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Exploring influential nodes using 
global and local information
Haifeng Hu , Zejun Sun *, Feifei Wang , Liwen Zhang  & Guan Wang 

In complex networks, key nodes are important factors that directly affect network structure and 
functions. Therefore, accurate mining and identification of key nodes are crucial to achieving better 
control and a higher utilization rate of complex networks. To address this problem, this paper 
proposes an accurate and efficient algorithm for critical node mining. The influential nodes are 
determined using both global and local information (GLI) to solve the shortcoming of the existing key 
node identification methods that consider either local or global information. The proposed method 
considers two main factors, global and local influences. The global influence is determined using the 
K-shell hierarchical information of a node, and local influence is obtained considering the number of 
edges connected by the node and the given values of adjacent nodes. The given values of adjacent 
nodes are determined based on the degree and K-shell hierarchical information. Further, the similarity 
coefficient of neighbors is considered, which enhances the differentiation degree of the adjacent given 
values. The proposed method solves the problems of the high complexity of global information-based 
algorithms and the low accuracy of local information-based algorithms. The proposed method is 
verified by simulation experiments using the SIR and SI models as a reference, and twelve typical real-
world networks are used for the comparison. The proposed GLI algorithm is compared with several 
common algorithms at different periods. The comparison results show that the GLI algorithm can 
effectively explore influential nodes in complex networks.

In recent years, human production and life have become increasingly inseparable from different types of 
networks1. In sensor networks, a sensor represents the main device to obtain desired information. Then, 
through a self-group sensor network, the perceived information can be transmitted to a server for further data 
processing2,3. Financial networks have brought great convenience to human life. For instance, when people shop 
on the Internet, they can enjoy the convenience brought by the consumer financial network4. In addition, in social 
networks, people can make new friends, thus constantly expanding their personal connections and achieving 
better communication with other people5. Currently, many phenomena can be described using complex net-
works, such as social activities, smart sensor applications, consumer finance, and consumer finance services6. 
Complex networks are associated with countless nodes, so accurately exploring and identifying their key nodes 
can solve many application problems, including fault node positioning, prevention and control of fraud risk, and 
friend recommendations7–9. Therefore, how to design an efficient algorithm to identify key nodes of a complex 
network accurately is an urgent problem. In an intelligent sensor network, accurately identifying and effectively 
protecting important sensors can avoid security attacks10. In this way, when a fault occurs in a network, the fault 
position can be located fast and the fault can be timely addressed11. Further, in a consumer finance business 
network, the risk of fraud of credit customers can be judged effectively12, financial institutions can be helped to 
filter inferior users, and the first risk control link can be established to delete fraud personnel13. In addition, when 
recommending friends in a community network, the identification of key nodes can help users to recommend 
friends that they have not added yet but may know and send the result to users as a "friend recommendation," 
which can improve user loyalty14.

The most popular approach to explore influential nodes in complex networks has been to used centrality 
measures15–21. From the perspective of global and local information, typical methods based on local information 
include methods considering the degree centrality (DC)22 and methods considering the eigenvector centrality 
(EC)23. The DC-based methods calculate the node influence by analyzing the number of edges connected by 
nodes, which has the advantages of high simplicity and fast calculation speed. However, these methods consider 
only local information and have low accuracy24. The EC-based method calculates the node influence consid-
ering both the number and the information of adjacent nodes. Namely, when the number of adjacent nodes 
is very large, their influence will be very strong. But The EC method score much prefers to concentrate in a 
few nodes under common conditions, making it hard to distinguish among the nodes25. In contrast, methods 
based on global information include the closeness centrality (CC)26, betweenness centrality (BC)27, and K-shell 
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decomposition methods28. The BC and CC methods have high accuracy in identifying critical nodes, but their 
long computational time limits their application to large networks29. The K-shell decomposition method cal-
culates the node influence based on the node location, but the hierarchical results are coarse-grained, resulting 
in a low node discrimination30. The aforementioned algorithms consider either global or local information of 
nodes, which causes certain limitations in practical applications.

The node influence information obtained based on multiple datasets is more accurate than that obtained using 
only a single attribute31. Therefore, this study uses global information to calculate the global influence of nodes 
but local information to calculate their own influence and the influence of their adjacent nodes. The nodes with 
the same global influence are distinguished to improve the differentiation effect of node influence.

Basic ideas of proposed GLI method.  The factors should be considered comprehensively from both 
global and local aspects. For instance, an important project in the real world can usually be decomposed into 
multiple subprojects, so a team responsible for completing the project needs to be divided into groups, each of 
which will be responsible for one subproject. Such a team can be regarded as a complex network where team 
members denote nodes, and the influence of each member depends on his position in the network. The higher 
the position is, the greater the number of resources will be; for instance, the project team leader is more influ-
ential than the group leader, and the group leader is more influential than the ordinary members. At the same 
time, the self-capability and the help provided by the team members are also important factors that define the 
influence. If members A and B have many common neighbors, member B is considered to be close to member A, 
members B and A have a great similarity, and member B has a greater influence on member A. The more similar 
the other members are with a particular member, the greater their influence on the member is. Accordingly, the 
proposed GLI method considers the contribution of both global and local information. First, global information 
is represented through network hierarchy obtained by the K-shell method; next, local information is represented 
by the degree of self and adjacent nodes, and adjacent nodes’ Ks values. In addition, the similarity coefficient 
is introduced, and the higher the similarity between the nodes is, the greater the contribution provided by the 
adjacent nodes will be.

Contribution of proposed GLI.  This study provides an innovative research perspective for the identifica-
tion of key nodes in a complex network. The proposed GLI algorithm’s innovation is mainly reflected in three 
aspects, which are as follows:

1.	 An accurate key node identification method, which considers the influence of nodes from both global and 
local aspects, is proposed. The shortcomings of the existing coarse-grained methods based on global infor-
mation are addressed, and the accuracy of the key node identification is improved;

2.	 The proposed GLI method uses the similarity coefficient between nodes in a network, which enhances the 
differentiation ability of adjacent gives values and improves the identification ability of key nodes;

3.	 The proposed GLI method considers both global and local information, which makes it highly practical and 
suitable for large and complex networks.

The rest of this article is organized as follows. Section “Related work” describes related work. Section “Pro-
posed GLI” describes the proposed GLI method and presents its design idea and specific working process. Section 
“Experimental Results” compares the proposed GLI method and classical algorithm on different datasets and 
analyzes the comparison results. Finally, Section “Conclusion” summarizes the main contributions of the study.

Related work
Many factors influence the accuracy of key node identification in complex networks. In the following, a very brief 
survey of the methods relevant to the proposed GLI is provided. The measures considered in these methods are 
introduced from the global and local perspectives.

(1)	 Local centrality

DC: This is a local centrality measure related to the number of edges connected by nodes.
EC: This is a local centrality measure related to a node’s degree and influence of its neighbors.
PageRank32(PR): Similar to the EC, this measure reflects the importance of a node, which is determined 
by both the quantity and the quality of adjacent nodes. This is a local centrality measure using the node 
degree and the PR value of the neighboring nodes.
ProfitLeader33(PL): The ProfitLeader algorithm computes the profit a node provides to the other nodes, 
where the importance of the node is related to the profit. This is a local centrality measure using node 
profit and sharing probability to its neighbors.

(2)	 Global centrality

BC: Global centrality measure uses the number of shortest paths through the node.
CC: Global centrality measure denotes the relative shortest path between the pairs of nodes.
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K-shell: In a network, nodes are decomposed in a layer-by-layer manner according to their degree values, 
and the node importance is evaluated from the level where the node is located in. This is a global centrality 
measure based on the node degree.

(3)	 Combination of global and local centrality

GIN34: This is a combination of global and local centrality obtained based on the distance, degree, and all 
other node-related information.
KBKNR35: The KBKNR algorithm reflects the influence of adjacent nodes and secondary-adjacent nodes 
through the influence coefficient, which is then used to distinguish the nodes based on their importance. 
This is a combination of global and local centrality using the k-shell, distance, and degree values.
RLGI36: This is a combination of global and local centrality obtained based on the k-shell and degree.
GLS37: Combination of global and local centrality based on the k-shell, distance, degree, and eigenvector 
centrality.

Proposed GLI
Definition.  The research objectives of this paper include undirected and unweighted networks, which can be 
expressed as Graph = (Vertex, Edge). This section introduces some of the definitions. The following definitions 
are related to an undirected, unweighted network.

Definition 1  Node degree38: The node degree represents the number of edges that a particular node joins. 
Assume, a network is defined as A = (aij) N × N; then, the node degree d(vi) can be expressed as follows:

where maxD indicates the maximal node degree.

Definition 2  K-shell value of a node: The K-shell value is obtained by the K-shell algorithm, and it is calculated 
by:

Definition 3  Global node influence: The K-shell algorithm can calculate the global position value of a node vi, 
which measures the global influence of vi, Global(vi). The specific calculation formula is as follows:

Definition 4  Adjacent node similarity: A given value of an adjacent node represents the factor affecting the 
importance of a node, and there is a relationship between the given value size and the similarity between the 
nodes. Adjacent nodes with different local structures may enhance the differentiation effect of a given influence 
of adjacent nodes. In GLI method, the higher the node similarity is, the higher the proportion of influence the 
node can provide, so the proposed algorithm adopts the Jaccard similarity coefficient39J(vi,vj), which reflects the 
similarity of adjacent nodes, and it is calculated by:

where n(vi) represents the set of nodes that have common edges with a node vi and contains this node, n(vj) 
denotes the set of nodes that have common edges with node vj and contains node vj.

Definition 5  Local influence: Local influence considers two factors: personal influence of a node and the con-
tribution of its adjacent nodes.

Assume that P(vi) denotes the personal influence of a node; then, P(vi) is determined by d(vi) and calculated 
by:

Assume that vj is an adjacent node of node vi; then, the given value П(vj) of node vj can be obtained by com-
prehensively considering d(vi), Ks(vj), and J(vi,vj), which is expressed by:

The Sum(vi) represents the sum of the given influence for all the adjacent nodes, Sum(vi) calculation formula 
is as follows:
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Further, assume that in the considered network, node vi has the most maxD adjacent nodes to provide the 
given influence. Then, Sum(vi) is divided by maxD to normalize, and the given influence of node vi on its adja-
cent node is obtained by:

where Local(vi) indicates local influence, and it is defined by:

Definition 6  Node influence: The node influence I(vi) depends on Global(vi) and Local(vi), and it is calculated 
as follows:

Proposed model evaluation.  To verify the effect of the proposed algorithm, two evaluation models, the 
SIR and SI models, were selected. The reliability of the comparison analysis was validated by experimental results.

SIR model.  The SIR model40 is a mathematical model describing disease transmission, which is a general stand-
ard for evaluating the accuracy of node identification.

In the SIR model, network nodes are divided into three categories as follows:

Susceptible: A susceptible node is a node that is not sick but lacks the immune ability and is vulnerable to the 
infection after contact with a sick node.
Infection: A sick node is an infected node that can infect a susceptible node.
Removed: A node removed from a network, recovered (with immunity) or dead; these nodes are no longer 
involved in the infection process.

Next, assume that at time t, the total node number All(t) is unchanged, and nodes can be in one of the three 
states: susceptible to infection point Susceptible(t), sick node Infection(t), or removed from node Removed(t), 
and it holds that All(t) = Susceptible(t) + Infection(t) + Removed(t).

At time t, the number of infected nodes is α * Susceptible(t) * Infection(t).
After the time interval of Δt, changes in the numbers of susceptible, infection, and removed nodes are respec-

tively as follows:

Susceptible: Susceptible(Δt) =  − α * Susceptible(t) * Infection(t).
Infection: Infection(Δt) = α * Susceptible(t) * Infection(t) − β * Infection(t).
Removed: Removed(Δt) = β * Infection( t ).

SI model.  Similar to the SIR model, the SI model41 is the simplest disease transmission model. In the SI model, 
network nodes are divided into two groups: susceptible nodes and infection nodes. At time t, a susceptible node 
may become an infected node with a probability of α, and this process is irreversible.

In the experiment conducted in this study, network nodes were treated as sick nodes, and the number of 
infected nodes was calculated using the SIR and SI models. The calculation process included multiple iterations 
to illustrate the infection influence of nodes. The results of the network obtained by the above two models were 
used as an evaluation criterion. The results of the proposed GLI algorithm and several related algorithms were 
compared.

Kendall coefficient.  The Kendall coefficient τ is used in this study to determine the similarity between the 
ranking results of the proposed algorithm and those of the SIR model42 on the same network. Assume nodes vi 
and vj are selected by the GLI algorithm to obtain the values GLI(vi) and GLI(vj). Then, node vi and vj are pro-
cessed by the SIR model, and values SIR(vi) and SIR(vj) are obtained. If GLI(vi) > GLI(vj) and SIR(vi) > SIR(vj), 
or GLI(vi) < GLI(vj) and SIR(vi) < SIR(vj), then the resulting values are considered consistent, and τ = 1. If 
GLI(vi) > GLI(vj) and SIR(vi) < SIR(vj), or GLI(vi) < GLI(vj) and SIR(vi) > SIR(vj), then the resulting values are 
considered inconsistent, and τ = -1. The specific calculation formula is as follows:

where X and Y represent the evaluated object, nc is the number of consistencies in two sequences, and nd indicates 
the number of inconsistencies in the two sequences.

Experimental results
Algorithm process. 

(8)Sum(vi) =
∑

vj∈Ŵ(vi)

∏

(

vj
)

(9)N(vi) = Sum(vi)
/

maxD

(10)Local(vi) = P(vi)+ N(vi)

(11)I(vi) = Local(vi)+ Global(vi).

(12)τ(X,Y) =
2 ∗ (nc − nd)

n ∗ (n− 1)



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22506  | https://doi.org/10.1038/s41598-022-26984-4

www.nature.com/scientificreports/

GLI algorithm
Input:
Graph = (Vertex, Edge)
Output:

Sort the nodes according to their influence values
Calculate Ks values of all nodes
Calculate the degree values of all nodes
The maximum degree value maxD is calculated for all nodes

  for each node vi in a set V do
//Computing, global information contribution Global (vi)

      Use Eq. (4) to calculate Global (vi)
//Computing, local information contribution Local (vi)
for vj in a neighboring node set of node vi do

Use Eq. (5) to calculate J(vi, vj) 
Use Eq. (6) to calculate P(vi)
Use Eq. (7) to calculate П (vj) 
Use Eq. (8) to add the calculated influence contribution values 

End for
Use Eq. (9) to calculate N(vi)
Use Eq. (10) to calculate Local(vi)
Using Eq. (11) to calculate I(vi)

End for
//Output the node sorting results
From large to small output according to the node influence
Return to Rank(V)

For detailed procedures, please refer to Supplementary Information.

v1 v2

v3 v4

v5

v6v7

v8

v9

v10

v11

v12

v13

v14

v15

Figure 1.   A network diagram, where yellow nodes indicate the sample nodes. The K-shell algorithm is used to 
divide the network into three layers, and node v1 is in the third layer.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:22506  | https://doi.org/10.1038/s41598-022-26984-4

www.nature.com/scientificreports/

Example description
In Fig. 1, the proposed algorithm is described in the example of the calculation process of the influence of node v1:

(1)	 Node degree

According to the idea of GLI algorithm, the node degree of node v1 and its adjacent nodes is calculated by 
Eq. (1), and the results are shown in Table 1. The maximum degree is maxD = 6, and it is calculated by Eq. (2).

(2)	 Ks value of nodes

According to Eq. (3), after the decomposition by the K-shell algorithm, the Ks value of node v1 and its adjacent 
nodes is obtained, and the results are shown in Table 2.

(3)	 Global influence of node

According to Eq. (4), it is obtained that: Global (v1) = Ks(v1) = 3.

(4)	 Similarity coefficient of nodes

According to Eq. (5), the similarity coefficient of node v1 and its neighbors, denoted by J(v1,vj), is calculated, 
and the obtained results are shown in Table 3.

(5)	 Local influence

The given influence of the adjacent nodes of node v1 is calculated by Eq. (7), and the results are shown in 
Table 4.

Second, according to Eq. (6), it holds that: P(v1) = d(v1) = 6.
Finally, according to Eq. (10), we have Local(v1) = 10.304894.

(6)	 Node influence

According to Eq. (11), it can be obtained that: I(v1) = Local(v1) + Global(v1) = 13.304894.

Table 1.   Degree of v1 and adjacent nodes.

Node v1 v2 v3 v4 v5 v6 v8
Degree 6 5 4 5 3 2 5

Table 2.   Ks of v1 and adjacent nodes.

Node v1 v2 v3 v4 v5 v6 v8
Ks 3 3 3 3 2 2 2

Table 3.   The similarity coefficient values of node v1 and its adjacent nodes.

Jacc(v1,v2) Jacc(v1,v3) Jacc(v1,v4) Jacc(v1,v5) Jacc(v1,v6) Jacc(v1,v8)

0.625 0.5 0.444444 0.375 0.4285714 0.3

Table 4.   Local influence values of node v1 and its adjacent nodes. Nodes v2 and v4 have the same degree and 
Ks values, but different similarity coefficient values, so their contribution values to node vi differ. Thus, it 
improves the discrimination degree values of the neighboring nodes.

П(v2) П(v3) П(v4) П(v5) П(v6) П(v8)

6.125 5.0 5.222222 3.125 2.857143 3.5
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Following the above-presented steps, the influence values of all nodes in Fig. 1 are calculated, as shown in 
Table 5.

Data description.  Twelve real representative networks were selected to evaluate the proposed GLI algo-
rithm, and they are as follows:

	 1.	 Blogs network43: This is a network of hyperlinks between the homepage of the 2004 US election blog, which 
includes 1,224 nodes and 19,052 edges.

	 2.	 Ca-Astroph network44: This is a collaborative network of scientific collaboration relationships between the 
astrophysical category author papers; it includes 18,771 nodes and 198,050 edges.

	 3.	 Friendship network45: This network represents the connections between users on hamsterster.com and 
has 1,858 nodes and 12,534 edges.

	 4.	 Email EU32430 network46: This network expresses the communication between email users and consists 
of 32,430 nodes and 54,397 edges.

	 5.	 Polbooks network47: A network of online book sales built on the relationships between American political 
book buyers, with 105 nodes and 441 edges.

	 6.	 Jazz network48: A collaboration network of a group of jazz musicians, including 198 nodes and 2,742 edges.
	 7.	 Football network33: This network represents a college football league and consists of 115 nodes and 616 

edges.
	 8.	 Karate network49: This network is a network of Karate Club members, with 34 nodes and 78 edges.
	 9.	 Protein network50: This network consists of proteins that interact with each other, and it includes 1,870 

nodes and 2,277 edges.
	10.	 USAir2010 network51: The 2010 US network contains 1,574 nodes and 17,215 edges.
	11.	 Reactome network52: This network consists of proteins that interact with each other, and it includes 6,327 

nodes and 147,547 edges.
	12.	 Brightkite network53: This network is a social networking, and it includes 58,228 nodes and 214,078 edges.

The relevant property statistics of the experimental datasets are given in Table 6.

Experimental result.  To evaluate the applicability of the GLI algorithm, nine typical algorithms were 
implemented by Python, and the experiments were performed on ten datasets of different sizes. The experimen-
tal hardware platform included a Lenovo desktop computer, a CPU: i5-10,100, a memory of 32 GB; the software 
environment was Spyder (Python 3.7.3).

Experimental results comparison with the SIR model. 

(1)	 Kendall value analysis

Table 5.   Influence of the nodes in the sample network presented in Fig. 1.

Node v1 v2 v4 v3 v8 v5 v9 v6 v10 v13 v14 v15 v11 v7 v12
I 13.30 12.17 11.18 10.18 9.70 6.71 5.67 5.54 3.85 2.78 2.78 2.77 2.61 2.58 2.39

Table 6.   Characteristic statistics for ten real networks used in the comparison experiment.

Network |V| |E|  < avgD >  maxD  < C > 

Blogs 1224 19,025 31.087 351 0.3197

Ca-Astroph 18,771 198,050 21.102 236 0.677

Friendships 1858 12,534 13.492 272 0.167

EmailEU32430 32,430 54,397 3.355 623 0.1127

Polbooks 105 441 8.4 25 0.488

Jazz 198 2742 27.697 100 0.633

Football 115 616 10.6 12 0.403

Karate 34 78 4.588 17 0.588

Protein 1870 2277 2.435 56 0.171

USAir2010 1574 17,215 21.78 314 0.637

Reactome 6327 147,547 46.64 855 0.67

Brightkite 58,228 214,078 7.353 1134 0.271
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The experimental networks and their characteristic information are shown in Table 6. The range of α in the SIR 
model was [0.01, 0.1], and the step length was 0.01; this value was selected to avoid the network infection being 
too slow or too fast. First, the Kendall value results of the BC, CC, DC, EC, k-shell, PR, GIN, PL, KBKNR, RLGI, 
GLS, and GLI algorithms on different datasets were compared with the infection results of the SIR model. Then, 
the Kendall values of the proposed GLI algorithm and the other algorithms were compared. The comparison 
results are shown in Fig. 2.

The Kendall τ values of the GLI was the highest at all infection probabilities in the Protein network. When 
calculating the influence coefficient, the KBKNR algorithm takes the number of neighbor nodes as the divisor. 
While in the protein network, for nodes with a presence degree of zero, the algorithm cannot run correctly. In the 
six infection networks, the Blogs, Ca-Astroph, Friendships, EmailEU32430, Reactome and USAir2010 networks, 
the GLI algorithm performed better than the other algorithms. Among the above seven networks, the values of 
the maximum degree is relatively large, the values of the average degree was relatively small, and the distinction 
degree of the nodes’ degree values was large. Therefore, GLI has a better performance in these networks.

In the Brightkite network, the GLI, GIN, and KBKNR algorithms were superior to the other algorithms. In 
the Polbooks and Karate networks, the Kendall τ value of the GLS algorithm was higher than that of the GLI 
algorithm, but the GLI algorithm performed better than the other algorithms. In Brightkite, Polbooks and 
Karate networks, the distinction degree of the nodes’ degree values was small. Therefore, the advantages of the 
GLI algorithm are not obvious.

Figure 2.   Kendall τ values of different algorithms compared with the SIR model result on 12 networks. 
Infection probability α varied from 0.01 to 0.1.
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There are strong relationships between the hierarchical measure, the centrality measure, and the topological 
properties of the network54. In Jazz and football networks, the connections between local nodes are relatively 
dense and have an obvious community structure. The distinction between K-shell value and degree value is not 
high. Therefore, the GLI algorithm does not work well in these two networks.

(2)	 Optimal algorithm under different infection probabilities

As illustrated in Fig. 3, the GLI algorithm achieved a maximum value of 51.67% at different infection probabilities 
on the 12 networks. The maximum results of the other algorithms were as follows: 16.67% for the GLS algorithm, 
10% for the KBKNR algorithm, 12.5% for the EC algorithm, 8.33% for the GIN algorithm, and 0.83% for the PL 
algorithm. In addition, the GLI algorithm performed well on all networks.

(3)	 Top-15 important nodes in different networks

Without a loss of generality, in this experiment, the SIR model infection probability α was set to 0.02, and 
the recovery probability was set to one. First, the results of different algorithms on the network datasets were 

Figure 3.   The maximum Kendall τ value results of the algorithms for different infection probabilities; the 
abscissa represents the network datasets, the ordinate indicates the infection probability α. Data presented in 
Fig. 3 correspond to the algorithm of the maximum Kendall τ values.

Table 7.   Top-15 nodes in the Karate network obtained by different algorithms.

DC EC PL PR BC CC K-shell GIN KBKNR RLGI GLS GLI SIR

34 34 1 34 1 1 1 1 1 1 34 34 34

1 1 34 1 34 3 2 34 34 34 1 1 1

33 3 33 33 33 34 3 3 33 33 33 33 33

3 33 3 3 3 32 4 33 3 3 3 3 2

2 2 2 2 32 9 8 2 2 2 2 2 3

4 9 32 32 9 14 9 32 4 4 32 4 32

32 14 9 4 2 33 14 9 9 24 4 14 14

9 4 14 24 14 20 31 14 14 25 9 9 4

14 32 4 9 20 2 33 4 31 32 14 32 9

24 31 24 14 6 4 34 20 8 26 24 8 24

6 8 6 7 7 31 5 31 32 9 31 24 30

7 24 7 6 28 28 6 28 24 14 8 31 31

8 20 28 30 24 29 7 8 28 6 30 30 8

31 30 31 28 31 8 11 29 30 7 28 6 28

28 28 30 31 4 10 20 24 6 28 7 7 6
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obtained and compared with the SIR model. Then, the 15 most influential nodes were extracted from the results. 
Finally, the algorithms’ performances were analyzed by ranking the nodes. The first 15 nodes of the Karate, Jazz, 
and Ca-Astroph networks in the large, medium, and small three-type networks were selected and illustrated.

As presented in Table 7, the GLI, EC, GLS and PR algorithms achieved identical results for 14 nodes out of 
the first 15 nodes of the SIR model. The GLI, GLS and PR algorithms were rank-aligned with the top-three nodes 
of the SIR model, achieving the best results among all algorithms. The EC algorithm ranked the first two nodes 
of the SIR correctly and was the second-best performing algorithm, following the GLI, GLS and PR algorithms.

Table 8 shows that the top-15 nodes of the Jazz network were ranked, and the PL algorithms achieved the best 
results. Fourteen nodes out of 15 nodes were the same as those of the SIR model, and the ranking of the first four 
nodes was completely consistent with the SIR model. The GLI algorithm ranked 12 nodes out of the 15 nodes 
the same as in the SIR model, and the first four nodes were identical to the first four nodes of the SIR model. 
Although the GLI algorithm performed poorly compared with the PL algorithm, it achieved better results than 
the other algorithms, which indicated that the GLI algorithm was effective.

As shown in Table 9, for the first 15 nodes of the Ca-Astroph network, 13 nodes of the GLI, DC, and GIN 
algorithms were the same as those in the SIR model, and the importance of the first 15 nodes was basically the 
same. However, the GLI and GIN algorithms had the same two nodes as the SIR, GLI, and GIN algorithms, 
which achieved the best results and were followed by the DC algorithm. For the PR and CC algorithms, 12 
nodes and 11 nodes out of 15 nodes were identical to those in the SIR model, respectively. For the Ca-Astroph 
network, the worst-performing algorithms were the K-shell and KBKNR, having only one node identical to the 
SIR model nodes.

Table 8.   Top-15 nodes in the Jazz network obtained by different algorithms.

DC EC PL PR BC CC K-shell GIN KBKNR RLGI GLS GLI SIR

135 59 59 135 135 135 34 135 59 135 59 59 59

59 131 135 59 152 59 59 59 167 59 131 135 135

131 135 131 167 59 167 97 131 131 167 135 131 131

167 167 167 131 148 69 98 167 98 148 167 167 167

69 107 107 148 167 82 99 69 107 95 107 107 98

98 98 69 69 166 131 100 107 121 131 98 98 69

107 130 98 166 188 193 107 98 130 166 130 130 107

82 69 130 82 114 121 130 82 134 69 69 121 82

157 82 193 95 95 173 131 193 99 152 100 69 193

6 193 6 4 82 157 153 157 100 4 121 99 6

130 121 157 157 4 98 167 130 104 6 99 100 130

193 99 82 152 69 191 121 121 97 82 157 82 99

121 100 191 98 134 107 109 6 178 157 6 157 157

191 97 121 107 121 68 31 191 109 191 34 134 163

148 157 163 163 173 148 134 68 34 134 82 6 191

Table 9.   Top-15 nodes in the Ca-Astroph network obtained by different algorithms.

DC EC PL PR BC CC K-shell GIN KBKNR RLGI GLS GLI SIR

326 326 326 326 256 2295 65 326 967 326 326 326 124

299 304 2126 256 877 326 983 2126 956 299 285 2295 326

304 2295 2295 299 3749 256 906 967 919 2295 304 304 2124

2295 2126 304 304 1237 967 939 2295 360 256 124 299 304

2126 2124 967 2295 299 299 954 304 991 1091 165 2126 2295

967 285 299 967 326 304 967 2124 906 304 117 967 299

285 124 165 1091 360 2126 901 285 988 15,743 2124 285 285

256 2299 124 2126 967 124 483 299 901 967 2126 2124 2126

2124 165 2124 3749 4309 165 259 165 259 285 2295 877 967

877 2277 256 2285 202 117 360 877 939 8848 1129 256 2277

124 117 117 285 1091 1129 376 2277 963 3749 126 2277 165

165 1129 1129 877 6330 1091 397 124 955 877 148 124 148

1091 2285 285 2124 2295 2124 665 2299 983 2870 2299 165 877

2277 2317 877 124 2285 2277 885 1129 950 202 2277 1129 1129

1129 3421 2285 1129 324 2317 891 2317 958 2126 113 117 2285
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Consequently, different algorithms had different advantages for different networks. However, the proposed 
GLI algorithm performed generally the best among all algorithms on the above-presented three networks, hav-
ing the most obvious advantages.

(4)	 Node ranking comparison of 11 algorithms

The above section analyzes the results of the top-15 key nodes identified by different algorithms and the SIR 
model in the Karate, Jazz, and Ca-Astroph networks. This section analyzes the sorting results of all nodes in each 
of the twelve networks. First, the infection values of nodes were calculated in the SIR model. Next, the nodes 

Figure 4.   Function F(t) indicates the number of infected nodes in the network at time t. For the purpose of 
reliability of the results, the average result of many iterations is presented as the infection node number value. 
Due to the large data size of the Brightkite, EmailEU32430 and Ca-Astroph networks, for these networks, the 
number of iterations was set to 100, and for the other networks, the number of iterations was set to 1000.
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were arranged in descending order according to their importance values obtained by each algorithm. Then, the 
sequence of infection values was obtained from the node ranking results. It should be noted that if the ranking 
results of the algorithm were consistent with the results of the SIR model, a curve with a smooth downward 
trend from left to right would be formed. The results of a single node denoted as a seed node according to its 
infection value obtained by different algorithms are presented in Fig. 4, where the abscissa represents the number 
of infected nodes in the network obtained by each of the algorithms, and the ordinate represents the number of 
nodes infected and recovered at time t.

In Fig. 4, the data of the Polbooks, Jazz, Football, and Karate networks, which were small networks, are 
displayed on the linear scale; for the remaining eight networks, which had a large number of nodes, the data 
are displayed on the logarithm scale, focusing on the most influential nodes. As shown in Fig. 4, for the Blogs 
network, the result of the GLI algorithm showed an overall smooth decreasing trend, with the least number of 
peaks among all the algorithms. For the Ca-Astroph, Friendships, Brightkite, Reactome and USAir2010 networks, 
the results of the GLI algorithm had a few peaks, indicating that individual nodes were biased, but the proposed 
GLS algorithm’s results had the best effect among all the algorithms. For the EmailEU32430 network, the GLI, 
GLS, KBKNR, and K-shell algorithms performed well, but the curve decline of the results of the KBKNR and 
K-shell algorithms was reduced, the proposed GLS algorithm’s results fluctuated less and had the best effect 
among all the algorithms. Further, for the Polbooks network, the proposed GLI algorithm’s results fluctuated less 
and had the best effect among all the algorithms. For the Jazz network, the right part of the curve formed by the 
GLI algorithm had the least fluctuation and the best effect among all the algorithms. However, for the protein 
network, the KBKNR algorithm could not run, so its curve is not shown in Fig. 4, and among the remaining 
algorithms, the GLI algorithm achieved the best results. Therefore, the GLI method performed the best among 
the ten networks on the Blogs, Ca-Astroph, Friendships, EmailEU32430, Polbooks, Jazz, Protein, USAir2010, 
Reactomeand and Brightkite networks. The data curves in the stacked map showed a smooth downward trend, 
which was consistent with the SIR model results. For the Football network, due to the small difference in the 
degree value between the nodes, the curves of all algorithms showed certain fluctuations. The fluctuations of the 
KBKNR and EC algorithms were small, and their effect was relatively good. In the Karate network, except for the 
obvious curve fluctuations of the K-shell, CC, BC, and PR algorithms, the other algorithms showed a smooth 
downward trend, with a slight difference.

Consequently, the proposed GLI algorithm performed the best among all the algorithms on most networks, 
having similar results as the SIR model. Thus, the proposed algorithm could accurately identify key nodes in 
the networks.

Experimental results comparison with the SI model.  To analyze the performance of the proposed algorithm 
further, the SI model was used to evaluate the key nodes identified by different algorithms. Due to limited space, 
only the Kendall values obtained by the algorithms are presented in this section.

The value of the infectious probability α plays an important role in the experiment. The infected rate is 
(1/2)θ(here we set θ = 3)55,57.

The Kendall values obtained by different algorithms for different networks are presented in Fig. 5.
As shown in Fig. 5, the Kendall τ value of the GLI algorithm was higher among all the algorithms for the 

Blogs, Friendships, USAir2010, Protein, Brightkite and EmailEU32430 networks. In the Jazz, Football and Karate 
networks, the Kendall τ values of the GIN algorithm were superior to the other algorithms. In the Polbooks and 
Reactome networks, the Kendall τ values of the KBKNR algorithm were highest. Only in the Ca-Astroph network, 
the Kendall τ values of the CC algorithm were highest. Consequently, the proposed GLI algorithm performed 
the best among all the algorithms on most networks.

Infection capability of the top 15 nodes.  In order to validate the effectiveness of the GLI algorithm, we 
have calculated the infection ability of the top 15 nodes of the GLI and other algorithms in the SIR model. In the 
experiment, the infection probability α has been set to 0.01, and the recovery probability β has been set to one, 
the time step has been set from 1 to 30, and the number of iterations has been set as 1000.

As shown in Fig. 6, the number of infected nodes F(t) increased with the increasing time step t, and finally 
it reached a stable value at time step t = 10. This indicated that the top 15 influential nodes effectively infected 
other nodes in a short time. In the eight networks, namely the Blogs, Friendships, EmailEU32430, Polbooks, 
Karate, Protein, USAir2010 and Brightkite networks, the top 15 nodes of the GLI algorithm had the strongest 
infection ability. In the Ca-Astroph network, the infection ability of the top 15 nodes of GLI algorithm and DC 
algorithm were similar and better than other algorithms. In the Jazz and Reactome networks, the top 15 nodes 
of the RGLI algorithm and the PR algorithm had similar infection abilities, with distinct advantages over the 
GLI algorithm. But the GLI algorithm performed better than the other algorithms. In the football network, the 
effect of the GLI algorithm was general. Therefore, the top 15 nodes which selected by the GLI algorithm were 
stronger than other algorithms in the majority of networks. The result further demonstrated the effectiveness 
and accuracy of the proposed algorithm.

Time complexity analysis.  The time complexity analysis was performed considering the procedure per-
formed by the proposed GLI algorithm, including three stages. The temporal complexity analysis results are 
described below.

First, the network was stored in the logical form of an N × N matrix, and the computation degree needed 
to go through the other (n − 1) nodes, and the time complexity was O(n2). Further, the time complexity of cal-
culating the K-shell value was O(n*logn). Next, the given value of the adjacent node was calculated, and this 
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process involved the adjacent node; the time complexity of this process was O(n*(n − 1)) when the network was 
a complete network.

The total time complexity was calculated as the maximum of the above three time complexity values, and the 
time complexity of the proposed GLI algorithm was O(n2).

The source code is available online at: https://​github.​com/​hhf602/​GLI-​Code.

Conclusion
This paper proposes an efficient and accurate algorithm for key node identification in a complex network named 
the GLI algorithm. The GLI algorithm first calculates the Ks value of a network node, which is expressed as a 
global influence. Then, the local influence is obtained considering the node degree, the adjacent node’s node 
degree value, and the adjacent node’s Ks value and introducing a similarity coefficient between the adjacent nodes. 
Finally, the node influence is calculated based on the global and local influence results. The proposed algorithm 
is verified by experiments. It is compared with the other related algorithms using the results of the SIR and SI 
models as the evaluation index. Based on the experimental results of the nine algorithms on ten networks, the 
proposed GLI method performs better than the other algorithms.

Figure 5.   Kendall τ values of different algorithms compared with the SI model result on 12 networks. The value 
of the infectious probability a is 0.125.

https://github.com/hhf602/GLI-Code
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The main reason why the GLI algorithm achieves better results than the other algorithms is that in the 
proposed algorithm, the network nodes are ranked by the K-shell algorithm, and then the ranking result of the 
K-shell algorithm is refined according to the local influence of the nodes. This enhances the differentiation of 
node influence and solves the problem of hierarchical coarse-graining of the K-shell algorithm.

However, the proposed algorithm considers only information of adjacent nodes but not the information of 
secondary or tertiary neighbors of a node when calculating the local information influence contribution. There-
fore, multiple influencing factors could be considered in further in-depth research.

Data availability
The datasets analysed during the current study are available in the ScienceDB repository, https://​www.​scidb.​cn/​
anony​mous/​Wmpxb​UF6.

Figure 6.   The infection capability of top 15 nodes in the ranking of twelve different algorithms. F(t) represents 
the number of nodes that were infected by these top 15 nodes at time t.

https://www.scidb.cn/anonymous/WmpxbUF6
https://www.scidb.cn/anonymous/WmpxbUF6
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