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A new strategy for the early 
detection of alzheimer disease 
stages using multifractal geometry 
analysis based on K‑Nearest 
Neighbor algorithm
Yasmina M. Elgammal 1, M. A. Zahran 1 & Mohamed M. Abdelsalam 2*

Alzheimer’s Disease (AD) is considered one of the most diseases that much prevalent among elderly 
people all over the world. AD is an incurable neurodegenerative disease affecting cognitive functions 
and were characterized by progressive and collective functions deteriorating. Remarkably, early 
detection of AD is essential for the development of new and invented treatment strategies. As 
Dementia causes irreversible damage to the brain neurons and leads to changes in its structure that 
can be described adequately within the framework of multifractals. Hence, the present work focus on 
developing a promising and efficient computing technique to pre‑process and classify the AD disease 
especially in the early stages using multifractal geometry to extract the most changeable features due 
to AD. Then, A machine learning classification algorithm (K‑Nearest Neighbor) has been implemented 
in order to classify and detect the main four early stages of AD. Two datasets have been used to ensure 
the validation of the proposed methodology. The proposed technique has achieved 99.4% accuracy 
and 100% sensitivity. The comparative results show that the proposed classification technique 
outperforms is recent techniques in terms of performance measures.

Alzheimer’s disease (AD) is a widely frequent form of neurodegenerative brain  disease1. It is responsible for the 
psychological decline of up to three-quarters of all patients with dementia, which is the major cause of death, 
leading to a progressive loss of memory and cognitive abilities.

As is well known, the healthy brain has about 100 billion neurons; each neuron has long extensions and 
branching. These extensions or connections called "synapses" enable neurons to communicate with each other. 
Through these synapses, signals travel from the presynaptic neuron to the postsynaptic neuron in the form 
of electrical  impulses2, causing the release of chemical messages across tiny gaps to the neighboring neurons. 
Indeed, about 100 trillion synapses are responsible for allowing signals to travel rapidly through the brain’s neu-
ronal circuits, creating the cellular basis of human function, such as memories, sensations, emotions, thoughts, 
movements, … etc.3. Moreover, glial cells play the main role in supporting the function and health of neurons. 
Microglia, for instance, clear away debris and protects neurons from physical and chemical  damage3.

However, in a person with AD, changes in the brain are grown due for main two reasons: (1) The protein 
fragment Beta-amyloid accumulates outside neurons, which clumps into plaques, and (2) protein tau accumu-
lates over time forming tangles inside neurons. The beta-amyloid plaques slowly build up between neurons at 
synapses, while tau tangles block the transport of nutrients and other essential molecules inside neurons. Even-
tually, neurons lose their ability to  communicate4. Moreover, serious irreversible changes occur in the brain, 
which is believed to set in when the microglia can’t perform their tasks, and atrophy, or shrinking in frontal 
lobes, temporal-parietal and hippocampus due to cell  loss5. According to the Global Deterioration Scale (GDS)6, 
the severity of dementia is broken down into seven stages, which predict the primary degenerative of dementia 
especially AD, and delineation of its stages. These stages can be summarized in Fig. 1:

Alzheimer’s disease cannot be diagnosed using a mostly single diagnostic procedure. Physicians employ 
a number of tools and approaches to aid in the diagnosis, frequently with the help of experts including 
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neuropsychologists, neurologists, geriatricians, and geriatric psychiatrists. To confirm an Alzheimer’s diagnosis 
or rule out other potential causes of symptoms, perform brain scans using magnetic resonance imaging (MRI), 
computed tomography (CT), or positron emission tomography (PET). Indeed, in some cases especially in the 
early stages, the assessment might not show Alzheimer’s disease, therefore, a doctor might consult to request 
extra testing. Moreover, the duration between the healthy states to AD spans over many years. At first, the patient 
suffers from mild cognitive impairment (MCI) and gradually transition to AD. Indeed, not all MCI patients 
transition to  AD7. This conversion can be predicted using medical  imaging8 and other techniques like blood 
plasma  spectroscopy9.

The biomarkers for Alzheimer’s disease are neurochemical signs that are used to determine whether the illness 
is present or not. The abnormal deposits of a beta-amyloid (Aβ42), which is considered one of the main causes 
of the presence of amyloid plaques, the abnormal accumulation of the total tau (T-tau) and phosphorylated tau 
(P-tau) in the Cerebrospinal fluid (CSF). The measurement of biomarker levels in the same sample can frequently 
change dramatically from one institution to another and across various testing platforms, therefore, brain imag-
ing methods are being conducted by several researchers in order to improve diagnosis and progress monitoring.

In this work, we attempt to improve AD classification by combining multifractals features extraction with 
artificial intelligence, namely the K-Nearest Neighbor algorithm. Therefore, we try to give some remarks and a 
literature review concerning the above-mentioned terminology.

Related works. This section has two-fold, i.e., machine learning and fractals analysis. Machine  learning10 is 
an application of Artificial Intelligence (AI), where AI techniques seem to be a combination of several research 
disciplines such as computer science, physiology, philosophy, sociology, and biology. Machine learning aims 
to extract information from a dataset in order to make a prediction to solve problems related to this data. The 

No cogni�ve decline (No Demen�a)

• The pa�ent appears normal and no memory infirmity clear on the clinical interview.

Very mild cogni�ve decline (Very Mild Demen�a)

• The pa�ent hasn’t any evidence of memory deficit on clinical interview. No objec�ve deficits in 
employment or social situa�ons. Occasionally pa�ents may forget where one has placed familiar objects or 
names one formerly knew well.

Mild cogni�ve decline (Mild Demen�a)

• The earliest clear-cut deficit, the pa�ent has memory infirmity clear in a clinical intensive interview. 
Pa�ents can’t easily remember the names of people and might have go�en lost when heading out to a new 
place. Words and names discovering deficits become evidence of lingerie. 

Moderate cogni�ve decline (Moderate Demen�a)

• Obvious deficit on the cau�ous clinical interview, pa�ent less known about the current and recent events. 
The focus deficit evoked sequen�al deduc�ons. Unfortunately, the pa�ent has less ability to travel, handle 
accounts, and so forth much of the �me

Moderately severe cogni�ve decline (Moderately severe Demen�a)

• The pa�ent may need assistance to perform some tasks, as well as,  can't review a significant applicable 
part of their present lives.  Frequently some disorienta�on to �me or place.

Severe cogni�ve decline (Severe demen�a)

• Pa�ent sporadically fails to remember the name of the companion upon whom they are en�rely 
dependent for survival.  Generally, the pa�ent is unconscious of their surroundings, the year, the season, 
and so on. The Pa�ent may need assistance to perform some tasks, e.g., may turn into incon�nent.

Very severe cogni�ve decline (Very Severe Demen�a)

• The pa�ent requires help in basic ac�vi�es; he becomes bed-bound and requires around-the-clock care. 
Their ability to verbally communicate is limited and basic psychomotor abili�es are lost with the 
progression of this phase. 

Figure 1.  The AD stages according to the global deterioration scale.
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application of machine learning techniques gets attention in the classification of AD in several researches in the 
last decade, see for  instance11–13.

In recent researches, different machine learning algorithms were applied for developing a predictive model 
for the classification of AD stages. As  in14, the authors used recursive feature elimination and applied SVM 
(support vector machine) to classify several stages as CN versus AD, MCI versus AD, and CN versus MCI, they 
achieved an accuracy of 100%, 73.68%, and 90% respectively. Also, a developed algorithm called "Support Vec-
tor Machine Leave-One-Out Recursive Feature Elimination and Cross-Validation" (SVM-RFE-LOO) for early 
detection of AD was  proposed15. Moreover, several researchers also used SVM concerning the detection of 
 AD16–24. For  instance25, used Artificial Neural Network (ANN) with MRI images to perform prediction for the 
transition from mild cognitive impairment (MCI) to AD with an accuracy of 89.5%. In 26, they used the ANN 
technique to classify AD from cognitively normal (CN) using MRI images with an accuracy of 100%. Another 
ANN model called the Anatomically Partitioned Artificial Neural Network (APANN) model was used  in27 in 
order to predict the clinical score in AD. Chitradevi et al.28 used the deep learning technique to classify between 
CN and AD with an accuracy of 95%.

Deep Neural Network (DNN) learning or Convolutional Neural Network (CNN) was used in several 
researches.  In29, a DEMentia NETwork (DEMNET) based on the CNN model was proposed to detect the demen-
tia stages. A modified LeNet model based on DNN was proposed  in30 using MRI images for AD classification. 
A volumetric (CNN) model based on MRI images was used  in31 for multi-classification tasks.

Three classification techniques "Nearest Neighbor, K-Nearest Neighbor, and Weighted K Nearest Neighbor" 
were used in the detection of  AD32. The proposed classifiers were used to detect the normal, very mild, mild, 
and moderate stages with maximum accuracy of 82.67%. A novel feature reduction methodology based on the 
usage of the KNN classifier was proposed  in33. The proposed system succeeded in classification into normal, 
MCI, and AD with an accuracy of 99%.

On the other hand, Euclidean geometry is based on one, two, or three dimensions, which are not realistic in 
nature. Hence, it is inadequate to approximate the complex and irregular shape of nature within the framework 
of Euclidean geometry. For instance, the behaviors and structures of the brain system are too complicated to 
neatly model by traditional Euclidean dimensions. Remarkably, the most vital and significance properties of 
fractals are self-similar and non-integer dimensions.

Self-similarity falls into three categories: exact self-similarity, at which the fractal is identical at all scales such 
as the Sierpinski triangle and Koch  snowflake34. In quasi-self-similarity, the fractal appears approximately identi-
cal at different scales. It contains small copies of the entire fractal in distorted forms; for example, the Mandelbrot 
set’s satellites approximate the whole set, but not exact copies. In statistical self-similarity, the structure repeats 
stochastically as the fractal has numerical or statistical measures, which are preserved across scales, For instance, 
the brain cells like microglia and  astrocytes34.

Accordingly, fractals fall into two categories: mono-fractal and multifractal concerning non-integer dimen-
sions. This fractal dimension plays an important role to quantify how the fractal structure fills the space under 
consideration. In other words, fractal dimension (FD) is an index that describes the fractal properties e.g. this 
index measures scale-invariant details. In nature, one exponent (FD) is not sufficient to describe the complexity 
of different patterns, such as human physiology. Comparatively, multifractal geometry offers a spectrum of FDs, 
which can be deemed as a superposition of homogeneous exact self-similar fractals and is more appropriate for 
analyzing such complexity.

Therefore, the utilization of fractal geometry in neurosciences has been the outcome of a new trend of research 
focused on the analysis of the complexity of biological  systems35–41. The application of the fractal dimension (FD) 
in investigating the clinical-pathological spectrum of neurodegenerative diseases including  AD42. Smits et al.43 
extracted Higuchi’s fractal dimension (HFD) from resting-state eyes-closed electroencephalography (EEG) to 
show the sensitivity of HFD to brain activity changes in CN and AD. The FD changes in a cross-sectional cohort 
of patients with AD and front temporal dementia (FTD) were estimated, giving distinct that the cortical com-
plexity relates to cognitive domains  impairment44.  In45, the authors used fractal analysis in MRI images to study 
the changes in the brain due to AD. Both FD and lacunarity were measured for the detection and diagnosis of 
neurodegenerative diseases, including AD.  In46, they investigated the temporal-scale-specific fractal properties, 
and then compared the values of the temporal-scale-specific fractal dimension between CN and AD patient. 
Peng Li et al.47 showed that fractal regulation (FR) could predict AD as they assessed FR in motor activity, which 
was degraded in dementia.

Multifractal dimensions were used for detecting AD in the mild stage based on SVM for individual and 
multiple kernel learning (MKL) for combined  features48. The maximum classification accuracy reached 76%. 
Another  research49 used multifractal features for differentiating the Early Mild Cognitive Impairment (EMCI) 
from other Alzheimer’s disease stages. The classification is based on demonstrating the variation of singularity 
spectrum function f (α). The classification accuracy reached 97% using the SVM classifier. Several researchers 
used multifractal in medical image  analysis50–52.

Therefore, the main motive of this research is to propose a novel computational method to automatically 
classify various stages of Alzheimer’s Disease based on the utilization of multifractal geometry analysis. The 
methodology is based on extracting the multifractal features that are related to changes in the brain structure 
due to atrophy. The classification system uses a simple K-Nearest Neighbors technique (KNN) for detecting the 
early four stages of AD (no cognitive decline, very mild cognitive decline, mild cognitive decline, or moderate 
cognitive decline). To verify the effectiveness of the proposed technique, two different datasets have been used, 
as well as, a comparative study with the recent techniques has been included. The results show that the proposed 
methodology has improved the performance measures.
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The research contributions. The summary of the previous discussion can be written in the following 
points:

1. The classification techniques such as CNN, DNN, and ANN require a large number of images as training, 
validation, and testing datasets. As well as, large time-consuming for training and testing.

2. The traditional or modified classifiers as SVM, KNN, weighted KNN, … etc. Some of these methodologies 
achieved moderate performance measures, others were based on the features that were already extracted in 
a parameter-data file by the owner of the dataset, and some detect one to three stages of AD.

3. The multifractal geometry can be used in describing the morphological changes in the brain image accord-
ing to the selected parameters, which is the state of the art of the researchers’ methodologies. Unfortunately, 
the multifractal analysis can’t be used alone as a discriminant tool because it is a describing or analysis tool. 
Therefore, some methodologies in the detecting of some diseases are based on comparing the different stages 
of the disease together for the ease of demonstrating them, rather than determining the identity of the stage 
directly without resorting to comparisons with other stages.

4. Choosing the appropriate multifractal parameters will remain the state-of-the-art methodology, which may 
affect the system’s accuracy.

5. To our knowledge, there is no sufficient research on analyzing medical images using multifractal geometry 
integrated with machine learning techniques.

Therefore, the contribution of this research can be summarized as:

1. Use multifractal geometry as an analysis tool to extract the most features related to the changes in the brain 
structure for the AD classification into the early four stages. As Multifractals enable feature reduction com-
pared with alternate extracting features algorithms.

2. The methodology can discriminant the raw image into the specific stage directly without comparing it with 
other stages.

3. Two different datasets have been used in order to ensure the effectiveness of the proposed methodology.
4. The proposed methodology has achieved 99.4% accuracy and 100% sensitivity.

Materials
The working Alzheimer’s dataset images were collected from two different sources. The first source is Kaggle 
international data science  community53. The total working dataset images were 560 MRI images, 460 subject 
images for constructing the classification technique, and 100 images for testing. The 460 subject images were clas-
sified into 140 subject images for each no cognitive decline, very mild cognitive decline, mild cognitive decline, 
and moderate cognitive decline. The second source is the ADNI  database54. The ADNI database contains a T1 
weighted MRI image with 1.5 T. The total used images were 750 MRI images comprising 200 CN, 200 MCI, 
200 AD, and 150 for testing.

In this research, image preprocessing is the first stop of the classification process. The images have been 
processed for resolution and contrast enhancement, which enables the detection of the changes in the area of 
cerebrospinal fluid (CFS) in the brain as shown in Fig. 2. Due to the atrophy occurring in the patient brain, the 
CFS area increases with the progress of the disease. Figure 2 shows different images according to the used dataset. 
All images, despite the difference in the dataset, have a general feature, which is a shrinkage of the brain with an 
increase in the CFS area according to the disease stage.

Methods
Multifractal analysis. In fractal geometry, the occupation of the area is very wide structures in a small vol-
ume, as the brain geometry, provides a high degree of interconnectivity in a very small volume. The multifractal 
analysis identifies patterns characterized better by a spectrum of FDs than a single FD. In this case, researchers 
applying warping filters to the image are used to illustrate features that are unnoticeable. These warp filters are 
a set of exponents denoted by the symbol (q). For each q, one can determine the generalized dimension (Dq), 
as in Fig. 3. Also, it can easily see that the curve becomes generally steeper slopes around q = 0 for multifractal 
structures.

Generalized dimension. The generalized dimension  Dq can be defined as:

with I(q,r) is the partition function given by:

Insert (2) into (1), yields:
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where, r denotes the scale of measurement, q is the order of moment, N(r) the number of fractal copies based 
on the scale r, and Pi(r) is the growth probability function of the ith fractal unit. From the general dimension 
definition, one can derive three fractal dimension concepts:

a. Box counting dimension  (DB)
b. Information dimension  (DI)
c. Correlation dimension  (DC)

These dimensions represent three basic parameters of fractal spectrums. Let us start with:

1) Box-counting dimension:

Figure 2.  The differences in the area of CSF in (a) the kaggle dataset the images from left to write as no 
dementia, very mild dementia, mild dementia and moderate dementia (b) the ADNI datasets the images from 
left to right as CN, MCI and AD.

Figure 3.  The multifractal generalized dimension.
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The box-counting method is based on covering the object with a small cell of definite size. At q = 0,  Do describe 
the box-counting dimension  DB, which is known also as the capacity dimension. In Eq. (3), when we use a grid 
of boxes to cover a given space, the box-counting dimension  D0 can be written in the following formula:

when, N(r) is the number of nonempty boxes with length r that cover the space and include at least some part 
of the attractor (not necessarily the total number of points).

2) Information dimension:

At q = 1,  D1 is known as the information dimension that characterizes the rate of information loss by the time 
or the rate of information gain by sequential measurements. D1 in essential to a quantity known as the Shannon 
entropy. Shannon entropy is the measure of the average information when the value of the random variable is 
unknown. It is defined as:

then, apply the Taylor expansion to Eq. (2), one finds:

So, Eq. (3) becomes:

3) Correlation dimension:

At q = 2, D2 is the correlation dimension, which characterizes the correlation between pairs of points on a 
reconstructed attractor. From Eq. (3), the correlation dimension D2 can be described as:

It worth mentioning that, If D0 = D1 = D2, the structure is termed as mono-fractal or fractal. However, in the 
case of Do > D1 > D2, the structure then is termed as multifractals.

Singularity spectrum. Singularity spectrum f (α) is another description of the multifractal spectrum, which 
involves analyzing fractal measures into combination sets, each of which is characterized by its singularity expo-
nent α and its fractal spectrum f (α). Indeed, singularity spectrum f (α) relates to the generalized dimensions Dq, 
which can be written as:

where, τ (q) denotes the mass exponent of multifractal structure. By employing Legendre transformation, τ 
(q) and Dq can be converted into a pair of local parameters of multifractals:

with f (α) denotes the fractal dimension of the fractal units of certain sizes, and α (q) is assumed as the corre-
sponding singularity exponent. The spectrum curve can be shown in Fig. 4. Concerning any particular spectrum 
curve, the right of its maximum corresponds to q < 0 and the left to q > 0. Remarkably, compared this curve to 
mono and non-fractals, multifractal are characterized by broader f (α) curve.

The K‑Nearest Neighbor algorithm. The KNN algorithm is one of the widely used machine learn-
ing based on the supervised learning technique. It can be used to solve both classification and regression 
 problems55–57. The most usage is in the classification technique. It can classify the input datasets into multiple 
categories. The main idea is based on storing the available datasets, then classifying the new data according to 
the nearest or similar stored dataset this can be summarized in Fig. 5.

In the first step, the datasets were located in the plane according to the number of features as shown in Fig. the 
data has two features × 1 and × 2. Then according to the new data point, all distances  (d1,  d2,  d3, …,  dn where n is 
the number of the raining data samples) were calculated from the data point to all training data points. Finally, 

(4)D0 = lim
r→0

lnN(r)

ln (1/r)

(5)H(r) = −

∑N(r)

i=1
Pi(r) lnPi(r)

(6)ln I
(

q, r
)

=
(

q− 1
)

ln
∑N(r)

i=1
Pi(r) ln Pi(r)

(7)D1 = lim
r→0

ln
∑N(r)

i=1 Pi(r) ln Pi(r)

ln(1/r)

(8)D2 = lim
r→0

ln
∑N(r)

i=1 Pi(r)
2

lnr

(9)τ
(

q
)

=
(

1− q
)

Dq

(10)α
(

q
)

=
dτ

(

q
)

dq
= Dq +

(

q− 1
)dDq

dq

(11)f (α) = qα
(

q
)

− τ
(

q
)

= qα
(

q
)

−
(

q− 1
)

Dq



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22381  | https://doi.org/10.1038/s41598-022-26958-6

www.nature.com/scientificreports/

for an effective value "K", select the minimum k data point distances and the classification was done according 
to the nearest neighbor as shown in Fig. 5.

Therefore, the KNN algorithm has the advantages of simple implementation, robustness especially in noisy 
training data, no need for training procedure, and effectiveness in large training data sets. Although, the deter-
mination of the selective K value sometimes is complex. As well as, the high computation cost due to the distance 
calculation between the data points and all other training data samples.

In this study, Alzheimer’s disease stages can be classified using the KNN algorithm. The objective of the 
proposed system is to detect and classify the AD stages into four stages non- dementia or normal, very mild-
dementia, mild-dementia, and moderate-dementia in case of using the Kaggle dataset or three stages CN, MCI, 
and AD in case of using ADNI dataset. The classification technique is based on extracting the most ten changeable 
features of the brain geometry using multifractal analysis. These features can be listed as:

 1. D1 is the information dimension.
 2. D2 is the correlation dimension.
 3. The local dimension at the maximum singularity spectrum curve (α0).
 4. The minimum local dimension (αmin).
 5. The start value of the singularity spectrum (f(αmin))
 6. The maximum local dimension (αmax).
 7. The end value of the singularity spectrum (f(αmax))
 8. The width of the singularity spectrum (W)
 9. The symmetrical shift of the singularity spectrum curve.
 10. The apparent area of the brain section in image (A).

These features are shown in Fig. 6

Case study. From the previous discussion, Alzheimer’s disease causes many cellular and molecular changes 
in the brain. These changes can be summarized as: (1) disturbance of the cell functions due to the abnormal 
levels of the beta-amyloid protein that clumps to form plaques that collect between neurons. (2) The abnormal 
accumulations of tau protein that collect inside neurons cause neurofibrillary tangles that block the neuron’s 
transport system. (3) Chronic inflammation caused by microglia that fail to clear away beta-amyloid plaques, 
waste, and debris in the brain. (4) Vascular problems due to the deposition of beta-amyloid in brain arteries. (5) 
Losing the neural connections.

Figure 4.  The f (α) spectrum curve.

Figure 5.  The KNN algorithm.
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All these changes lead to: (1) a change in the brain structure, (2) loss of neurons, and (3) the texture infor-
mation, volume, and shape of the white matter, gray matter, and hippocampus. Therefore, one obtained a new 
brain structure that can be described using multifractal geometry. Hence, multifractal geometry can describe 
gaps and their distribution, the brain volume or area, matter distribution, texture information, and the brain 
structure’s heterogeneity.

Let us illustrate the previous concepts with a brain image example. Figure 7(a) shows a sample image of 
Alzheimer’s disease at a moderate dementia stage. The source image may have a moderate or little resolution 
according to the imaging process or the available data, therefore, the first step is to enhance the resolution and 
the contrast of the brain image this can be achieved by a custom-written MATLAB program. The multifractal 
analysis results can be obtained as shown in Fig. 7b,c. Figure 7(b) shows the generalized dimension of the brain 
sample image. The information dimension D1 = 1.73 means the brain image has some morphological changes due 
to more deposits of a beta-amyloid causing amyloid plaques, as well as the (T-tau) accumulation that lead to the 
brain shrinking. The correlation dimension  iD2 reflects the correlation between pair of pixels in the scanning box, 
at D2 = 1.715 for the given sample image, which means the pixels are not contiguous, more gaps appeared in the 
image due to cell loss and more shrinking in frontal lobes, temporal-parietal, and hippocampus. The singularity 
spectrum at Fig. 7c has the following features: (1) Broader spectrum, Fig. 7c has wide range of variability start-
ing from αmin = 1.673 to αmax = 2.66 with a width = 0.987. That confirms the presence of many gaps and atrophy 
of multiple dimensions and sizes distributed on the lobes of the brain. (2) Asymmetric curve, as the singular 
spectrum is characterized by an asymmetric curve, hence the center should be at α0 (in this case study α0 = 1.78) 
which is close to αmin making a shift by 0.386 to the symmetrical axe. That related to the heterogeneity zones 
that appeared in the brain structure. (3) High variability between starting value of the singularity spectrum 
f(αmin) = 1.36 and the ending point f(αmax) = 0.452, which means the brain structure image has heterogeneous 
between its lobes.

According to the previous discussion, the flow chart of the proposed methodology is illustrated in Fig. 8. The 
methodology can be summarized as.

1. The raw images are used from two image sources as Kaggle dataset and the ADNI dataset. A custom-written 
program using MATLAB software for preprocessing the raw images as enhancing the contrast and resolution 
of the input images.

2. Binarizing the resulting images means converting the images after the preprocessing step into black and 
white images according to an empirically pre-defined threshold.

3. Using multifractal analysis to extract the ten changeable features related to the brain structure changes.
4. Apply the KNN to the resulting features to classify the raw image into non-dementia or normal, very mild-

dementia, mild-dementia, and moderate-dementia in the case of the Kaggle dataset, or CN, MCI, and AD 
in the case of ADNI dataset

Results and discussion
The demographic characteristics. In this research, 400  MRI brain images have been analyzed. The 
images are categorized as 100 images for normal, 100 images for very mild, 100 images for mild, and 100 images 
for moderate patients as obtained from the available online Kaggle challenge. As well as, 150 images for CN, 150 
for MCI and 150 for AD from the ADNI dataset. All subjects have aged over 65 years. The demographic charac-
teristics are shown in Table 1.

Statistics are used to analyze data from Table 1 to determine the significance of the demographic character-
istics. The data are considered significant for this study if the corresponding P value is less than 0.05 (P < 0.05). 

Figure 6.  The extracted features.
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The female/male subjects are 268/292 with P = 0.1751 (P > 0.05). Therefore, the demographic characteristics are 
statistically non-significant.

Image analysis using multifractal geometry. Image samples of a single brain slice for different stages 
of the used datasets are shown in Fig. 9 and Fig. 10. Figure 9 illustrates the f(α) spectrum for the different stages 
of AD. According to the progression of the disease with more deposits of beta-amyloid and tau proteins, more 

Figure 7.  The brain sample image (a) the source image (b) the generalized dimension curve (c) the singularity 
spectrum.

Figure 8.  The workflow of the proposed methodology.
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amyloid plaques were found causing brain trophy. The more changes in the structure of the brain and its shrink-
age, the more the multifractal parameters change, and this is shown by shifting the spectrum to the right and 
increasing its variability and width. Increasing the difference between the starting and ending values of the 
singularity spectrum f(αmin) and f(αmax) respectively. Similar behavior can be shown in Fig. 10 with the ADNI 
dataset. In the CN stage, the singular spectrum tends to be a symmetric and narrow curve for no abnormalities 
found in the brain structure. While in MCI and AD stages, the spectra lose their symmetric shapes, as well as 
they, shift to the right with increasing change in the multifractal parameters.

In order to ensure the ability of the multifractal geometry in describing the complex structures for example 
the changes in the brain structure, a set of comparative spectra representing the different AD stages can be shown 
in Figs. 11 and 12. As shown in Fig. 11, the singularity spectrum has changed according to the AD stages. The 
maximum local dimension (αmax) has reached its minimum value in the normal cases with 2.25, while the 
maximum value has been achieved in moderate cases with 2.8. As the AD disease progresses, the spectrum is 
broader and shifts to right.

In the case of the ADNI dataset as shown in Fig. 12, there is a clear contrast between the different stages of 
Alzheimer’s disease, which confirms that, the significance of the multifractal parameters that were chosen to 
describe the spectrum or in other words the brain structure changes.

The statistical significance of the extracted features using multifractal analysis can be represented in Table 2 
using the ANOVA (Analysis of Variances) test. Table 2 shows the average and standard deviation of the extracted 
features for each AD stage according to the working dataset. According to these results, since the P value for 
all parameters (P < 0.05), then all the suggested features have a high significance in the detection of AD. These 
results in Table 2 can be more clearer as shown in Fig. 13 for the Kaggle dataset as an example. More ANOVA 
assumptions tests can be listed in Table 3 for the used datasets. Table 3 shows the normality and homogeneity of 
variance tests for the selected features of the used datasets. The normality test can be achieved by measuring the 
skewness and kurtosis. The skewness measures the asymmetry of the probability distribution, the distribution 
could be consistent with a normal distribution if the skewness is between − 2 and + 2. The kurtosis measures 
whether the samples are around the mean of the distribution or not, the distribution could be consistent with a 
normal distribution if the kurtosis is between − 2 and + 2. As shown in Table 3, the used features have a normal 
distribution in both Kaggle and ADNI datasets. The homogeneity of variances can be measured by the P value 
and F-test. As shown in Table 3, P > 0.05 and F value < Fcritical, therefore the null hypothesis can not be rejected, 
i.e., the features group has homogeneity in variances.

Figure 13 shows the statistical representation of the extracted features for the AD stages. As the brain atrophy 
increased, the generalized dimensions D1 and D2 as in Fig. 13a,b have a significant change due to more gaps 
and a change in the structure of the brain. In Fig. 13b,c, as the deposition of beta-amyloid and total tau (T-tau) 
increased, the AD singularity spectrum curves shift to right with increasing in the maximum local dimension 
(αmax) value, with decreasing the singularity spectrum end f(αmax) due to the dementia stage . In Fig. 13e,f, the 
minimum local dimension (αmin) and f(αmin) have reached their maximum values in normal stage with decreas-
ing until reaching the moderate stage. As in Fig. 13g, the local dimension (α0) has reached its minimum value 
in normal stage with tendency to increase. So, there are a significant changes in the spectrum width and the 
symmetrical shape according to the AD stages, this is illustrated in Fig. 13h,i respectively. As the brain regions 
begin to shrink due to the neurons die and connections breakdown, the brain apparent area will be decreased 
as shown in Fig. 13j.

In order to automate the classification of the Alzheimer’s stages, a classification system based on a simple 
KNN can be used. The use of the simple classifier model is due to the presence of a noticeable discrepancy in the 
data extracted from the images by using multifractal geometry, which facilitates the classification process for any 
classification model. In addition, there is no longer the need to have large data or use many extracted features 
to express a structural change in the brain.

For measuring the proposed classification system quality, the first classification system uses the Kaggle data-
set, 71% of the dataset is used for training, while 29% of the dataset is used for testing. As mentioned before, for 
160 MRI images in each stage, 100 images for training and 40 images for testing. While the second classification 
system uses the ADNI dataset, with 80% of the data for training and 20% for testing. Table 4 to Table 7 summa-
rize the resulting performances, the reported metrics are the average of 7 runs in order to get an accurate result.

Table 1.  The demographic characteristics for Alzheimer’s disease subjects.

Item

Kaggle dataset ADNI dataset

No dementia
Very mild 
dementia Mild dementia

Moderate 
dementia

CN (Cognitively 
normal)

MCI (Mild 
cognitive 
impairment) AD

Training data 100 100 100 100 200 200 200

Testing data 40 40 40 40 50 50 50

Total 140 140 140 140 250 250 250

Female/Male 65/75 69/71 68/72 66/74 125/125 125/125 125/125

p value 0.1751 1.000

560 MRI images 750 MRI images
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Figure 9.  The Kaggle dataset sample images.
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The Receiver Operator Characteristic (ROC) curve and the Area Under Curve (AUC) can be calculated from 
Fig. 14, hence the AUC is the ability for distinguishing between the AD stages. In Fig. 14a, in using the Kaggle 
dataset class 1 (No-dementia) has AUC with 0.97, class 2 (very mild dementia) has 0.94 AUC, class 3 (mild 
dementia) has 0.80 AUC, and class 4 (moderate dementia) has 0.86 AUC. Figure 14 (b) for the ADNI dataset, 
class1 (Normal) has AUC with 0.91, class 2 (MCI) has 0. 92 AUC, and class 3 (AD) has 0.91 AUC.

From Tables 4, 5, 6, 7, the proposed classification system has achieved a classification accuracy of 99.4%, 
sensitivity of 100%, 98.89% as an average specificity, and 97.6% as a minimum precision in the case of the first 
dataset (Kaggle). While in the case of the ADNI dataset, the proposed system has achieved 99.3% accuracy, 100% 
sensitivity, and 98.65% average specificity. This technique can detect the early stages of AD, especially very mild 
and mild stages, it can be extended to classify other medical images.

Comparative analysis. To ensure the effectiveness of the proposed classification system, a comparative 
analysis with other classification techniques has been introduced in Table 8. As illustrated in Table 8, several 
AD stages were classified according to the classification techniques. The research that were compared with our 
proposed methodology can be divided into three categories:

The first category contains the researches that used different traditional or modified classification techniques 
as  in58–66.  In59,60, they used CNN as a classifier with an accuracy of 99.3% and 94.54% respectively, taking into 

(14)Precision(%) =
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TP + FP
× 100
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Figure 10.  ADNI dataset sample images.
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Figure 11.  The singularity spectra for the AD stages (16 sample images-Kaggle).

Figure 12.  The singularity spectra for the AD stages (3 sample images-ADNI).

Table 2.  The statistical significance of the extracted features.

Image

Kaggle dataset ADNI dataset P value

No 
dementia

Very mild 
dementia

Mild 
dementia

Moderate 
dementia CN MCI AD Kaggle ADNI

D1 1.69 ± 0.016 1.62 ± 0.021 1.58 ± 0.032 1.453 ± 0.018 1.82 ± 0.012 1.76 ± 0.021 1.65 ± 0.03 1e-4 2.3e-4

D2 1.596 ± 0.025 1.533 ± 0.012 1.463 ± 0.032 1.402 ± 0.028 1.74 ± 0.025 1.65 ± 0.011 1.54 ± 0.024 1e-4 6.2e-4

αmax 2.318 ± 0.055 2.613 ± 0.027 2.635 ± 0.063 2.776 ± 0.052 2.42 ± 0.032 2.62 ± 0.044 2.83 ± 0.036 7.2e-5 3e-4

f(αmax) 0.294 ± 0.078 0.19697 ± 0.018 0.224 ± 0.042 0.122 ± 0.014 0.634 ± 0.011 0.435 ± 0.063 0.235 ± 0.034 1e-4 5.2e-4

αmin 1.65 ± 0.028 1.64 ± 0.03 1.634 ± 0.034 1.601 ± 0.037 1.53 ± 0.022 1.568 ± 0.042 1.635 ± 0.027 3.2e-5 1e-4

f(αmin) 1.542 ± 0.072 1.481 ± 0.027 1.383 ± 0.097 1.37 ± 0.082 1.21 ± 0.021 1.335 ± 0.066 1.46 ± 0.036 4e-6 1e-4

Spectrum 
width 0.67 ± 0.062 0.796 ± 0.042 0.974 ± 0.079 1.175 ± 0.069 0.935 ± 0.071 1.124 ± 0.068 1.436 ± 0.056 5.2e-5 1e-4

α0 1.69 ± 0.016 1.702 ± 0.022 1.724 ± 0.019 1.75 ± 0.049 1.623 ± 0.032 1.733 ± 0.023 1.832 ± 0.019 2.3e-4 1e-4

Symmetrical 
shift 0.289 ± 0.027 0.341 ± 0.032 0.401 ± 0.035 0.442 ± 0.042 0.211 ± 0.041 0.334 ± 0.025 0.452 ± 0.015 1e-4 3.3e-4

A(mm2) 17.71 ± 0.158 15.46 ± 0.151 13.47 ± 0.148 11.31 ± 0.207 18.63 ± 0.132 16.32 ± 0.169 14.58 ± 0.201 3.6e-6 6.3e-4
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consideration that the methodology  in59 is used for binary classification not for multi-stage classification. Several 
classification techniques were embedded  in64 as EWASplus-based RF, LR, SVM, and decision tree with 96.2% 
accuracy and 85.8% precision. While  in65, they used KNN, SVM, Linear Discriminant (LD), NB, and CNN with 
93% accuracy, 98% sensitivity, and 95% specificity. The eXtreme Gradient Boosting (XGBoost) and RF techniques 
were  used58 with 71.3% accuracy.  In61–63, the authors used multi-classification techniques with accuracy 89%, 
90.2% max accuracy and 89% respectively. Using VGG network architecture  in66, the accuracy reached 99.2% 
with 99.5% as maximum sensitivity.

Figure 13.  The statistical representation of the extracted features for the AD stages.
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Table 3.  ANOVA assumptions for the extracted features. where, Fcritical = 1.394 in case of Kaggle dataset and 
Fcritical = 0.8 in case of ADNI dataset according to Fcritical tables.

Image

Kaggle dataset ADNI dataset

Normality
Homogeneity of 
variances Normality

Homogeneity of 
variances

Skewness Kurtosis P value F-test (1.394) Skewness Kurtosis P value F-test (0.8)

D1 0.352 − 0.689 0.639 1.35 0.251 − 0.425 0.526 0.623

D2 0.638 − 0.962 0.82 0.62 − 0.325 0.468 0.63 0.26

αmax 0.147 − 1.19 0.75 1.098 0.542 − 1.02 0.254 0.531

f(αmax) − 0.626 0.44 0.084 1.236 − 0.371 0.36 0.753 0.206

αmin − 0.26 − 0.42 0.957 0.105 1.32 − 0.655 0.238 0.124

f(αmin) 0.212 − 0.658 0.324 1.21 0.623 − 0.745 0.759 0.546

Spectrum width 0.243 − 1.11 0.09 1.268 0.124 − 0.368 0.332 0.314

α0 − 0.618 1.37 0.344 1.234 − 0.854 0.214 0.572 0.726

Symmetrical shift 0.682 1.77 0.379 1.04 − 0.773 0.925 0.222 0.635

A(mm2) 0.034 − 1.29 0.34 1.0304 0.525 − 0.105 0.348 0.542

Table 4.  The classification data for Kaggle dataset.

Item Normal Very mild Mild Moderate Total

Tested images 40 40 40 40 160

Correctly classified 40 40 39 40 159

Incorrectly classified 0 0 1 0 1

Classification accuracy 100% 100% 97.5% 100% 99.4%

Figure 14.  The ROC curves for the four AD classes (a) Kaggle dataset (b) ADNI dataset.

Table 5.  The classification data for ADNI dataset.

Item CN MCI AD Total

Tested Images 50 50 50 150

Correctly classified 50 50 49 149

Incorrectly classified 0 0 1 1

Classification accuracy 100% 100% 98% 99.3%
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In the second category, the researches used the same working Kaggle dataset as  in67–69. The authors  in68 have 
achieved 99.41% accuracy, an increase of about 0.11% over the accuracy of the proposed system, while the pro-
posed system has achieved increases in sensitivity by about 15%.

The final category contains the researches that used multifractal geometry as an analysis tool  in48,49. As a 
result, the proposed classification methodology has achieved higher performance measures in the classification 
of AD stages.

Conclusion
As is well-known, the great challenge in biomedical physics and engineering is the non-invasive assessment of 
the physiological changes to happen inside the human body. Concerning AD, early detection can survive the 
patients’ lives from deterioration of the disease. Therefore, to improve the classification of AD, the two major 

Table 6.  performance measures. where, TP true positive, TN true negative, FN false negative, FP false positive.

Confusion matrix Performance parameters (%)

Actual status TP FN FP TN Sensitivity Specificity Precision

Normal (40) vs. Pathological (120) 40 0 1 119 100 99.17 97.6

V.Mild (40) vs. Mild (40) 40 0 1 39 100 97.5 97.6

V.Mild (40) vs. Moderate (40) 40 0 0 40 100 100 100

Table 8.  Classification techniques evaluation. where, EMCI early mild cognitive impairment, LMCI late mild 
cognitive impairment, NB naïve bayes, LR logistic regression, RF random forest, MKL multiple kernel learning.

Reference Method AD stages Accuracy (%) Sensitivity (%) Precision (%) Specificity (%) datasets

L. Bloch et. al. 58
eXtreme Gradient 
Boosting (XGBoost) 
and RF

CN and MCI 71.03 – – – 1700 (ADNI) and 612 
(AIBL) subjects

F. Al-Khuzaie et. al. 59 CNN (Alzheimer 
network) CN and AD 99.3 – 98.92 – 15,200 MRI slices

Hamed et. Al 60 CNN CN, EMCI and LMCI 94.54 91.7 – 98.19 The MRIs of 3600 
individuals

M. Rohini et. al 61
Multivariate linear 
regression, LR, and 
SVM

CN, AD, and MCI 89 – – –
1000 MRI baseline 
assessment data from 
(ADNI)

S. Salunkhe et. al 62

Gray level Co-occur-
rence matrix (GLCM) 
and 20 features texture 
classification

CN and AD
Ensemble (90.2%), 
Decision Trees (88.5%), 
and (SVM) (87.2%)

– – – MRI ADNI database

Ranjbar, S et. al 63
Diagonal quadratic 
discriminant analysis 
and NB

CN, AD and MCI 89 82 – 87 173 unique patients in 
ADNI database

Y. Huang1,11, et al.64
EWASplus based RF, 
LR, SVM and decision 
tree

CN, and AD 96.2 – 85.8 – 717 samples from ROS/
MAP cohort

N. J. Herzog et. al 65
KNN, SVM, Linear 
Discriminant (LD), NB 
and CNN

CN, EMCI and AD 93 98 – 95 600 MRI of ADNI 
database

N.M. Khan et. Al. 66 VGG architecture CN, AD and MCI 99.2 99.5 max – 99.4 2560 MRI ADNI 
dataset

R. Liu et. al 67

local structure 
preservation sparse 
representation classifier 
(LMLS-SRC)

No dementia , V.Mild, 
Mild, Moderate 85.54 86.19 86.15 84.51 1000 MRI sample of 

Kaggle datasets

M. Orouskhani et. al 68 deep triplet network No dementia , V.Mild, 
Mild, Moderate 99.41 85.2 – – 382 MRI sample of 

Kaggle datasets

S. Liang et. al 69 a WSL-based deep 
learning

No dementia , V.Mild, 
Mild, Moderate 98.7 98 99 99.5 6400 MRI sample of 

Kaggle datasets

H. Ni et. al 48

Multifractal applica-
tions to resting state 
functional MRI (rs- 
MRI) with SVM MKL

CN, and AD 76 90.91 – 79.41
25 AD patients and 38 
control from ADNI 
database

P. Rohinia et. al 49 Multifractal and SVM EMCI, MCI, LMCI, 
and AD 96.4 96 – 95.7 1055 MRI of ADNI 

database

The proposed Algo-
rithm

Multifractal and KNN CN, MCI and AD 99.3 100 98 98–99.3 750 MRI of ADNI 
database

Multifractal and KNN No dementia, V.Mild, 
Mild, Moderate 99.4 100 97.6–100 97.5–100 560 MRI sample of 

Kaggle datasets
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contributions in current work are focused on the automated multiclass diagnosis of dementia, in accordance 
with MRI of the human brain. Those contributions are described as follows:

– As the size of the brain gets shrinks with AD, multifractals analysis has been applied to extract the most vital 
and essential eight features related to the brain changes.

– The KNN algorithm has been implemented to automate the classification process to assign the patient to one 
of four categories: no cognitive decline, very mild cognitive decline, mild cognitive decline, and moderate 
cognitive decline.

Remarkably, this new promising approach is very simple, robust and consists of four main steps, namely, 
image acquisition, preprocessing, feature extraction, and classification. Multifractals enable feature reduction 
compared with alternate extracting features algorithms. The classification methodology has achieved 99.4% 
of accuracy for the Kaggle dataset and 99.3% for the ADNI dataset. Moreover, the sensitivity, precision, and 
specificity have reached up to 100%. The proposed technique has been tested and compared with different 
approaches concerning the early detection of AD disease. It is easy to note the strength of the proposed model, 
which produces accurate, fast, and reliable, results as well as the best candidate for applicable. Concluding, it is 
indeed sensible and of great significance to integrate multifractals analysis and machine learning methods in 
biomedical physics and engineering research.

Data availability
The datasets were collected from Kaggle international data science community, and ADNI datasets. The datasets 
are available in: https:// www. kaggle. com/ datas ets/ touri st55/ alzhe imers- datas et-4- class- of- images, https:// adni. 
loni. usc. edu/ data- sampl es/ access- data/.
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