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Distinct blood inflammatory 
biomarker clusters stratify host 
phenotypes during the middle 
phase of COVID‑19
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Nusrat J. Epsi 1,3, Rittal Mehta 1, Deborah Striegel 1, Emily G. Clemens 2, 
Sultanah Alharthi 1,2, David A. Lindholm 4,5, Ryan C. Maves 6,7, Derek T. Larson 8, 
Katrin Mende 1,3,5, Rhonda E. Colombo 1,3,9, Anuradha Ganesan 1,3,10, Tahaniyat Lalani 1,3,11, 
Christopher J. Colombo 9, Allison A. Malloy 12, Andrew L. Snow 13, Kevin L. Schully 14, 
Charlotte Lanteri 3, Mark P. Simons 3, John S. Dumler 2, David Tribble 3, Timothy Burgess 3, 
Simon Pollett 1,3, Brian K. Agan 1,3, Danielle V. Clark 1 & the EPICC COVID‑19 Cohort Study 
Group *

The associations between clinical phenotypes of coronavirus disease 2019 (COVID‑19) and the host 
inflammatory response during the transition from peak illness to convalescence are not yet well 
understood. Blood plasma samples were collected from 129 adult SARS‑CoV‑2 positive inpatient and 
outpatient participants between April 2020 and January 2021, in a multi‑center prospective cohort 
study at 8 military hospitals across the United States. Plasma inflammatory protein biomarkers 
were measured in samples from 15 to 28 days post symptom onset. Topological Data Analysis (TDA) 
was used to identify patterns of inflammation, and associations with peak severity (outpatient, 
hospitalized, ICU admission or death), Charlson Comorbidity Index (CCI), and body mass index (BMI) 
were evaluated using logistic regression. The study population (n = 129, 33.3% female, median 
41.3 years of age) included 77 outpatient, 31 inpatient, 16 ICU‑level, and 5 fatal cases. Three distinct 
inflammatory biomarker clusters were identified and were associated with significant differences in 
peak disease severity (p < 0.001), age (p < 0.001), BMI (p < 0.001), and CCI (p = 0.001). Host‑biomarker 
profiles stratified a heterogeneous population of COVID‑19 patients during the transition from peak 
illness to convalescence, and these distinct inflammatory patterns were associated with comorbid 
disease and severe illness due to COVID‑19.

While clinical risk factors for coronavirus disease 2019 (COVID-19) severity have been described, mechanisms 
of inflammation associated with these baseline clinical features are less well  understood1. SARS-CoV-2 infections 
range from asymptomatic to fatal illness, and this spectrum is associated with host risk factors such as age and 
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chronic noncommunicable disease (NCD), including obesity and cardiovascular  disease2. However, the pathways 
from host factors to COVID-19 severity and sequelae are largely unknown. Given the heterogeneity of COVID-
19 severity and a growing immunomodulatory treatment  armamentarium2,3, pathologic inflammation patterns 
and their association with comorbidities need to be identified to optimize treatment selection.

COVID-19 severity and inflammation occur in three broadly-defined phases. The “acute phase” is associated 
with peak disease severity and maximum levels of inflammatory host-biomarkers, and generally occurs during 
the first 2 weeks of illness. The transition between the “acute” and “late” post-COVID phase is less well-defined, 
but generally occurs between 15- and 28-days post symptom onset (dpso)4,5. While this is characterized by per-
sistent inflammation in severely ill individuals, this period of recovery and convalescence is referred to herein as 
the “middle”, rather than “inflammatory” phase, to include disease resolution in less severe COVID-19 disease 
courses. While inflammation may subside in mild cases, persistently high pro-inflammatory cytokines have been 
noted in severe cases during this period. This time window of wide differences in the immune response may be 
best suited to elucidate the relationship between host factors and severe COVID-19. In silico stratification of 
host-biomarker profiles has the potential to identify distinct phenotypes associated with disease severity and 
patient comorbidities, which can in turn lead to of the development of more personalized treatment approaches.

We hypothesized that clustering of blood inflammatory biomarker profiles would identify unique phenotypes 
during the middle phase of COVID-19, that are associated with differences in severity, demographics, and co-
morbid conditions known to predispose patients to worse outcomes during SARS-CoV-2  infection4. Our analysis 
used samples collected during the 15–28 dpso period from an observational, multi-center cohort of participants 
with mild to severe COVID-19 at US military treatment facilities. Protein analytes that were measured included 
biomarkers of vascular damage, organ injury, and Th1-type immune mediators, that were selected from prior 
unpublished analyses of non-COVID-19  sepsis6, as well as biomarkers in general clinical  use7. Our objective was 
to stratify the inflammatory response during the middle phase of COVID-19, and to explore associations between 
biomarker clusters and demographic characteristics, baseline comorbidities, and peak severity of COVID-19.

Methods
Participants were enrolled in a prospective, multi-center COVID-19 cohort under the Epidemiology, Immunol-
ogy, and Clinical Characteristics of Emerging Infectious Diseases with Pandemic Potential (EPICC) protocol, at 
8 military treatment facilities (Brooke Army Medical Center, San Antonio, TX; Fort Belvoir Community Hos-
pital, Fort Belvoir, VA; Madigan Army Medical Center, Joint Base Lewis-McChord, WA; Naval Medical Center 
Portsmouth, Portsmouth, VA; Naval Medical Center San Diego, San Diego, CA; Tripler Army Medical Center, 
Honolulu, HI; William Beaumont Army Medical Center, El Paso, TX; Walter Reed National Military Medical 
Center, Bethesda, MD) between April 2020 and January  20218. The protocol was approved by the Uniformed 
Services University Institutional Review Board (IDCRP-085)9. All patients provided written informed consent 
and all procedures were performed in accordance with the ethical standards of the Helsinki Declaration of 
the World Medical Association. EPICC study enrollment included subjects ≥ 18 years of age with laboratory-
confirmed or suspected SARS-CoV-2 infection seeking inpatient or outpatient medical care. Following consent, 
demographic, comorbidity, and illness data were collected through participant interviews and a review of the 
participant’s electronic medical record or using participant completed surveys implemented in November 2020. 
Subjects with a positive clinical SARS-CoV-2 RT-PCR result and plasma samples collected were included in this 
analysis. Results of well-described10 COVID-19 clinical biomarkers CRP, ferritin, and IL-6, were explored from 
217 participants with plasma collected 0–29 days post symptom onset (dpso) to determine if the longitudinal 
inflammatory biomarker LOESS (locally estimated scatterplot smoothing) curve peaked between 14 to 28 days 
per previously published phases of illness framework for studying COVID-19 (Supplementary Fig. S1)4. Subse-
quent analyses were restricted to the 129 participants with samples collected during the middle phase defined as 
15–28 dpso. Receipt of baricitinib, tocilizumab, hydroxychloroquine, or systemic steroids (equivalent to pred-
nisone 10 mg daily or above) at the time of blood collection was determined through the electronic medical 
record or participant surveys.

Plasma samples were prospectively collected after enrollment as previously  described9. Venous whole blood 
samples were centrifuged for 10 min at 1500g and collected plasma was stored at − 80 °C. A panel of 12 inflam-
matory proteins were measured in the plasma samples using the high dynamic range automated enzyme-linked 
immunosorbent assay Ella microfluidic analyzer (ProteinSimple, San Jose, California, USA) (see Supplemental 
Methods). Analytes included: IL-6, CXCL10, IL-1RA, d-dimer, procalcitonin, ferritin, VEGF-A, IL-5, soluble 
receptor for advanced glycation end-product (RAGE), TNFR1, IFN-γ, and C-reactive protein (CRP). These 
analytes were selected to include biomarkers in clinical use for prognostication (i.e., CRP, procalcitonin, fer-
ritin, and d-dimer)7, based on prior COVID-19 literature (i.e., IL-6, IFN-γ and CXCL10)11, and identified to 
be representative of prior TDA-based non-COVID-19 sepsis clusters (i.e., IL-1RA, VEGF-A, IL-5, RAGE, and 
TNFR1)6,12,13. All protein concentrations were  log10-transformed and normalized for site-to-site variation using 
the R package SVA ComBat14. A small number (1.6%) of missing values were imputed using a k-nearest neighbor 
model, and out-of-range values were imputed using either the lowest or highest measured value within range 
of the Ella platform. Correlation between analytes was explored with a principal component analysis and deter-
mining the Spearman’s correlation coefficients. For subjects (N = 22) with two or three samples available from 
different timepoints, the sample with the highest variability (coefficient of variation) was selected per subject to 
optimize cluster  identification15. A sensitivity analysis was performed to determine the effect on cluster affiliation 
using the collection time with the highest rank across analytes rather than the highest coefficient of variation.

Herein we define inflammatory host-biomarker phenotypes of COVID-19 identified by Topological Data 
Analysis (TDA) and associated comorbid conditions and disease severity. TDA is a multivariate pattern analytical 
tool that uses an unsupervised approach to dimensionality reduction and data  visualization16. A key advantage 
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of TDA over other dimensionality reduction techniques, such as principal component analysis, is that it is not 
limited to 2 axes and is less sensitive to loss of  information17. TDA can be used to identify phenotype-biomarker 
 relationships17–19 and has previously identified patient subgroups that could benefit from personalized interven-
tions for heterogenous noncommunicable  diseases16,18. Protein expression networks were generated solely using 
biomarkers levels with the TDA “Mapper” algorithm using the EurekaAI platform (SymphonyAI, Los Altos, 
CA, USA)17,20,21. TDA networks were generated for a range of resolution settings to examine the persistence of 
subject clusters and their interrelatedness (see Supplemental Methods). Peak severity (outpatient, hospitalized, 
ICU-level or death) color gradients were overlaid on identified clusters. Levels of the individual proteins in each 
TDA group were summarized in a series of boxplots (R package “ggplot2” v3.3.5). Backward selection stepwise 
logistic regression using a Bernoulli-adjusted significance level of 0.0042 (i.e., 0.05/12) was used to identify 
which proteins were up- or downregulated within each cluster. While TDA clusters will inherently have differ-
ent biomarker levels, this was performed to simplify inference about representative biomarkers and for future 
validation in external cohorts. A sensitivity analysis was performed adjusting for peak severity to determine the 
effect of covariate selection. An additional sensitivity analysis was performed excluding participants receiving 
systemic steroids.

Summary statistics were calculated for the clusters, comparing baseline demographics (e.g., sex, age, race, 
ethnicity, selected medical comorbidities), days post symptom onset, peak severity, steroid use, and the inflam-
matory biomarkers by clusters using either Chi-square (categorical values), Fisher exact (categorical values), or 
Mann–Whitney U tests (continuous values). Charlson Comorbidity Index (CCI) and body mass index (BMI) 
values were divided into score-based categories (i.e., CCI: 0, 1–2, 3–4, or 5+; BMI: < 30, 30–39.9, or ≥ 40 kg/
m2) to describe the prevalence of comorbid conditions by cluster on a bar plot but were otherwise treated as 
continuous values. BMI values were not available from 6.2% of the cohort. Peak severity was categorized for 
each participant [outpatient, non-ICU (intensive care unit) inpatient, and ICU or death]. Multivariable logistic 
regression adjusting for peak severity was used to identify associations between each cluster and BMI or CCI at 
a significance level of 0.05. A sensitivity analysis was performed to adjust for duration of symptoms at sample 
collection. Additionally, logistic regression models to examine the association between clusters and death or 
ICU care at peak illness were performed. Area under the receiver operating characteristic curves (AUROC) and 
Akaike information criterion (AIC; measure of model parsimoniousness) estimates were compared between 
models with and without adjustment for baseline demographics (i.e., age, sex, and CCI), clinical biomarkers 
(i.e., d-dimer, ferritin, and CRP), and cluster covariates. All statistical analyses were performed in Stata (version 
15.0; StataCorp LLC, College Station, TX, USA) and R version 4.0.222.

Results
Biomarkers CRP, IL-6, and ferritin were stratified by severity and explored for the 249 participants in the EPICC 
cohort between 0 and 28 dpso using a scatter plot with LOESS (locally estimated scatterplot smoothing) curves. 
This demonstrated average cytokines peaked or remained elevated during the described middle phase (15–28 
dpso) among ICU-level or fatal courses of illness (Supplementary Fig. S1). Based on these findings and clinical 
frameworks of  illness23, we restricted our analysis to participants that had blood collected within the middle 
phase. As participants were enrolled at different durations post-symptom onset, our analysis included 129 par-
ticipants (66.7% male, median 41.3 years of age) including 77 outpatient, 31 inpatient, 16 ICU-level, and 5 fatal 
cases (Table 1) between 15 to 28 days of illness. Correlation along a PCA axis was observed among procalcitonin, 
TNFR1, IL-6, CRP, and IL-1RA while RAGE, IFN-γ, IL-5, and VEGF-A were less correlated with the other ana-
lytes. Additionally, variance increased with each level of peak severity (Supplementary Fig. S2). These results 
supported the additive information provided by the 12 protein analytes, and TDA was performed. Interestingly, 
3 distinct inflammatory proteins clusters, labeled Cluster 1, Cluster 2, and Cluster 3 (Fig. 1; Supplementary 
Fig. S3), were consistently identified using TDA. There was no obvious difference between Clusters 2 and 3 by 
PCA alone (Supplementary Fig. S2). A sensitivity analysis using highest rank across analytes for sample selection 
identified 3 clusters with a high overlap in participant cluster affiliation among original Clusters 1 and 2 with a 
lower agreement between methods observed in the smaller Cluster 3 (Supplementary Fig. S4).

Age differed significantly between clusters (p < 0.001). Participants from Clusters 2 (median 37.1 years of age; 
IQR, 28.1 to 50.0) and 3 (median 36.3 years of age; IQR, 24.6 to 55.2) were younger than in Cluster 1 (median 
51.8 years of age; IQR, 37.3 to 65.0) (Table 1). The prevalence of male gender was similar among Cluster 1 (62.0%, 
n = 31), Cluster 2 (64.1%, n = 41), and the general cohort (66.7%), but cluster 3 was predominantly male (93.3%, 
n = 14). The median time from symptom onset to sample collection was 21 days (IQR 18 to 25) and did not dif-
fer between clusters (Table 1). Peak disease severity, as categorized by hospitalization status, was also found to 
differ significantly among the clusters (p < 0.001). Cluster 1 had the highest prevalence of severe COVID-19, 
comprising 66.0% (n = 33) hospitalized participants, compared to 46.7% (n = 7) hospitalized participants in 
Cluster 3, and 18.8% (n = 12) hospitalized participants in Cluster 2 (Fig. 2, Table 1). All fatal cases (n = 5) were in 
Cluster 1. No individuals had received baricitinib or tocilizumab, and hydroxychloroquine use was limited to 2 
individuals in Cluster 1. Receipt of systemic steroids at the time of blood collection was limited to 5 participants 
in Cluster 1 (10.0%; n = 5).

The median CCI differed (p = 0.009) among clusters ranging from 2 (IQR, 2 to 3) in Cluster 1 to 0 (IQR 0 to 
0.5) in Cluster 2 and 0 (IQR, 0 to 1) in Cluster 3. Most participants in Cluster 2 (75.0%) and in Cluster 3 (73.3%) 
had a CCI of 0 compared to 38.0% of individuals in Cluster 1 (Fig. 2). Additionally, median BMI was higher in 
Cluster 1 (33.5 kg/m2; IQR, 29.0 to 37.0) compared to in Cluster 2 and Cluster 3, which were the same (28.0 kg/
m2; IQR, 25.0 to 31.0) (Table 1). After adjusting for peak severity using logistic regression, participants with a 
higher BMI (OR: 1.1 per kg/m2, p = 0.002) and a higher CCI (OR: 1.3 for each score increase, p = 0.02) were more 
common in Cluster 1 compared to participants in Cluster 2 and 3 combined.
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The distributions of each analyte were different across clusters using a chi-squared test, except for IL-5 and 
IFN-γ which had a similar distribution (Table 2). Certain biomarkers including CRP, IL-6, IL-1RA, d-dimer, 
TNFR1, and VEGF-A were more elevated in Cluster 1 compared to Clusters 2 and 3 (Table 2; Fig. 3; Supple-
mentary Fig. S5). RAGE was lower in Cluster 1 compared to Clusters 2 or 3 and IFN-γ was lower in Cluster 1 
compared to Cluster 2 (Fig. 3; Supplementary Fig. S5). Cluster 3, a young cluster with moderate severity, was 
found to have higher ferritin, procalcitonin, and CXCL10, and lower VEGF-A compared to Cluster 2, a similarly 
young cluster with mild illness.

Stepwise regression, both unadjusted and adjusted for peak severity, was used to identify a subset of analytes 
that were most characteristic of each cluster (Supplementary Table S1). The distinguishing biomarker of Cluster 
1 were relatively high IL-1RA and low RAGE levels; these subjects had a high severity phenotype compared to 
other clusters (Fig. 3; Supplementary Fig. S5; Supplementary Table S1). Regardless of peak severity, Cluster 2 was 
characterized by relatively low procalcitonin and high RAGE levels. Cluster 3 was characterized by low VEGF-A 
after peak severity adjustment (Fig. 3; Supplementary Fig. S5; Supplementary Table S1). When restricting the 
analysis to those not receiving steroids, the models were qualitatively unchanged, and the same covariates were 
selected. A sensitivity analysis adjusting for duration of symptoms also did not change the analytes selected and 
did not qualitatively change the results.

After adjustment for age, sex, and CCI, Cluster 1 was associated with a 5.22 (95% CI 1.31 to 20.80) increased 
odds of ICU-level illness or death (Supplementary Table S2). The AUROC for ICU-level illness or death increased 
with the addition of cluster designation from 0.78 to 0.83. However, the AUROC was similar when including 
clinical biomarkers (CRP, d-dimer, and ferritin) in the model (AUROC: 0.87) compared to clinical biomarker 
covariates with clusters included (AUROC: 0.88).

Table 1.  Baseline demographics across TDA clusters. IQR: interquartile range; HFNC: high flow nasal 
cannula; NIPPV: non-invasive positive pressure ventilation. † Chi-square test. ǂ Mann Whitney U test. ǁ Fischer’s 
Exact test.

Characteristic Total (N = 129) Cluster 1 (N = 50) Cluster 2 (N = 64) Cluster 3 (N = 15) p-value

Male gender—no. (%) 86(66.7%) 31(62%) 41(64.1%) 14(93.3%) 0.06†

Age—years, median (IQR) 41.3 (30.1, 56) 51.8 (37.3, 65) 37.1 (28.05, 49.55) 36.3 (24.6, 55.2)  < 0.001ǂ

Race or ethnic group—no. (%) 0.01†

White 81 (62.8) 30 (60.0) 43 (67.2) 8 (53.3)

Black 31 (24.0) 16 (32.0) 12 (18.8) 3 (20.0)

Other 6 (4.7) 1 (2.0) 5 (7.8) 2 (13.3)

Asian 5 (3.9) 0 (0) 3 (4.7) 2 (13.3)

Native American 3 (2.3) 0 (0) 1 (1.6) 0 (0)

Native Hawaiian 3 (2.3) 3 (6.0) 0 (0) 0 (0)

Ethnicity—no. (%) 0.88†

Hispanic or Latinx 31(24) 13(26) 15(23.4) 3(20)

Charlson Comorbidity Index (CCI)—
median (IQR) 0 (0, 2) 2 (2, 3) 0 (0, 0.5) 0 (0, 1) 0.009ǂ

Body mass index—kg/m2, median (IQR) 30 (27, 34) 33.5 (29, 37) 28 (25, 31) 28 (25, 31)  < 0.001ǂ

Days post-symptom onset—median (IQR) 21.0 (18.0, 25.0) 20 (17.0, 25.0) 21.0 (19.0, 25.5) 22.0 (21.0, 25.0) 0.16ǂ

Hospitalization at timepoint—no. (%)  < 0.001ǁ

ICU 10(7.8) 9(18) 1(1.6) 0

Inpatient 28(21.7) 16(32) 7(10.9) 5(33.3)

Outpatient 91(70.5) 25(50) 56(87.5) 10(66.7)

Peak severity—no. (%)  < 0.001ǁ

Death 5 (3.9) 5 (10.0) 0 (0) 0 (0)

ICU 16 (12.4) 10 (20.0) 3 (4.7) 3 (20.0)

Inpatient 31 (24.0) 18 (36.0) 9 (14.1) 4 (26.7)

Outpatient 77 (59.7) 17 (34.0) 52 (81.3) 8 (53.3)

Peak oxygen requirement—no. (%)  < 0.001ǁ

None 87 (67.4) 23 (26.4) 55 (63.2) 9 (10.3)

Low-flow nasal cannula 23 (17.8) 13 (48.1) 7 (10.9) 3 (20.0)

HFNC or NIPPV 14 (10.9) 11 (40.7) 1 (1.6) 2 (13.3)

Mechanical ventilation 5 (3.9) 3 (11.1) 1 (1.6) 1 (6.6)

Systemic steroid use—no. (%) 5 (3.9) 5 (10.0) 0 (0) 0 (0)
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Discussion
We demonstrated that a prospective cohort with a wide spectrum of disease severity can be stratified into three 
distinct inflammatory profiles using 12 plasma protein biomarkers during the middle phase of COVID-19. In 
contrast to most biomarker studies, our findings were drawn from a diverse multi-center cohort. Clusters strati-
fied host phenotypes with different severity levels, demographics, and comorbid conditions. Combinations of 
biomarkers, independent of clinical information, grouped participants into one of three distinct clusters: high 
COVID-19 severity, older, with comorbid conditions (Cluster 1); low severity, younger, less comorbid illness 
(Cluster 2); and a moderate severity, younger, previously healthy, almost entirely male group (Cluster 3). A subset 
of biomarkers (i.e., IL1-RA, VEGF-A, and RAGE) were most representative of each cluster. Whilst exploratory, 
this reveals potential translational approaches to using host-biomarker stratification with advanced clustering 
and network analytical techniques to better understand what drives phenotypic differences in the clinical pres-
entation of COVID-19.

Patterns of inflammation or cell injury observed for the different clusters could suggest dysregulated pathways 
associated with COVID-19 pathology. Cluster 1 was found to be the highest severity cluster with all fatal cases 
and most ICU-level cases. This cluster contained distinctly more subjects with baseline comorbid conditions 
and obesity as defined by BMI ≥ 30. While it is unsurprising that acute phase reactants were higher, Cluster 1 
subjects had notably higher IL-1RA compared to Cluster 2 and 3, clusters represented by participants with less 
comorbid conditions. In contrast to Cluster 1, comorbid illness was uncommon, and the median age was over 
15 years younger in Cluster 3. However, 7 of 15 participants were hospitalized in Cluster 3. While IL1RA levels 
were high in Cluster 1, IL1RA levels were lower in Cluster 3, which was similar to the mild Cluster 2. Consist-
ent with this trend, prior work has identified IL-1RA as a potential mediator between obesity and COVID-19 
 severity24. IFN-γ was lower and IL-6 higher in Cluster 1 compared to the Cluster 2 participants. This pattern of 
an aberrant Th1 response has been previously identified to be associated with severe COVID-19 and potentially 
distinct from influenza  infection24. Cluster 1 aligned with baseline comorbid illnesses known to be risk factors for 
severe COVID-19 with potentially distinct inflammatory cascade patterns demonstrated compared to Cluster 3.

Cluster 3 was unique in that it had a combination of low VEGF-A but had elevated ferritin and higher preva-
lence of severe illness compared to Cluster 2, a mild illness cluster with comparable demographics. While sample 

Figure 1.  Topological data analysis (TDA) network of protein expression during the middle-phase of COVID-
19. Distinct protein expression phenotypes (Clusters 1, 2, and 3) were identified based on density and break 
points in the network and persistence of the clusters. Each node represents a combination of 12 plasma protein 
analyte levels and its size increases with the number of participants that are included. Edges (lines between 
nodes) indicate that patients are represented in more than one node. The network is colored by the average score 
on the disease severity scale (from outpatients without limitations [green] to death [red]) in each node. Analysis 
was performed on the EurekaAI Workbench (SymphonyAI, Los Altos, CA, USA).
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Figure 2.  Cluster differences with bar plots (% [n]) of comorbid diseases and severity by cluster. (A) BMI (body 
mass index) category (range in kg/m2) prevalence by cluster; (B) Charlson Comorbidity Index (CCI) category 
prevalence by cluster; (C) peak levels of severity by cluster. Total (n) presented in the center of each category.

Table 2.  Comparison of the Ella biomarkers across TDA clusters. For each subject, one sample was selected 
based on highest coefficient of variation. *Distributions among all clusters compared using a Kruskal–Wallis 
test. Significant values are in bold.

Variable

Plasma  log10 pg/mg, median (IQR)

p-value*Total Cluster 1 Cluster 2 Cluster 3

CRP 6.75 (6.09, 7.62) 7.33 (6.67, 7.98) 6.43 (5.89, 7.11) 6.29 (5.68, 7.13)  < 0.001

CXCL10 2.17 (1.95, 2.37) 2.28 (1.94, 2.53) 2.1 (1.88, 2.28) 2.19 (2.09, 2.51) 0.02

d-dimer 5.69 (5.34, 6.23) 6.06 (5.68, 6.85) 5.49 (5.27, 5.87) 5.68 (5.3, 6.52)  < 0.001

Ferritin 5.3 (4.98, 5.65) 5.46 (5.07, 5.87) 5.17 (4.82, 5.37) 5.51 (5.31, 5.9)  < 0.001

IFNγ − 0.25 (− 0.45, 0) − 0.3 (− 0.58, 0) − 0.21 (− 0.39, 0) − 0.27 (− 0.46, 0.02) 0.11

IL1Ra 2.85 (2.56, 3.11) 3.01 (2.84, 3.37) 2.67 (2.5, 2.97) 2.69 (2.4, 2.92)  < 0.001

IL5 − 0.56 (− 0.86, 0.34) − 0.57 (− 0.95, − 0.4) − 0.57 (− 0.81, − 0.31) − 0.51 (− 0.85, − 0.24) 0.69

IL6 0.26 (0.01, 0.63) 0.52 (0.24, 1.1) 0.07 (− 0.13, 0.43) 0.26 (0.05, 0.6)  < 0.001

Procalcitonin 1.78 (1.63, 2) 1.92 (1.7, 2.25) 1.69 (1.59, 1.86) 1.92 (1.77, 2.1)  < 0.001

RAGE 2.93 (2.78, 3.04) 2.76 (2.58, 2.87) 3.02 (2.92, 3.09) 3 (2.8, 3.07)  < 0.001

TNFR1 3.03 (2.95, 3.18) 3.15 (3.01, 3.3) 2.98 (2.91, 3.08) 3.04 (2.97, 3.16)  < 0.001

VEGFA 1.64 (1.43, 1.92) 1.9 (1.57, 2.12) 1.58 (1.43, 1.76) 1.25 (0.8, 1.52)  < 0.001
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size is limited, 14 of 15 participants in Cluster 3 were male, suggestive of a biologic sex difference in immune 
response among these previously healthy young men. Sex differences leading to severe COVID-19 among men 
have been previously described with X-linked TLR7  deficiency25,26 and on a larger scale with sex-related differ-
ences in innate and T-cell  responses27. A combination of low VEGF-A and elevated ferritin may identify a unique 
inflammation subtype and merits further study with external cohorts.

RAGE, a biomarker of acute lung  injury28, was found to have different distributions between clusters. In con-
trast to prior  research29, RAGE levels appeared to be higher among the younger and relatively milder COVID-19 
severity Cluster 2 compared to Cluster 1. Compared to other clusters, RAGE was elevated along with IFN-γ in the 
less symptomatic Cluster 2, but with lower acute phase reactants ferritin and procalcitonin. The converse was true 
with Cluster 1 where lower levels of RAGE in individuals were noted, along with elevated acute phase reactants 
(i.e., CRP, procalcitonin, and ferritin). This association of lower RAGE with higher severity Clusters 1 and 3 
contrasts with a direct association with COVID-19  mortality30. However, our results may differ by accounting for 
biomarker patterns rather than evaluating each biomarker in isolation and our study did not account for initial 
RAGE levels that may decrease over  time31. It is possible that RAGE could be an adaptive anti-inflammatory 
protein in Cluster 2 during the middle phase. Soluble RAGE has been shown to reduce vascular injury in rodent 
 models32,33 and could be protective against vascular inflammation  mediated34. The paradoxically inverse rela-
tionship observed between RAGE and these commonly used acute phase reactants between the clusters merits 
further investigation into longitudinal changes.

While this study, to our knowledge, is the first to use a network clustering approach to understand relation-
ships between biomarker patterns and heterogenous clinical phenotypes of COVID-19, there are limitations 
worth noting. Samples were collected from April 2020 to January 2021 and treatment practices and epidemio-
logic changes over time may have affected inflammation patterns. Hence, we incorporated a sensitivity analysis 
excluding those that received systemic steroids in Cluster 1 to aid in interpreting the findings. In addition, while 
results were drawn from a diverse multi-center cohort, the sample size may limit our ability to identify uncom-
mon biomarker patterns and external validation is needed of patterns identified. Additionally, regression was 
used to adjust for peak severity to identify biomarker and comorbid condition associations with clusters distinct 

Figure 3.  Box plots of markers selected in stepwise regression to identify characteristic biomarkers of each 
cluster: Ferritin (A), IL1RA (B), RAGE (C), and VEGFA (D) by cluster. Kruskal–Wallis test performed 
comparing analyte levels between clusters. **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.
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from severity trajectory differences. While this is a novel feature of this biomarker study, residual confounding 
related to peak severity remains possible. Lastly, the phases of illness likely vary between individuals. While 
this cross-sectional look at the middle phase was able to identify major differences in inflammation patterns, 
additional approaches with larger sample sizes could identify shifts in phenotypes over time or to identify tra-
jectory phenotypes using techniques such as latent class  analysis35,36. For example, all participants that received 
corticosteroids were in Cluster 1. This could be due to persistent breakthrough inflammation, but future research 
with dynamic models is needed to explore this further. Despite limitations, results presented here are hypothesis 
generating and should be evaluated further in additional cohorts.

This approach constitutes an early exploratory step in identifying host biomarker patterns that may be lever-
aged for personalized interventions, and offers new insights for COVID19 prognosis, therapy, and prevention 
with techniques that could be extended to understanding other severe infections. Using analytes identified 
from our international sepsis cohort  research6, 3 biomarker clusters with different phenotypic associations were 
identified among those with heterogenous COVID-19 presentations. Inclusion of inflammation biomarkers 
including IL-1RA, VEGF-A, and RAGE should be considered for future mediation analyses to identify precision 
biomarkers to guide COVID-19 therapeutics. The application of these biomarkers derived from non-COVID-19 
severe infection research suggests that pathogen-agnostic sepsis biomarkers could be identified for personalized 
approaches to triage of care or immunomodulation strategies. Further validation of these markers and cluster-
ing algorithms with external cohorts could inform point-of-care biomarker assay development to guide more 
individualized approaches to COVID-19 care.

Data availability
Completely de-identified data may be provided upon reasonable request to the corresponding author. Identifying 
data that would compromise privacy could not be shared publicly.
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