
clinical practice. In Fig. 4, we can see that the images wrongly classified with severity 0 presented some artifacts 
related to the light condition which could have misled VENet. Most of the errors were from mislabelled images 
of severity level 3. This severity level comprises a wider range of lesions than the other ones, which seems to 
hamper the performance of VENet for the classification of these images. Moreover, the dataset showed an imbal-
anced nature between classes. Interestingly, the impact of using a class-balanced loss on VENet performance 
was also evaluated (for more details, the reader is kindly directed to the supplementary material, Appendix A). 
Although significant differences were not found, the incorporation of a class-balanced focal loss improved the 
classification results. Nevertheless, this also leads to a decrement in the segmentation performance, which can 
be the result of the optimization process starting to focus on minimizing specific classification errors that now 
have increased weight. Still, when the focus is on the performance of the lesion classification stage, class-balanced 
losses proved their added value. Note that, for the diagnosis of medical conditions, underdiagnoses have a higher 
cost for the patient’s condition than overdiagnosis. This feature can be learned by VENet by weighting mislabelled 
images of higher severity levels during the training process. With such a strategy, one is expected to reduce the 
underdiagnoses of CVD images.

For the segmentation task an overall DICE of 75.4%, with a PRE of 76.7% and a REC of 76.7% was achieved. 
Specifically, a superior average DICE was achieved for venous ulcers when compared with the results from other 
lesions. This result is explained by the larger dimensions with well-defined boundaries of the leg ulcers, making 
their segmentation simpler (Fig. 6). In opposition, vascular lesions such as telangiectasias are smaller lesions 
and difficult to detect. Varicose veins may not present well-defined boundaries since they are normally deeper 
and protruding vessels in the skin (i.e. the lesion is not illuminated evenly). This makes the segmentation task 
more challenging for these lesions. Here, post-processing techniques to fuse components of the same vessel, as 
proposed for other segmentation  problems57, can be explored in the future to improve the method’s overall per-
formance. Additionally, the segmentation result can notably increase the performance of the clinical diagnosis, 
enabling the quantification of treating evolution by simply comparing lesion masks of the patients over time. 
This gives enhanced information on the treatment monitoring to the physician and allowing to overcome the 
current limitations of the actual scoring strategies.

When comparing VENet against other multi-task frameworks, for the classification task, two networks pre-
sented slightly better results than VENet, namely DSI-Net and Che et. al. with an ACC of 97.8 and 97.1, against 
96.4 of VENet. Still, no significant differences were obtained. For the segmentation task, a statistically significantly 

Table 5.  Comparison of the VENet performance against other multitask DCNN for CVD classification and 
segmentation (mean ± S.D.). β p < 0.05, Paired t test against the proposed VENet strategy. α p < 0.05, Two-sided 
McNemar’s test against the proposed VENet strategy. Bold values indicate best performance.

Model

Segmentation Classification

DICE PRE REC ACC PRE REC F1-score

Proposed 75.4 ± 9.6 76.7 ± 10.1 76.7 ± 13.3 96.4 96.4 ± 5.0 97.2 ± 2.6 96.3

Le et al. 61.7 ±  11β 62.4 ±  12β 66.1 ±  16β 96.4 95.9 ± 5.2 97.1 ± 3.6 96.3

DSI-Net 71.4 ± 11.4β 77.2 ± 10.8 68.7 ± 15.7β 97.8 97.5 ± 3.3 97.9 ± 3.4 97.8

MTCSN 60.8 ± 14.6β 62.5 ± 14.4β 64.6 ± 21.2β 95.6 95.4 ± 3.5 95.9 ± 2.8 95.6

Che et al. 70.8 ± 10.1β 73.4 ± 10.7β 70.5 ± 13.8β 97.1 96.7 ± 3 97.5 ± 3.4 97.1
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better performance of VENet was obtained, with an improvement of around 4% of the DICE for the second-best 
performance. This corroborates again the added value of VENet for the task of segmentation of CVD lesions.

Analysing the evaluated multi-task architectures, they all are similar with a backbone to extract features, fol-
lowed by two heads for the segmentation and classification tasks. To take advantage of features from both tasks, 
and guarantee consistency in the prediction the DSI-Net, Che et al. and MTCSN networks proposed feature 
passing modules between the two branches. This may improve the segmentation performance for both DSI-Net 
and Che et. al. strategies when compared with the Le et al. network. Still, VENet outperformed the results of 
these networks. VENet also potentiates the interaction between the two tasks with feature-passing modules (i.e. 
concatenation) between the encoding and decoding paths. Nevertheless, instead of the evaluated multi-task 
DCNNs that only add such modules after the feature extraction, VENet establishes a connection between both 
tasks from the beginning of the encoding path. This enhances the propagation of spatial information by minimiz-
ing the loss of information during the down-sampling process, which may occur mainly for the smaller lesions, 
such as telangiectasias, reticular veins, and varicose veins. Indeed, VENet presented an average DICE of 70.8 
and 62.8 against the 65.5 and 57.1 of the DSI-Net, for the segmentation of telangiectasias/reticular veins, and 
varicose veins, respectively. For the segmentation of venous ulcers, VENet presented an average DICE of 92.5 
against 91.6 from the DSI-Net. As already shown, this proves the added value of the proposed VENet strategy, 
mainly for the segmentation of small structures.

Overall, the automatic VENet strategy can ease and fast the diagnosis of CVD lesions, being a relevant tool 
for physicians as well as a self-care module for patients, thus, potentially reducing the probability of underdi-
agnoses and promoting the treatment of CVD in the early stages. Notwithstanding, this study presents some 
limitations that could be addressed in the future. During training, the number of feature maps of VENet has been 
limited to 480 due to the computational cost. A half-precision training strategy can be explored in the future to 
minimize this  limitation58. This may allow for increasing the number of feature maps as well as the batch size 
during training. Currently, VENet has around 34.15 million parameters, taking 25.8 ms for inference of a CVD 
image using the computational setup previously described in Sect. “Experiments”. Here, techniques to reduce 
memory and energy consumption could be explored, e.g.  pruning59. Next, the results were obtained in a dataset 
of 1376 images, some obtained from the same clinical center. Therefore, specific intrinsic factors of the training 
dataset may be common, such as the camera acquisition parameters. Although data augmentation was explored 
to reduce this dependency, this raises concern about the method’s ability to generalize on a new test dataset with 
images from clinical centers not presented on the training/validation datasets.

Finally, CVD presents high levels of recurrence, which demands a periodic evaluation of the evolution of the 
patient’s  condition60–62. For it, a computation of real-world units of all detected lesions is required, which can 
be accomplished with the introduction of a reference in the images (e.g. ruler, taper) or the usage of an RGB-
Depth sensor. In fact, the impact of incorporating references, such as rulers or tapers on the images was tested 
in a preliminary experiment (please see the supplementary material, Appendix A). Although significant differ-
ences were not found for the DICE, the incorporation of references in the images also resulted in an increment 
in the performance of the VENet. Since they were mainly located on the severity level 4 images, they could be 
learned by DCNN to aid the classification and segmentation tasks. Note that, although the incorporation of such 
references has not been the focus of this work, this new development is envisioned as future work. With this 
extension, VENet can also enable a continuous quantification of patients’ conditions over CVD treatment and 
long-term recurrence of lesions. Indeed, the quantification of the treatment evolution is a desired feature among 
the treatment of all CVD severity levels, such as quantifying the treatment performance of vascular lasers for the 
treatment of telangiectasias (i.e. vessel clearance over treatment sessions), the recurrence of varicose veins after 
treatment (e.g. stripping, laser ablation), or also assess the evolution of healing of venous  ulcers17. The computa-
tion of real-world lesion size using VENet work is envisioned as future work.

Conclusion
In this work, we proposed a fully automated method for CVD severity classification and lesion segmentation. 
This method explores the multi-task learning advantages by learning both tasks simultaneously. The proposed 
VENet methodology allowed to boost the performance against other conventional DCNNs for the classification 
and segmentation tasks. While for the classification these resulted in increased robustness and training stability, 
although without statistical differences, for the segmentation task, statistically significantly better performance 
was obtained, mainly for the segmentation of small lesions. Overall, the proposed method can be explored in 
normal clinical practice to aid physicians and patients in the diagnosis/monitoring of CVD, overcoming under-
diagnoses, and potentiating the treatment of these lesions in the early stages.

Data availability
The datasets generated and analysed during the current study can be made available at reasonable request to the 
corresponding author.
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