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A transfer learning‑based 
multimodal neural network 
combining metadata and multiple 
medical images for glaucoma type 
diagnosis
Yi Li 1,4*, Yujie Han 1,4, Zihan Li 2, Yi Zhong 3 & Zhifen Guo 1

Glaucoma is an acquired optic neuropathy, which can lead to irreversible vision loss. Deep 
learning(DL), especially convolutional neural networks(CNN), has achieved considerable success 
in the field of medical image recognition due to the availability of large-scale annotated datasets 
and CNNs. However, obtaining fully annotated datasets like ImageNet in the medical field is still a 
challenge. Meanwhile, single-modal approaches remain both unreliable and inaccurate due to the 
diversity of glaucoma disease types and the complexity of symptoms. In this paper, a new multimodal 
dataset for glaucoma is constructed and a new multimodal neural network for glaucoma diagnosis and 
classification (GMNNnet) is proposed aiming to address both of these issues. Specifically, the dataset 
includes the five most important types of glaucoma labels, electronic medical records and four kinds 
of high-resolution medical images. The structure of GMNNnet consists of three branches. Branch 1 
consisting of convolutional, cyclic and transposition layers processes patient metadata, branch 2 uses 
Unet to extract features from glaucoma segmentation based on domain knowledge, and branch 3 
uses ResFormer to directly process glaucoma medical images.Branch one and branch two are mixed 
together and then processed by the Catboost classifier. We introduce a gradient-weighted class 
activation mapping (Grad-GAM) method to increase the interpretability of the model and a transfer 
learning method for the case of insufficient training data,i.e.,fine-tuning CNN models pre-trained from 
natural image dataset to medical image tasks. The results show that GMNNnet can better present the 
high-dimensional information of glaucoma and achieves excellent performance under multimodal 
data.

Glaucoma is an acquired optic neuropathy characterized high intraocular pressure(IOP), optic disc atrophy 
and depression, visual field defects and vision loss. It is clinically classified into three main categories: primary, 
secondary and congenital. According to the World Health Organization, 3.5% of people over the age of 45 now 
suffer from glaucoma, and the estimated number of glaucoma patients worldwide will reach 111.2 million in 
20401. Once diagnosed, treatment decisions depend on the rate of progression, so preventing or slowing further 
irreversible vision loss is extremely important for a large number of glaucoma patients. At the same time, the 
socioeconomic cost of glaucoma increases fourfold in the early stages compared to the end stage, and timely 
diagnosis and intervention can save health care resources and avoid a significant disease burden2,3.

With the help of medical images, deep learning has been successfully applied on a variety of medical fields. 
For data-driven deep learning, accurately labeled and large number of datasets will be more conducive to train-
ing accuracy beyond that of clinical experts. Although much of the data has been made publicly available for 
researchers to use, there are still three problems that limit in-depth research in intelligent diagnosis of glaucoma. 
First, the datasets are mostly fundus photographs, which are not rich enough in variety. Second, the data labels of 
the classification task are mostly dichotomous, which cannot meet the needs of clinical disease type diagnosis of 
glaucoma. The segmentation task requires manual annotation of optic disc and optic cup regions or annotation 
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of retinal vessels, which is not only an extremely laborious task but also prone to human errors in annotation 
even in the case of clinical experts. Third, the number of medical images in the public dataset is insufficient to 
train CNNs from scratch. Different from previous glaucoma image datasets, we construct a dataset consisting of 
electronic medical records (text), and four medical images: fundus photographs, optical coherence tomography 
(OCT), ultrasound biomicroscopy(UBM), and retinal nerve fiber layer (RNFL) thickness. The dataset labels are 
separated into classification labels and segmentation labels. The classification labels are composed of normal and 
the four most important glaucoma pathotypes, and the segmentation labels annotate the optic disc and optic 
cup regions, retinal vessels and eye corners.

Both classification CNNs that use a binary dataset to directly output whether it is glaucoma and use a dataset 
labeled with segmented regions to output segmented features have received attention from many researchers and 
achieved great success. Although the accuracy of these methods is high, they are powerless in the diagnosis of 
glaucoma disease type. In this paper, we propose a multimodal neural network for glaucoma which fuses meta-
data and medical images using constructed multimodal glaucoma data, which provides a deeper diagnosis into 
glaucoma pathotypes based on categorical labels and extracts glaucoma features using segmentation annotation, 
details of network are described in the Methods section. In order to solve the problem of insufficient data, which 
is common in medical images, we introduce transfer learning methods, i.e.fine-tuning CNN models pre-trained 
from natural image dataset to medical image tasks, and conduct comparison experiments with models trained 
from scratch. To avoid the black-box feature of deep learning, we added interpretability to the model using the 
Grad-CAM method and conducted comparative experiments with several CAM methods.

The main contributions of the article are summarized as follows:

•	 A multimodal dataset(GM367) for multiclass glaucoma diagnosis is constructed which contains metadata and 
medical images. Note that this is the first dataset which contains labels for the five most important glaucoma 
categories.

•	 A multimodal neural network (GMNNnet) is proposed, which consists of three branches that process patient 
metadata, features extracted from images, and global and local details of medical images captured by deep 
learning model.

•	 In addition to data expansion, transfer learning are introduced to overcome the problems of insufficient 
medical image data.

•	 We applied the Grad-CAM method to construct interpretable visual modules and compared it with other 
saliency/CAM methods.

Related works
Glaucoma public datasets.  The acquisition of large-scale, high-quality, and diverse glaucoma datasets 
has become one challenge.For data-driven learning, large-scale well-annotated datasets with representative data 
distribution characteristics are critical for learning more accurate or generalizable models4.We summarize the 
details of the glaucoma public datasets in the Table 1, including data type, quantity, data pixels and generation 
distribution.

Singlemodal methods.  At present, most applications of artificial intelligence in glaucoma use single modal 
data to deal with specific tasks. Among them, the retinal optic nerve head cup-to-disc ratio (CDR) is considered 
an important indicator for detecting the presence of glaucoma and the degree of glaucomatous optic neuropa-
thy. Tremendous efforts including supervised learning5–7 and semi-supervised learning8 have been invested in 
automated segmentation of the optic disc and the optic cup, but the accuracy of computing CDR values remains 
a great challenge due to the large overlap and extremely weak contrast between the optic cup and the retinal 
limb region. Pathologically high IOP is a common symptom of glaucoma, but a proportion of glaucoma patients 
also have normal IOP, which is not specific enough to be a valid detection tool for a large number of glaucoma 
patients. RNFL thickness around the optic nerve head is another parameter more commonly used to diagnose 
glaucoma. Kozekanani et al.9 proposed a Markov boundary model to calculate the RNFL. But RNFL thickness 

Table 1.   Example of a publicly available glaucoma datasets. N stands for normal, G stands for glaucoma, OD 
stands for optical disc, OC stands for optical cup.

Dataset name Quantity Pixels Feature Generation distribution Remarks

Drishti-GS16 101 2896 × 1944 OD/OC 40 ~ 80 Fundus photo

HRF17 15N/15G 3504 × 2336 Vessel segment – Fundus photo

ORIGA−light18 650 3072 × 2048 OD/OC 40 ~ 80 Fundus photo

RIMONE19 118N/51G – OD/OC – Fundus photo

ACRIMA20 309N/396G – OD/OC – Fundus photo

OIA-ODIR 10000 – – – Fundus photo

MESSIDOR21 1200 1440 × 960 DR Fundus photo

LAG22 11760 1977 × 2594 – 53.6 (average) Fundus photo

3D-OCTA​23 316 640 × 400 × 400 vessel segment 49.07± 17.56 OCT &OCTA​

INSPIRE-stereo 30 768  × 1019 OD/OC – 3D Fundus+SD-CTA​
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may also be beyond the normal range in patients who suffer from other retinal pathologies and eye morphol-
ogy (e.g., myopia). Visual field defect, measured and monitored by Kinetic tonometry, is a major symptom 
in patients with advanced glaucoma. Yousefi et  al.10 proposed an expectation maximization (GEM) method 
to identify glaucomatous defect patterns. Ceccon et al.11 proposed the use of Bayesian networks for classifica-
tion and clustering to explore early glaucoma and visual field testing. However, because measurement requires 
patient performance and attention, it leads to gaze deficits, false positives, false negatives, and other confound-
ing errors12. The singlemodal methods lack other types of data comparisons for segmentation tasks and lack 
in-depth glaucoma subtype labels for classification tasks, which greatly limit their clinical application. Therefore 
multimodal methods have received more attention.

Multimodal methods.  In contrast, glaucoma clinicians deal with multimodal data from multiple sources 
when diagnosing, evaluating prognosis and deciding treatment plans. Multimodal diagnosis based on deep 
learning has become one of the challenges to improve the accuracy of glaucoma diagnosis. Hu et al.13 proposed 
a registered-fundus and multimodal vessel segmentation approach based on fundus photographs and OCT.
However, this approach still suffers from issues such as artifacts. Shankaranarayana et al.14 constructed a fully 
convolutional network for optic disc cup segmentation using retinal images and ground truth depth images 
with OCT-based. Hervella et  al.15 proposed a self-supervised pre-training method for the segmentation task 
using unlabeled multimodal image pairs consisting of retinography and fluorescein angiography (FA) images. 
However, FA is an invasive technique that requires the injection of a contrast agent. It has been replaced by more 
advanced non-invasive techniques, such as OCT. Current multimodal techniques still focus on using multiple 
medical images to compare with each other and improve segmentation accuracy.

Results
In this section, the network skeleton of GMNN-Net is first changed to evaluate the performance under different 
backbones. Subsequently, ablation experiments are designed to demonstrate the effectiveness of introducing 
multimodality. Following that, it is discussed why and when it is valuable to introduce transfer learning from 
a pre-trained ImageNet CNN model. Finally, a visual comparison of different CAM methods and evaluation 
metrics are compared, and the Grad-CAM method is found to have the highest accuracy in adding interpret-
ability to the model. GMNN-Net is implemented based on Keras and Pytorch. All experiments are performed 
on a tower workstation with an NVIDIA Tesla A100.

Data preparation.  Patients with suspected glaucoma can undergo a variety of tests in the clinic, such as 
measurement of IOP, ultrasound biomicroscopy (UBM) to see if the angle is open or closed, optical coherence 
tomography (OCT)and fundus images to view the retina and optic nerve. These tests focus on different diagnos-
tic indicators of glaucoma and complement each other. The combination of these tests can be used to achieve 
the best clinical accuracy. Therefore, we cooperated with Shenyang Fourth People’s Hospital to construct a new 
glaucoma dataset (GM367), which includes 367 patients’ electronic medical records, 680 Heidelberg OCT, 712 
color fundus photos , 698 RNFL thickness images,728 Ultrasound biomicroscopy(UBM) photo and some OCTA 
images and SLO. The electronic medical records contain human metadata such as age, gender, medical history, 
visual acuity, intraocular pressure, various specialty examinations and diagnoses. The dataset consists of the 
five most important glaucoma subclass labels, including normal (N), primary open-angle glaucoma (POAG), 
primary closed-angle glaucoma (PACG), secondary open-angle glaucoma(SOCG), and secondary closed-angle 
glaucoma (SACG). The Appendix Fig. 1 shows some typical samples of the five glaucoma subclasses, with more 
than 95% of all pathologies belonging to one of the five diagnostic classes. In practice, the task of clinicians is 
to distinguish between different glaucoma classes and make a specific diagnosis, therefore the construction of 
a glaucoma multiclass dataset is necessary.The detailed information is shown in the Table 2 and the Appendix 
Figs. 1 and 2.

Data preprocessing.  The purpose of image and metadata preprocessing is to reduce the effect of noise 
and imbalance classes in the datasetso as to increase the ability of models to learn important features hidden in 
metadata and images24.

The metadata includes two parts, one is the metadata such as gender, age, disease description, IOP, etc. in the 
electronic medical record of glaucoma patients, and the other part is the information extracted from the images, 
such as Cup and Disc Ratio (CDR), RNFL thickness, whether or not to follow ISNT rules, etc. The feature of the 
above data can be divided into numeric types and categorical types. Min-max normalization is used for numerical 
features, which scales and translates each feature into the interval [0,1]. The one-hot encoding method is applied 
for producing vectors and converting categorical features into dummy features,which can effectively prevent 
transformed categorical features from being assigned ordinal meaning24. IOP in glaucoma patients changes as 
the disease progresses, so the data are often recorded once a day and the missing values are processed with the 
mean insertion method for numerical values and the mode insertion method for categorical values.

The images in the dataset are collected by advanced Heidelberg OCT, 3D fundus camera, OCTA and other 
equipment, which can obtain data of higher quality and pixels. Although this allows to improve the accuracy of 
glaucoma diagnosis to some extent, it can significantly increase the training time of the model. Therefore, we 
adopted the method proposed by Xu et al.25 in which a bounding box of 1.5 times the radius of the optic disc is 
used to automatically crop around the optic disc. In their method, they use a basic CNN to find the most likely 
pixels in the optic disc region. Then, they classify these candidate pixels by using a threshold.

Data imbalance is a serious problem in classification tasks which severely affects classification accuracy. If the 
model is trained on imbalanced data, it usually classifies new samples as majority classes. From Table 4, we can 
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find the imbalance of medical images among the five glaucoma classes. Appropriate data imbalance treatment 
method is necessary.Image enhancement is an effective processing method. We expand the number of images 
according to the ratio of each category, i.e., the fewer the number of images, the more the number of expansions. 
The method of data augmentation is to shift the images by 50 pixels in 8 directions (i.e. up, down, right, left, left, 
right, up left, right, down left and down right). Then, all images are flipped horizontally and rotated by 90, 180 
and 270 degrees.

Performance comparison of different CNN backbones for GMNNnet.  The GMNN-Net consists 
of three branches: the first branch processes textual information from the patient’s electronic record which is 
composed of the convolutional, recurrent and transcriptional layers. The second branch is built on the M-Unet 
network for segmenting optic nerve vascular distribution features, calculating cup-to-disc ratios and extracting 
optic nerve fiber layer thicknesses, and then introducing image features into the metadata. The third branch 
focuses on glaucoma images and uses a series of state-of-the-art deep learning models as the backbone to capture 
the global and local details of glaucoma.

Two sets of comparison experiments are performed between GMNNnet and the well known CNNs. Since 
GMNNnet can access a very different set of input data (i.e. metadata) compared to previous studies, we fix the 
backbone of networks in branch 2 or 3 respectively and then embed the different neural networks in the other 
branch of the model for comparison. We compare the performance of segmentation networks such as Unet, 
M-Alexnet, DENet and DeepVessel with our proposed M-Unet in branch 2 (Fig. 1). Branch 3 compares the 
performance of convolutional networks such as ResNet, Inception, DenseNet and EfficientNet with our model 
(Fig. 2. This experiment is implemented based on the Kera and Pytorch frameworks, and all model weights 
are obtained by transfer learning. All are optimized using Adam with an initial learning rate of 0.0001, which 
is updated with the number of iterations. The batch size is equal to 64. The original patches are preprocessed 
and normalized to a single channel. For model evaluation, a 5-fold cross-validation is introduced. Thus after 
obtaining 5 values for area under the curve (AUC), accuracy, specificity, sensitivity and F-score, the mean and 
standard deviation of these values are calculated for each CNN architecture. Comparing the results in Table 3, 
it can be found that GMNNnet performs the best among all models. The significant improvement in SPE and 
AUC demonstrates the effectiveness of introducing multi-modality in GMNN-Net and making full use of the 
fundamental backbone. Simultaneously, the prediction time for individual patients is relatively fast, averaging 
less than 0.02 seconds, which is not significantly different from the fastest network. The fast prediction times 
suggest that our model can be used for routine clinical work. In addition, we fine-tune the parameter settings of 
Dropout and find that the probability of 0.6 works best, as shown in Fig. 3.

We selected segmented images of fundus photographs for visualization, and introduced the Dice metric for 
quantitative analysis. In the region indicated by the arrow in the Fig. 4, our model has more accurate segmenta-
tion accuracy for finer retinal vessels.The average Dice index is 0.98, which is 8% higher than M-Alexnet.

(1)Dice(X,Y) =
2|X ∩ Y |

(|X| + |Y |)
⇔ Dice =

2TP

FP + 2TP + FN

Table 2.   Comprehensive information of GM367.

(a) Data distribution

Male 158 (43%)

Female 209 (57%)

Generation distribution 40 ∼ 80

Average age 58.3

Normal 44%

POAG 24%

PACG​ 12%

SOAG 10%

SACG​ 10%

(b) Medical Image Information

Category No. of images Category No. of images

Left

Perimetry 365

Right

Perimetry 347

OCT 356 OCT 324

Fundus 360 Fundus 352

RNFL 357 RNFL 341

UBM 366 UBM 362

OCTA​ 32 OCTA​ 31

CDR ≥ 0.65 289 + 244 + 257 CDR < 0.65 391 + 468 + 441

Follow ISNT rule 277 + 262 + 239 Not follow ISNT rule 403 + 450 + 459
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Figure 1.   The ACC of different branch 2.

Figure 2.   The ACC of different branch 3.

Figure 3.   The ACC of different dropout.
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Performance comparison of different modal.  To demonstrate the effectiveness of introducing 
GMNNnet for glaucoma diagnosis,we performed two sets of ablation experiments, one to distinguish the role 
of each input modal in prediction accuracy and the other to demonstrate the necessity of inputting four medical 
images in branch 2 and branch 3. In Table 4, we evaluated these three branches to measure the contribution of 
each branch. The multimodal model outperforms any unimodal model in terms of mean ACC, SEN, SPE, and 
AUC, with the most significant improvement in sensitivity. The most significant improvement in sensitivity con-
firms the effectiveness of GMNN-Net. The output of the network showed an average improvement of 111%, 68% 
and 13% compared to branch 1, branch 2 and branch 3. Meanwhile, branch 3 contributed more to the accuracy 
of glaucoma diagnosis, which may be due to the fact that medical images can extract more effective features of 
glaucoma. Compared with branch 3, the multimodal output showed improvements of 3%, 13%, 3% and 8% in 
ACC, SEN, SPE and AUC, respectively.

Comparison of random initialization training and transfer learning.  CNN models in the mul-
timodal neural network branch can either be learned from scratch or fine-tuned from a pre-trained model. 
Mainstream deep CNN architectures (e.g., ResNet, EfficientNet) contain tens of millions of free parameters to 
train and thus require a sufficiently large number of labeled medical images. On the other hand, collecting and 

Table 3.   Results for each model and 5-fold cross validation.

Branch 1 Branch 2 Branch 3 Predict time ACC​ SPE SEN Fscore AUC​ 95% confidence interval

�

U-net26

ResFormer

0.009 0.883 0.785 0.861 0.897 0.874 86.06–88.97%

M-Alexnet27 0.010 0.896 0.817 0.878 0.902 0.885 86.76–89.91%

DENet28 0.013 0.915 0.825 0.896 0.897 0.895 88.31–91.23%

DeepVessel29 0.014 0.926 0.847 0.919 0.917 0.906 89.36–91.82%

M-Unet

ResNet 50 0.009 0.876 0.775 0.859 0.867 0.866 85.71–87.77%

Inception v3 0.014 0.928 0.823 0.895 0.891 0.886 87.01–89.17%

DenseNet 121 0.010 0.896 0.798 0.843 0.867 0.879 86.32–88.92%

Efficient B5 0.012 0.937 0.873 0.906 0.916 0.912 90.03–92.16%

Ours 0.012 0.951 0.886 0.932 0.943 0.939 93.35–94.25%

Figure 4.   Visualization of retinal vessel segmentation based on fundus photos.

Table 4.   Comparison with different modal.

Branch 1 Branch 2 Branch 3 Modal ACC​ SEN SPE AUC​

� ✕ ✕

1

0.686 0.467 0.712 0.693

✕ � ✕ 0.709 0.407 0.762 0.753

✕ ✕ � 0.789 0.569 0.823 0.733

� � ✕

2

0.820 0.512 0.858 0.717

� ✕ � 0.849 0.632 0.898 0.827

✕ � � 0.922 0.847 0.915 0.921

� � � 3 0.951 0.865 0.932 0.962
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annotating a large number of medical images still faces significant challenges. Numerous studies have demon-
strated that transfer learning from ImageNet to other limited size datasets via CNN can learn deep models with 
better performance.

We conducted comparative experiments to determine whether we need to fine-tune the “end-to-end” CNN 
network to improve performance, rather than just training the final classification layer. For transfer learning, we 
followed the approach of30, where all CNN layers except the last layer are fine-tuned at a learning rate 10 times 
smaller than the default learning rate. The last fully connected layer was randomly initialized and trained on the 
glaucoma dataset to fit our classification task. Its learning rate is kept at the original 0.01. We also experimented 
with a CNN pre-trained on ImageNet and trained only the final classifier layer for the new glaucoma classifi-
cation task. The parameters in the convolutional and fully connected layers are fixed and used as deep image 
extractors. After 20 epochs, the loss of the model with transferlearning is about 0.015 (Fig. 5), while the loss of 
the model trained from scratch is about 0.067 (Fig. 6). It is a good proof of the effectiveness of introducing the 
transferleaning method to solve the insufficient number of medical image datasets.

Comparison of different CAM.  Interpretability is very important in the medical field, which can explain 
which areas are the areas that clinicians pay more attention to in diagnosing glaucoma, and it is easier to build 
patients’ trust in intelligent systems and make them meaningfully integrated into daily life. We use the method 
proposed by Li et al.22. To mark the area that clinicians pay attention to, and design a comparative experiment to 
compare the accuracy of heat maps generated by different CAM methods. And Dice index is used for quantita-
tive evaluation. Compared with many famous CAM methods, we found that the areas marked by GradCAM 
coincide more with the attention areas of doctors (Fig. 7), and the Dice index reaches 0.85 (Table 5). Although 
the recent work31 shows serious concern about its accuracy, especially in the limited data training, the model 

Figure 5.   Model training using transfer learning method.

Figure 6.   Model training using random initialization.
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parameters are more accurate and there are no serious errors due to the transfer learning method used in the 
model.

Discussion
At present, the resolution of medical images often determines the accuracy of diagnosis. The resolution of 
medical images usually is over 1000, which is far beyond the 224× 224 resolution of general image classifica-
tion networks. If the images are fed directly into the network, the training time will be greatly increased. If the 
images are cropped, pathological features will be lost, which will lead to a decrease in diagnostic accuracy. How 
to increase the size of the perceptual field? This is crucial for object detection in high-resolution images, espe-
cially for medical diagnosis. Therefore, how to solve such a problem will soon be a question to be considered.

There are still several problems in the training process. First, the network parameters could not be optimized 
due to the large number of network parameters and the small medical dataset. When the HRF, a small medical 
image dataset, is used as the input to the neural network alone, the model cannot fully learn the relevant fea-
tures of glaucoma. Second, the samples are unbalanced. For example, when we use the OIA dataset, due to the 
imbalance between glaucoma samples and normal samples, the fit is better in the training set but less accurate 
in the test set, leading to the overfitting problem. Therefore, we need to adjust the network according to the 
characteristics of the data.

Conclusion
In this paper, we construct a new glaucoma dataset GM367, with five labels and multiple medical images. This 
is the first multimodal multiclassification dataset for glaucoma to our knowledge. Meanwhile, we construct 
a multimodal neural network GMNN-Net, which embeds a three-branch structure in the network and fuses 
textual and image information together at the end. A large number of experimental results show that the ACC, 
SEN, SPE and AUC of the multimodal glaucoma diagnosis model are improved by 1.4%, 1.3%, 2.6% and 2.7% 
respectively compared with the current deep learning method. The above work has three meanings for the clini-
cal application of intelligent diagnosis of glaucoma. First, make the diagnostic label go deep into the glaucoma 
type, instead of judging whether it is glaucoma as in the current research. Second, the fusion of multimodal 
data greatly improves the accuracy of glaucoma diagnosis. Third, Grad-CAM method is added to increase the 
interpretability of the model, which is helpful to apply the model to clinical diagnosis and greatly alleviate the 
shortage of glaucoma professionals at present. Future work will be divided into two parts: we will further enrich 
the dataset and collect time-series data of IOP to transform the glaucoma diagnosis problem into a prediction 
problem and further improve the early detection of glaucoma. We will further improve the accuracy of the 
multimodal neural network and enhance the performance of the model.

Methods
To make full use of the domain knowledge of glaucoma and to utilize multiple glaucoma medical images simul-
taneously, we propose a multimodal neural network GMNN-Net for multiclass diagnosis of glaucoma. The 
glaucoma multimodal neural network consists of three branches for processing basic metadata of patients, 
extracted features and glaucoma images. The three inputs are optional, allowing for data without a single model. 
The flowchart of GMNN-Net is shown in figure. The first branch processes textual information from the patient’s 
electronic records, processed by convolutional, recurrent and transcriptional layers, with the aim of obtaining 
a feature matrix of glaucoma disease keywords. The second branch was built based on the U-Net network for 
extracting optic nerve vascular distribution features from Heidelberg OCT, calculating cup-to-disc ratios from 
fundus photographs and eye angle opening from UBM, and analyzing the thickness of the RNFL. Domain-
specific knowledge was added to catboost through the first two branches. The third branch focuses on glaucoma 
images, using a series of state-of-the-art deep learning models as a backbone to capture global and local details 
of Heidelberg OCT images and optic nerve fiber layer thickness images. We apply the gradient-weighted class 

Figure 7.   Attention map of fundus photos with different CAM methods.

Table 5.   Comparison with different CAM using Dice.

Index GradCAM LayerCAM ScoreCAM AblationCAM FullGrad

Dice 0.85 0.63 0.45 0.21 0.55
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activation mapping (Grad − CAM) to construct interpretable modules, which allows us to achieve high accuracy 
and good interpretability.

The details of branches in glaucoma multimodal neural networks.  Branch 1.  In the multimodal 
glaucoma database, electronic medical records of 367 patients have been collected. These will be used to extract 
keywords for glaucoma disease as metadata input to the first branch of the glaucoma multimodal neural network 

Figure 8.   Flowchart of GMNNnet.
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to assist the diagnosis of glaucoma. The first branch consists of a convolutional layer, a recurrent layer and a 
transcription layer, as shown in Fig. 8.

The convolutional layer consists of the convolutional layer and the maximum pooling layer, and the fully 
connected layer is removed. It is used to extract glaucoma keywords from the input image and embed them 
into a high-dimensional space, so that the semantic relationships between words are better represented. The use 
of vectors avoids the “dimensional disaster” problem of word representation. Each feature vector in the feature 
sequence is generated from a feature map.

The recurrent layer is a bi-directional RNN that predicts each sequence of features generated in the convolu-
tional layer as a label distribution. The first reason for choosing RNN is its strong ability to capture the contextual 
information of the sequence. In the above feature extraction, a wide character may have several consecutive 
sense field descriptions. Using the context for image-based sequence recognition is more effective than process-
ing a character alone. And for some ambiguous characters, they will be well distinguished after observing their 
contextual information. The second reason is that RNN can also back propagate for weight update, so CNN and 
RNN can be connected into a complete network. The third reason is that RNNs can process sequences of any 
length, so in this case, images of any width can be processed.

The role of the transcription layer is to convert the predictions generated by the RNN into labeled sequences. 
The conditional probability method defined by the connectionist temporal classification layer is used to obtain the 
probability of the label sequence conditional on the prediction y = y1, . . . , yt generated by the RNN. Therefore, 
the negative log-likelihood of this probability can be used as the objective function for training the network.

Assume that the output after the current layer is y = y1, . . . , yt,every yt ∈ R
L
′

 is the probability distribution 
over the set L, L contains all labels in the task and a blank label, a sequence-to-sequence function mapping B is 
defined on the sequence π ∈ L

′T , ytπt is the probability that there is a label πt at time t.

Branch 2.  The goal of the second branch is to design our M-Unet architecture (shown in the Fig. 9) based on 
the well-known U-net model. The network processes four glaucoma medical images simultaneously, including 
Heidelberg OCT,fundus photographs, UBM and RNFL images corresponding to extracted retinal lesions, optic 
nerve vessels, angle openings and CDR. Why do we choose different medical images to extract the correspond-
ing features? OCT is a non-invasive optical imaging modality that uses coherent light to capture 3D structural 
data of the retina at micron resolution. Compared to color fundus imaging techniques, OCT allows to obtain 
more detailed information about the retinal structure, and thus we choose OCT to extract glaucomatous retinal 
lesions (such as narrowing along the optic disc, deepening of the optic cup, nasal displacement of the retinal 
vessels, choroidal atrophy or defects in the optic fiber layer). Widely used quantitative retinal vascular metrics 
(e.g., vessel density and vessel tortuosity) are important indicators for diagnosing diseases such as glaucoma, 
hypertension, and diabetic retinopathy. Most RV segmentation tasks are performed on color fundus images. 
Due to the limited ability of OCT images to present blood information, only a few methods have been reported. 
Therefore, we used fundus photographs to extract quantitative indicators of retinal vessels. UBM is an instru-
ment for atrial angle examination that can visualize the atrial angle structure more clearly compared to atrial 
angle microscopy, and we chose UBM to extract the angle opening data. In addition, the RNFL image is an 
unfolded image of the retina, and calculating the CDR by measuring the RNFL thickness can be more accurate 
than dividing the optic cup and optic disc by fundus photographs.Branch 1 and Branch 2 are mixed together as 
metadata and processed with Catboost classifier.

(2)p
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l|y
)

=

∑

π :B(π)=1

p
(

π |y
)

=
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T
∏
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Figure 9.   Flowchart of M-Unet.
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Branch 3.  Branch 3 combines ResNet with Transformer. ResNet made some adjustments, first using StdConv2d 
instead of traditional Conv2d for the convolution layer, and then replacing all BatchNorm layers with Group-
Norm layers. Stages 1, 2, 3, and 4 are stacked 3, 4, 6, and 3 times respectively in the original Resnet 50 network. 
But in this network, they are 2, 3, 3, and 2, respectively. After feature extraction through ResNet50 Backbone, 
the obtained feature matrix shape is [14, 14, 1024], and then input it into Patch Embedding layer. Note that the 
kernel size and stride of convolution layer Conv2d in Patch Embedding are changed to 1, which is only used 
to adjust channel. Note that you need to add [class] token and Position Embedding before typing Transformer 
Encoder. Then, the Encoder Block is stacked three times, which consists of Layer Norm, Multi-Head Attention, 
and Dropout/DropPath. Finally, we only need to extract the corresponding results generated by [class] token, 
and then get the final classification results through MLP Head. It should be noted that when training in Ima-
geNet, it is composed of Linear + tanh activation function + Linear. However, when migrating to glaucoma data, 
only one Linear is needed.

Interpretable vision module based on grad‑CAM.  It is very difficult for doctors to use their eyes to 
directly identify some tiny features of glaucoma. Interpretable vision module support doctor in their effort to 
distinguish the differences between similar features of glaucoma, highlight the key areas of concern in glaucoma 
images, and help promote classification results.

For images, abnormal regions are highlighted in the form of visual heat maps. The region of interest (ROI) 
shows the high clinical relevance of glaucoma lesions. Grad-CAM++ uses the global average of the gradients to 
calculate the weights.

where Yc means that the score of a certain class is the dot product of weight wc
k and feature map Ak

i,j.
The Grad-CAM+ heat-map is a weighted combination of feature maps and can be expressed as follows:

and wc
k can be calculated as follows

where αkc
ij  is the weight coefficient for the pixelwise gradients for class c and convolutional feature map Ak

ij.

Multimodality fusion.  Imbalanced data are common in the medical field, which makes the classifier focus 
more on the major classes but neglect the minor classes. It results in a low sensitivity to the minor classes and 
a low specificity to the major classes,which can be addressed to a certain degree by revising the loss function.

The categorical cross-entropy loss is a popular loss function in multiclass classification learning. It assigns the 
same weight to each class, which leads to little attention to the minor classes and results in a low sensitivity for 
underrepresented classes. To overcome the effect of imbalanced data, we introduces focal loss as the loss function. 
Focal loss is a variant of the categorical cross-entropy loss, which has been proposed for handling imbalance data.

The model based on the multimodal glaucoma dataset can diagnose different disease types of glaucoma, which 
is more in line with the clinical diagnosis. The accuracy of the diagnosis can be improved by using three branches 
to process the multimodal data and the mutual validation between the data. The introduction of Grad-CAM adds 
interpretability to the model and makes it easier to build patients’ trust in the intelligent system. The introduction 
of transfer learning solves the problem of insufficient number of medical imaging datasets.

Data availability
The datasets generated during and analysed during the current study are available from the corresponding author 
on reasonable request. We will consider making the datasets available to the public when the study is completed.
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