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Two phase feature‑ranking for new 
soil dataset for Coxiella burnetii 
persistence and classification using 
machine learning models
Fareed Ahmad 1,2*, Muhammad Usman Ghani Khan 1, Ahsen Tahir 4, Muhammad Yasin Tipu 5, 
Masood Rabbani 3 & Muhammad Zubair Shabbir 2

Coxiella burnetii (Cb) is a hardy, stealth bacterial pathogen lethal for humans and animals. Its 
tremendous resistance to the environment, ease of propagation, and incredibly low infectious dosage 
make it an attractive organism for biowarfare. Current research on the classification of Coxiella and 
features influencing its presence in the soil is generally confined to statistical techniques. Machine 
learning other than traditional approaches can help us better predict epidemiological modeling for 
this soil‑based pathogen of public significance. We developed a two‑phase feature‑ranking technique 
for the pathogen on a new soil feature dataset. The feature ranking applies methods such as ReliefF 
(RLF), OneR (ONR), and correlation (CR) for the first phase and a combination of techniques utilizing 
weighted scores to determine the final soil attribute ranks in the second phase. Different classification 
methods such as Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), Logistic 
Regression (LR), and Multi‑Layer Perceptron (MLP) have been utilized for the classification of soil 
attribute dataset for Coxiella positive and negative soils. The feature‑ranking methods established 
that potassium, chromium, cadmium, nitrogen, organic matter, and soluble salts are the most 
significant attributes. At the same time, manganese, clay, phosphorous, copper, and lead are the 
least contributing soil features for the prevalence of the bacteria. However, potassium is the most 
influential feature, and manganese is the least significant soil feature. The attribute ranking using 
RLF generates the most promising results among the ranking methods by generating an accuracy of 
80.85% for MLP, 79.79% for LR, and 79.8% for LDA. Overall, SVM and MLP are the best‑performing 
classifiers, where SVM yields an accuracy of 82.98% and 81.91% for attribute ranking by CR and 
RLF; and MLP generates an accuracy of 76.60% for ONR. Thus, machine models can help us better 
understand the environment, assisting in the prevalence of bacteria and decreasing the chances 
of false classification. Subsequently, this can assist in controlling epidemics and alleviating the 
devastating effect on the socio‑economics of society.

Abbreviations
Ca  Calcium
Cb  Coxiella burnetii
Cd  Cadmium
Co  Cobalt
Cr  Chromium
CR  Correlation
Cu  Copper
cy  Clay
Fe  Iron

OPEN

1Department of Computer Science, University of Engineering and Technology, Lahore, 
Pakistan. 2Quality Operations Laboratory, Institute of Microbiology, University of Veterinary and Animal 
Sciences, Lahore, Pakistan. 3Institute of Microbiology, University of Veterinary and Animal Sciences, 
Lahore, Pakistan. 4Department of Electrical Engineering, University of Engineering and Technology, Lahore, 
Pakistan. 5Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan. *email: 
fareed.ahmad@uvas.edu.pk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-26956-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |           (2023) 13:29  | https://doi.org/10.1038/s41598-022-26956-8

www.nature.com/scientificreports/

Ft  Francisella tularensis
K  Potassium
LDA  Linear discriminant analysis
LR  Logistic regression
Mg  Magnesium
MLP  Multi-layer perceptron
Mn  Manganese
MO  Moisture
N  Nitrogen
Na  Sodium
Ni  Nickel
OM  Organic matter
ONR  OneR
P  Phosphorus
Pb  Lead
RLF  ReliefF
Si  Silt
SS  Soluble salt
SVM  Support vector machine

Zoonotic infections are not simply medical curiosities but critical factors determining a community’s  health1. 
These diseases can quickly spread with or without mechanical or biological vectors from animals to  humans2,3. 
Over the past few decades, the outbreaks of zoonotic infections have increased, with enormous global social and 
economic  effects4. For instance, the annual monetary loss due to food-borne infections in the US and Canada 
exceeds billions of  dollars1,5. Various researchers estimate that 61% of all recognized contagious diseases in 
humans originate from animals and another 75% of re-emerging infections also spread from  animals6. Coxiella 
burnetii (Cb) causes Q-fever, which is a primary global zoonotic disease. The “Q” originates from “query” fever, 
the name of the infection until its valid reason was found in the  1930s7,8. C. burnetii is a hardy, obligate intracel-
lular bacteria that induce global zoonosis. The bacterium is listed as a category B biological agent by CDC and 
registered as a notifiable infection by  OIE9. The Key reservoirs of the bacteria are domestic animals (primarily 
goats, sheep, cattle, etc.). However, previous studies of human Q-fever outbreaks have shown a relationship 
between the occurrence of the disease and small  ruminants10. The organism is shed from birthing areas of infected 
animals, contaminating the surroundings, which stays infectious for a long  time11,12. When the bacteria are in 
the atmosphere and not reproducing, they can survive in the dust, soil, and aerosol to form spore-like tiny cell 
variants, resistant to ultraviolet radiation and drying. Similarly, the bacteria can scatter over far-flung distances 
due to rains and blowing  winds13. This pathogen could be acquired by humans either through aerosolized 
atoms from generative discharges, tissues, and atmospheric debris or direct interaction with affected animals’ 
urine, milk, semen, and  feces14. Although affected animals and humans remain asymptomatic in several cases, 
reproductive disorders and undifferentiated febrile disease in animals have been  documented7. Since its first 
recognition in Australian slaughterhouses, Q-fever has been regarded widespread and has appeared and reap-
peared  worldwide15. This epidemic received global attention due to current outbreaks in European countries 
that affected humans and  animals16. However, many patients with Q-fever stay undiagnosed due to the scarcity 
of suitable diagnostic facilities in underdeveloped nations and tend to be mistaken for other diseases, such as 
abortions or fevers of unknown  origin9.

Developed nations have stringent benchmarks for managing biological materials and wastes, such as parasites, 
viruses, fungi, bacteria, secretions, or corpses of diseased  animals17, which either cause or present a future risk 
to the health of humans and animals. However, there is a dire need for measures to manage these waste materi-
als in third-world countries like Pakistan. The biological wastes of animals decay in the earth and propagate to 
far-flung areas due to rains, floods, blowing winds, etc. Detecting C. burnetii in the soil can help prevent Q-fever 
disease outbreaks. The approaches generally used for recognizing C. burnetii are  ELISA18,  PCR19, and mass 
spectroscopy (MS)20. Although these tests are expensive, we can reduce their operational cost by assessing only 
those specimens that are more likely to be positive for C. burnetii. This initial screening can be conducted by 
classifying soil specimens depending on their pH, moisture, type of soil, presence or absence of minerals, etc.

Conventionally, microbes are categorized by their purification, demonstration, and isolation of the presence 
of several microbial enzymes in them. However, DNA-based systems of recognition of microbes are recently 
gaining more popularity because of the speed and ease of implementing these tests. On the other hand, machine 
learning methodologies differ from conventional methods of microbial identification in that they use soil char-
acteristics that maximize a pathogen’s survival in the atmosphere and predict the expected result before resort-
ing to actual microbial isolation. First, we will give an overview of the environment suitable for the prevalence 
of various pathogens. Secondly, we will elaborate on various machine-learning approaches applied to similar 
problems in this domain.

Although the research data related to the suitable environment required for the persistence of these bacteria 
is limited, some researchers recommend that soil texture and heavy metals play a vital role in the persistence 
and survival of these pathogens. Some of these bacterial pathogens show great affinity towards salt and moisture 
in the environment.

Pathogens like Francisella tularensis, and C. burnetii have been isolated from soil, mud, and water contami-
nated by bodies of dead animals. These organisms may be capable of multiplication in these  environments8,21. 
The researches  reveal22–26 that physical and chemical factors like total soluble salt, organic matter, clay, moisture, 
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silt, macro and micro-nutrients like carbon, phosphorous, sodium, potassium, sulfate calcium, and magnesium 
play an essential part in the prevalence of various pathogens like C. burnetii, F. tularensis, Burkholderia mallei, 
etc. Results also suggest that the soil reseves as a reservoir for the prevalence and further dispersion of patho-
gens in the environment. Generally, soil pH is essential in shaping bacterial communities in soils. Previous 
studies demonstrate that low pH is vital for the metabolic activity of C. burnetii. Results also suggest that the 
soil is a reservoir for the prevalence and further dispersion of pathogens in the environment. Generally, soil pH 
is essential in shaping bacterial communities in soils. Previous studies demonstrate that low pH is vital for the 
metabolic activity of C. burnetii27. Some  works8 suggest that factors, such as soil moisture and vegetation, are 
relevant to the prevalence of C. burnetii. It is further  reported28 that hot and dry conditions mainly help wind-
borne dispersion of C. burnetii aerosols.

Though, there is only a little work presented for classifying pathogens in soil-related environments using 
machine-learning techniques, except for our previous works. In our initial  work29, we applied artificial neural 
networks to classify F. tularensis (Ft) using the soil attribute dataset. The method attained an accuracy of 82.61% 
with the help of 1 hidden layer with 10 neurons. The soil attribute dataset contains 147 instances for Ft nega-
tive and positive sites. Each instance contains 21 features and a class attribute. In our next  work30, we further 
improved the accuracy to 84.35%. We applied feature ranking to identify the features that are most related, e.g., 
clay, nitrogen, zinc, nickel, organic matter, soluble salts, silt, and those that are least related, e.g., potassium, 
phosphorous, iron, calcium, copper, chromium, sand towards the survival of the pathogen.

Table 1 gives an overview of various statistical and machine-learning approaches applied to assess the role of 
environmental features in the prevalence of different pathogens. The work focuses on feature ranking and clas-
sification utilizing various machine-learning techniques. The automatic classification of C. burnetii, along with 
identifying the most relevant features that help it prolong environmental survival, employing machine learning 
models can yield more reliable, accurate, and standardized results. Our work contribution can be summarized 
as shown below: 

1. We present a novel soil attribute dataset for Coxiella positive and negative sites containing 21 soil features.
2. To the best of our knowledge, it is the first time our research has applied machine learning models instead 

of contemporary statistical models for understanding the behavior of C. burnetii in the environment.
3. Our model performs a two-phase feature ranking. Initially, attributes are ranked based on feature-ranking 

methods, and then a combination of techniques is applied to calculate the weighted scores to determine the 
final soil attribute ranks.

4. The model also compares the performance of feature-ranking algorithms and machine learning classifiers.

Table 1.  A comparison of Statistical and Machine learning techniques applied to assess the contribution of 
environmental features for the prevalence of pathogens.

Approach Dataset Number of Features Statistical/ML techniques Detail of results

200724 Various types of Soil samples 4 attributes pH, C Moisture, particle-
size None Organic carbon may  favor the survival 

of C. burnetii in soil.

200931 Lake water samples 3 attributes C(glucose), N (NH4Cl) and 
P (Na3PO4)

Wilcoxon’s rank, sum test, Welch two-
sample, t-tests

High nutrient conditions were found to 
favor F. tularensis.

201132 Soil, weather, vegetation samples 5 attributes pit, clay, sand, Mg, soil 
moisture, temperature

Mean, min, max, logistic regression, 
Student’s t-test

Soil moisture and vegetation help in the 
transmission of C. burnetii.

201433 Three types of soil with mircobial 
diverstiy

6 attributes Soil moisture & texture, 
organic matter,Total S,N,C Variance, mean, linear regression Netural pH, C, N, S enhance the sur-

vival of E. coli and Salmonella

201534 16 types of soil microcosms
6 attributes Soil texture, pH, phosphate, 
Organic C, total N and Water-holding 
capacity

Variance analysis
Pentachlorophenol(PCP) result in a 
depressing effect on soil microbial activ-
ity. However B. nivea and S. brumptii 
tolerate and degrade PCP in soil.

201523 145 soil samples 21 attributes pH, sand, silt, clay, macro 
and micro nutrients Odd ratio(OR) and T-test

Different physicochemical features 
contribute towards the survival of F. 
tularensis,C. burnetii, B. anthracis

20169 94 soil samples 21 features sand,pH, silt, clay, macro 
and micro nutrients

Odd ratio(OR) and Logistic Regression 
(LR)

Organic matter, Na are positively related 
& calcium,potassium are negatively 
related to C. burnetii.

201726 22 soil samples 18 attributes pH, sand, silt, clay, micro 
and macro nutrients

Odd ratio(OR), Dunnett’s T3, Tukey-
Kramer

Na, moisture are positively related to 
B. malle.

201722 145 soil samples 21 features sand, pH, silt, clay, macro 
and micro nutrients T-test

Different chemical and physical features 
contribute towards the survival of F. 
tularensis.

201829 145 soil samples 21 features sand, pH, silt, clay, micro 
and macro nutrients Artificial Neural Networks ANN Model achieved an accuracy of 

82.61% for classification of F. tularensis.

202030 145 soil samples 21 features sand, pH, silt, clay, macro 
and micro nutrients

ANN, SVM, LR, Random forest, Fea-
ture ranking methods

ANN Model achieved an accuracy of 
84.35% for classification of F. tularensis. 
The most related features are clay, N, 
Zn, Ni, silt, organic matter, soluble salts, 
and least related features are K, P, Fe, 
Ca, Cu, Cr, sand.
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5. Our model performs classification and identifies the most relevant features that help prolong the pathogen’s 
survival in the environment with a high classification accuracy of up to 82.98%.

6. We apply 10-fold cross-validation to establish the performance of the proposed method.

Material and methods
The research concentrates on a comparative study of different state-of-the-art machine learning techniques 
employed in various fields for classification and feature ranking in a unique soil attribute dataset for Coxiella 
+Ve and -Ve sites. Further, we compare the performance of state-of-the-art feature ranking models and classi-
fiers. Lastly, we propose a machine-learning model for the classification of Coxiella using soil attribute data, as 
exhibited in Fig. 1.

Coxiella soil attribute dataset acquisition. Approximately 500–800 g of soil sample was taken from 
C. burnetii positive (n=47) and negative (n=47) sites using a portable electronic balance. The dataset contains 
21 chemical and physical soil features, such as maximum soluble salt, organic matter, silt, clay, and micro and 
macro-nutrients. These physical and chemical soil features have different values, as shown in Table 2. The dataset 
is the property of the Institute of Microbiology, Veterinary and Animal Sciences University, Lahore,  Pakistan22.

Figure 1.  Various phases of Coxiella classification in Soil attribute dataset.

Table 2.  Range of various Pysical and Chemical Soil features.

Soil attributes Range of features

1. pH 5.9–12.2

2. Moisture (MO) 3.30–15.0%

3. Soluble Salts (SS) 0.69–5.04 mg/kg

4. Organic Matter (OM) 0.73–4.42 mg/kg

5. Clay (cy) 1.00–92.0 mg/kg

6. Sand 7.00–97.0 mg/kg

7. Silt (Si) 0.00–60.0 mg/kg

8. Nitrogen (N) 0.04–0.22 mg/kg

9. Phosphorus (P) 0.36–110.0 mg/kg

10. Magnesium (Mg) 20.37–324.4 mg/kg

11. Copper (Cu) 0.02–2.36 mg/kg

12. Chromium (Cr) 0.002–0.48 mg/kg

13. Nickel (Ni) 0.0024–14.43 mg/kg

14. Manganese (Mn) 0.09-–49.26 mg/kg

15. Cobalt (Co) 0.004–6.13 mg/kg

16. Lead (Pd) 0.22–7.60 mg/kg

17. Cadmium (Cd) 0.03–3.84 mg/kg

18. Sodium (Na) 21.1–304.9 mg/kg

19. Iron (Fe) 0.34–53.9 mg/kg

20. Calcium (Ca) 40.8–259.9 mg/kg

21. Potassium (K) 6.70–448.6 mg/kg
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Appropriate dataset for analysis. To propose an efficient and reliable machine learning model, one 
should select those soil features for the dataset that seem to contribute towards the prevalence and growth of 
C. burnetii. The work retrieves the most important attributes, such as pH, Moisture (MO), Soluble Salt (SS), 
Organic Matter (OM), Clay (cy), Sand, Silt (Si), Nitrogen (N), Phosphorus (P), Magnesium (Mg), Copper (Cu), 
Chromium (Cr), Nickel (Ni), Manganese (Mn), Cobalt (Co), Lead (Pb), Cadmium (Cd), Sodium (Na), Iron (Fe), 
Calcium (Ca), Potassium (K) for the study.

Feature selection. In order to assemble an efficient and accurate model that would improve performance, 
data filtering is essential. These types of models would allow us to extract the best set of attributes. Suppose 
21 input features are extracted from the soil feature dataset. In this article, Xdn = [X1n, X2n, . . . , XDn] repre-
sents the feature matrix with D column vectors, and xdn is a certain feature value (with d = 1, 2, 3, . . . D and 
n = 1, 2, 3, . . . N ; being D=21 and N=94 in the dataset).

Attribute selection models. An attribute selection model combines a search function to suggest new 
attribute subsets with an assessment criterion that scores different  attributes35. The most suitable algorithm is 
the one that tests every possible subset of attributes and finds the best subset that minimizes the rate of error. 
However, this exhaustive search approach becomes computationally intractable in scenarios with more exten-
sive feature spaces. The choice of evaluation metrics significantly affects the function. Various feature selection 
algorithms have been used, for example. ReliefF (RLF), correlation (CR), and OneR (ONR). As explained below, 
each feature selection algorithm has its own set of features:

ReliefF. The algorithmn allocates suitable weight to each attribute using an instance-based learning approach. 
The values of the class are distinguished based on the feature’s weight. These weights define feature rank, and 
those that attain a specific threshold are hand-picked to construct the final  subset36. The algorithm operates by 
randomly choosing examples from the training dataset. For each sample instance, the closest example of the 
same class (nearest hit) and opposite class (nearest miss) is  found37. It modifies a feature’s weight according to 
how nicely feature values differentiate the selected instance from its nearest miss and nearest hit. A feature would 
be assigned a higher weight if it distinguishes among examples from different classes and has an identical value 
for examples of the same class. The formula for weight updation in RLF is given below:

Where Wy symbolizes the weight for feature Y, R is a randomly sampled example, H, M represents the closest 
hit, closest miss, and n describes the number of randomly sampled examples. The method diff() calculates the 
difference between two examples of a given feature. For nominal features, it is represented as 0 if the values are 
the same and 1 if the values are different. However, for continuous features, the actual difference is standardized 
to the interval {0, 1} . Dividing the equation by n ensures weights in the interval {−1, 1} . RLF is sensitive to feature 
interactions and tries to evaluate the probability change for the weight of the attribute Y as defined in Eq. (2).

Correlation. It is an algorithm that uses the filter method to select features. It uses a heuristic-based method, 
which measures the effectiveness of individual features to predict the class label along with the level of inter-cor-
relation between  them38. The attributes with lesser correlation should be avoided, along with redundant attrib-
utes, as they may highly correlate with one or many of the remaining attributes. The formula used to filter out the 
redundant, irrelevant attributes, which contribute to the poor class prediction, is given in the equation as under:

where MP represents the heuristic merit of a feature subset P having j attributes, rcf  is the mean attribute-class 
CR, and rff  is the average attribute-attribute inter-correlation.

OneR. ONR is one of the simple classifiers in weka. The classifier is generally used for nominal data values. In 
this technique, OneR can produce a set of classification rules depending on the significance of a single  feature39. 
The method selects the feature with the least error rate as its “one rule”40. The number of instances that do not 

(1)Wy = Wy −
diff(Y ,R,H)2

n
+

diff(Y ,R,M)2

n

(2)
Wy = P

(

different value of Y

closest example of different class

)

− P

(

different value of Y

closest example of same class

)

(3)
ReliefFY = P

(

different value of Y

different class

)

− P

(

different value of Y
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)

(4)MP =
jrcf

√

j + j(j − 1)rff
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belong to the majority class of the related feature value contributes to the error rate. It helps produce a baseline 
for classification performance and can deliver more satisfactory results than many other refined  approaches30.

Machine learning classifiers. In the following, we describe different classifiers like Support Vector 
Machine (SVM), Linear Discriminant Analysis (LDA), Logistic Regression (LR), and Multi-Layer Perceptron 
(MLP) used for training our model in this study.

SVM. The SVM is a classifier that helps in multi-class classification problems. It draws a hyperplane that maxi-
mizes the separation margin between two classes and minimizes the  error41. The model provides significant 
advantages such as the absence of local minimums, sufficient generalization to the new objects, and a representa-
tion that relies on a few  parameters42. Given a training set of input vectors xi ∈ Rd , i = {1, . . . ,Nt} for d dimen-
sional input space and outputs yi ∈ {1,−1} . The SVM hyperplane Eq. (5) is given as under:

where x and w represent input and constant vectors in the hyperplane, respectively. While the training input vec-
tor xi represents the features and sign() is a signum function with ±1 output. The objective is to minimise Eq. (6).

where ζi penalises objective function for data samples that cross margins meant for that particular class and Cb 
is the box constraint.

Linear discrimination analysis. The classifier is used for preprocessing in machine learning applications, pat-
tern classification, and LDA. The purpose of the model is to minimize lower dimensional space with optimized 
class separability and minimize computational  cost43.

Logistic regression. LR is a variation of the traditional regression approach. It is applied when the dependent 
variable is binary in  nature44. Like other regression models, it is also a predictive analysis model, which interprets 
data and explains the association between one dependent variable and one or more nominal, ordinal independ-
ent variables. In this approach, the dependent variable is the probability that an event may occur; therefore, the 
resulting value has a discrete number of responses, restrained between 0 and 1. It can be shown as follows:

Where P(�x) is the probalility of a specific output event, x1, x2, . . . , xn is an input vector equal to the independent 
predictors or variables, and f (�x) is the LR prototype.

Multi‑layer perceptron. MLP is a complement of a feed-forward neural network. It comprises three kinds of 
layers—an input, output, and a hidden layer, as illustrated in Fig. 2. The input layer acquires the input data for 
processing. The out layer performs the essential task of classification and prediction. A number of hidden lay-
ers are the real computation engine of the design, which reside between the input and output layer of the MLP. 
An MLP uses backpropagation, a technique through which the weights in a neural network are optimized. The 
MLP approximates any continuous function and resolves tasks that are not linearly separable. It usually performs 

(5)yi = sign(w · xyTi + b)

(6)

min
w,b,ζ

1

2
||w||2 + Cb

∑

ζi

(subject to) yi(w
Txi + b) ≥ 1− ζi (∀i)

ζi ≥ 0 (∀i)

(7)P(�x) =
1

1+ e−f (�x)
=

ef (�x)

1+ ef (�x)

Figure 2.  MLP model with inputs {X1, . . . ,X21} , two outputs and two hidden layers with three and two hidden 
units in each layer, respectively.
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recognition, pattern classification, approximation, and prediction tasks. The calculations taking place at each 
neuron in the output and hidden layer are as under:

Where {W(1),W(2)} and {B(1),B(2)} represent weights and biases of the pervious and next layer. y reperensts 
the output of pervious layer and inner vector probuct of Y with the weights of the current layer W(1) is com-
puted, a bias vector B(1) is added and the result is used as an input for the activation function s1() . The activa-
tion functions are {s1, s2} . Usually the activation functions that are used are tanh and sigmoid, represented as 
tanh(a) =

(

ea − e−a
)

/
(

ea + e−a
)

 and sigmoid(a) = 1/
(

1+ e−a
)

 , respectively.

Experiments
Data description. The experiments are conducted using the C. burnetii soil feature dataset, consisting of 
94 specimens. Each specimen comprises 21 soil features. We need a supervised dataset to formulate a predictive 
model using classification techniques. So, the next step is to allocate suitable labels to every instance in the data-
set. Thus, for +Ve and -Ve C. burnetii soil samples, class labels “1” and “0” were assigned, respectively.

Software tools. Weka is employed to train and test the C. burnetii dataset on various soil  features45. First, 
we saved the details of the soil attribute dataset for C. burnetii in a CSV file and then opened the file in Weka’s 
GUI interface. Second, we ranked these soil features using various feature selection methods. Third, we selected 
a classification algorithm and then calculated its accuracy by selecting top-ranked attributes one by one from the 
list using a nested subset approach. For some classifiers, Matlab libraries are employed during experimentation.

Performance evaluation. The soil dataset is utilized to test and train the model using various machine 
learning classifiers by applying a 10-fold cross-validation approach. The approach randomly divides the dataset 
into ten subsets of the same size, where each part has nearly an identical class distribution. Each subset is applied 
one by one as a test dataset, while the remaining subsets of the split serve as a training set. At each step, the 
model’s accuracy is calculated, and the results of all outcomes are averaged to generate the final accuracy.

Results
The current section presents the experimental results of the features-ranking models and compares their per-
formance against different machine learning classifiers. Various algorithms are used for classification: SVM, 
LDA, LR, and MLP. A 10-folds cross-validation is applied to access the performance better and avoid overfitting.

Firstly, the features of the C. burnetii dataset are ranked using three feature-ranking models. Table 3 illustrates 
the ranking for different feature-ranking algorithms, like CR, ONR, and RLF. The column “Attribute Index” 

(8)O(y) = s2(B(2)+W(2)h(y))

(9)h(y) = �(y) = s1(B(1)+W(1)y)

Table 3.  Attribute-ranking for C. burnetii soil attribute dataset by different Feature-ranking techniques.

Attribute index Soil attributes rk(CR) rk(ONR) rk(RLF)

1 pH 8 17 12

2 Moisture (MO) 4 21 21

3 Soluble Salts (SS) 3 1 18

4 Organic Matter (OM) 21 12 8

5 Clay (cy) 18 15 4

6 Sand 1 13 17

7 Silt (Si) 17 3 20

8 Nitrogen (N) 12 7 10

9 Phosphorus (P) 10 8 19

10 Magnesium (Mg) 13 6 7

11 Copper (Cu) 20 4 13

12 Chromium (Cr) 2 10 2

13 Nickel (Ni) 19 2 3

14 Manganese (Mn) 7 14 15

15 Cobalt (Co) 5 19 6

16 Lead (Pb) 11 9 16

17 Cadmium (Cd) 6 18 1

18 Sodium (Na) 16 11 9

19 Iron (Fe) 15 16 11

20 Calcium (Ca) 9 5 5

21 Potassium (K) 14 20 14
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displays a unique index value for every attribute, where pH has an index value=1, moisture (MO)=2, soluble 
salts (SS)=3, and so on. The first row in columns rk(CR), rk(ONR), and rk(RLF) shows the top ranked attributes 
8, i.e.(N), 17 ,i.e.(Cd), and 12, i.e.(Cr), respectively. The second row shows the following top ranked attributes 
4, i.e.(OM), 21, i.e.(K), and 21, i.e.(K), respectively. Similarly, the last row shows last of the top ranked attributes 
14, i.e.(Mn), 20, i.e.(Ca), 14, i.e.(Mn), respectively. Moreover, if we assess the top 11 features from all the feature-
ranking methods in Table 3, the following conclusions can be drawn: 

1. 6 features i.e.{OM, N, Ni, Cr, Cd, K} are recurring for all ranking methods.
2. 7 features i.e.{ Si, OM, N, Ni, Cr, Cd, K} are similar between ONR and RLF.
3. 8 features i.e.{ pH, SS, OM, N, Ni, Cr, Cd, K} are similar between ONR and CR.
4. 9 features i.e.{ OM, N, Ni, Na, Mg, Cr, Cd, Ca, K} are similar between CR and RLF.

Similarly, Table 3 shows that out of the 9 least-significant features, 6 features, i.e.{Pb, MO, P, Cu, Mn, cy} , are 
recurring among all ranking methods.

Secondly, we perform a two-phase feature ranking to determine the contribution of each attribute toward 
the persistence of C. burnetii in soil. Initially, attributes are ranked based on feature-ranking methods, and then 
a combination of techniques is applied to calculate the weighted score to determine the final soil attribute rank. 
The top-ranked and least-ranked attributes are displayed separately in Tables 4 and  5. These tables show each 
feature ranking method’s scores and the final aggregate score of each soil attribute for the C. burnetii dataset. 
The aggregate score is the sum of the scores of all the attribute ranking methods. If the aggregate score is on the 
lower side, higher would be the rank of an attribute. Similarly, if the score is on the higher side, the lower would 
be the rank of the attribute.

The first row depicts {K} ranked 2nd by RLF and ONR, 4th by CR, and the last column shows its aggregate 
score of 8, which is the sum of scores of all the attribute ranking methods, i.e.(2 + 2 + 4 = 8). The second row 
shows that {Cr} is ranked 1, 4, and 8 by RLF, ONR, and CR, respectively, with an aggregate score of 13. Similarly, 
the last row shows that {Mg} is ranked 8, 12, and 9 by RLF, ONR, and CR, respectively, with an aggregate score 
of 29. Now {K} is the top ranked attribute, as its aggregate score, i.e.(8) is minimum, {Cr} 2nd top ranked attribute 
with an aggregate score of 13. Similarly, the results in the Table  5 shows that {Mn} is the least ranked attribute 
with an aggregate score of 56, which is the sum of scores of all the attribute ranking methods, i.e.(21+14+21=56) 
and, then comes {cy}, {P} , and {Cu} with aggregate scores of 55, i.e.(20+20+15), 54, i.e.(18+16+20), and 53, 

Table 4.  List of Top Ranked Attributes for C. burnetii soil attribute dataset.

Top ranked attributes rk(RLF) rk(ONR) rk(CR) Ranking score of each attribute

Potassium (K) 2 2 4 8

Chromium (Cr) 1 4 8 13

Cadmium (Cd) 6 1 7 14

Nirogen (N) 4 9 1 14

Organic Matter (OM) 5 11 2 18

Soluble Salts (SS) 13 7 3 23

Sodium (Na) 3 17 5 25

pH 17 3 6 26

Nickel (Ni) 11 6 10 27

Magnesium (Mg) 8 12 9 29

Table 5.  List of Least Ranked Attributes for C. burnetii soil attribute dataset.

Least ranked attributes rk(RLF) rk(ONR) rk(CR) Ranking score of each attribute

Manganese (Mn) 21 14 21 56

Clay (cy) 20 20 15 55

Phosphorus (P) 18 16 20 54

Copper (Cu) 19 18 16 53

Lead (Pb) 16 19 18 53

Sand 15 10 17 42

Calcium (Ca) 7 21 11 39

Cobalt (Co) 14 5 19 38

Moisture (MO) 12 13 12 37

Silt (Si) 10 8 14 32
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i.e.(19+18+16), respectively, and so on. The stacked bar chart further elaborates the picture by showing the score 
of feature ranking of different methods and the aggregate score for each attribute in different color schemes. 
These charts in Figs. 3 and  4 display the top and least ranked features, where rk(RLF), rk(ONR), and rk(Cr) in 
various flavors of blue represent the ranking score for RLF, ONR, and CR. Similarly, the Ranking Score symbol-
izes the sum of scores of all the attribute ranking methods for an attribute, which is represented in light blue.

The top-ranked features shown in Fig. 3 reflect that Potassium (K) is the most significant attribute, where K is 
ranked 2nd by RLF and ONR, 4th by CR, so its aggregate score is 8, which is the sum of scores of all the attribute 
ranking methods, i.e.(2+2+4=8). Similarly, the least-ranked features are shown in Fig. 4, which portrays that 
Mn is the least significant attribute with a ranking score of 56, which is the sum of individual feature scores of 
16, 21, and 20 for RLF, ONR, and CR, respectively.

Figure 3.  Individual and Aggregate Score of Top Ranked attributes of C. burnetii Soil dataset using Feature-
ranking methods.

Figure 4.  Individual and Aggregate Score of Least Ranked attributes of C. burnetii Soil dataset using Feature-
ranking methods.
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Thirdly, we evaluated the performance of these feature-ranking methods to different machine learning clas-
sifiers. The result of the experiments is shown in Table 6. For every feature-ranking technique, the row “rk” 
illustrates the ranking sequence of attributes. Then the table presents the results of classifiers ( MLP, LR, LDA, 
and SVM) according to the ranking sequence of each feature-ranking model. The accuracy ranges from 82.98% 
(SVM) to 53.19% (SVM) while applying various ranking models and classification techniques. The most rel-
evant feature for CR is {N} . Using this feature, SVM, LDA, and LR produce a classification accuracy of 63.91%, 
62.9%, and 62.89% for CR, respectively. The most relevant feature for ONR is {Cd} , and RLF is {Cr} . Using 
Cd(ONR), LDA generated an accuracy of 59.6%, and Cr(RLF), SVM produces an accuracy of 57.45%. We can 
infer various conclusions from the analysis of Table 6: (a) The three attribute-ranking models deliver distinct 
rankings, which generate different classification outcomes. (b) The pair of {CR+ SVM} gives best classification 
accuracy of (82.98%) for only 14 soil features. (c) In principle, the order of best classification performance is 
arbitrary: (CR+SVM,82.98%), (RLF+SVM,81.91%), (ONR+SVM,75.53%), (CR+LDA,78.7%), (RLF+LDA,79.8%), 
(ONR+LDA,73.4%), (CR+LR,75.53%), (RLF+LR,79.79%),(ONR+LR,72.34%), (CR+MLP,79.79%), 
(RLF+MLP,80.85%), (ONR+MLP,76.6%). (d) Results show that machine learning classifiers like LDA, LR, and 
MLP showed better accuracy using the RLF feature-ranking than other feature ranking approaches. (e) CR stands 
next to RLF and produces better classification results for SVM than other ranking methods. (f) MLP performs 
better than other machine learning classifiers for ONR feature ranking. (g) The 14 soil attributes for which 
{CR+ SVM} generates the best classification accuracy are {N,OM,SS,K,Na,pH,Cd,Cr,Mg,Ni,Ca,MO,Fe,Si} . In 
contrast, the other models, like {RLF+ SVM} and {RLF+MLP} utilize 12 soil features to generate their best 
classification accuracies of 81.91% and 80.85%, respectively.

Figures 5, 6 and 7 demonstrate the change in accuracy of machine learning classifiers as the number of soil 
features is varied while applying feature–ranking approaches. Figure 5 shows the accuracy of machine learning 
models using CR as attribute–ranking technique. Although the feature subset is similar, LDA performance is 
better than other classifiers for initial-level features. However, SVM shows excellent results for mid-level features. 
All the classifiers display a considerable decrease in accuracy for the last set of features. The results show that SVM 
generates a classification accuracy of 82.98%, which is far better than other models. So, the overall performance 
of SVM is far better than other machine learning classifiers.

Figure 6 represents accuracy curves for classification algorithms using the RLF feature–ranking technique. 
Although all the classifiers show a similar trend, SVM and MLP achieve a classification accuracy of 81.91% 
and 80.55% higher than any other classification method. All the classifiers shows similar trend for initial set of 
features. However, LDA and MLP seem to perform better than other classifiers. But, for mid-level features, LDA 
and MLP stand close to SVM. Nevertheless, the overall performance of SVM is better than other classifiers.

Figure 7 illustrates the accuracy of classification models using ONR as an attribute-ranking technique. How-
ever, all the classifiers show a similar trend for a nested subset of soil features except MLP, which shows a sharp 
increase for mid-level features. Although LR and LDA show better results for the initial features, SVM outper-
forms other classifiers for the last subset of features.

In summary, the results propose that: (a) 6 features that significantly contribute towards the persistence 
of the pathogen in the environment are {K, Cr, Cd, N, OM, SS} (b) 5 least contributing features for Coxiella 
are {Mn, cy, P, Cu, Pb} . c) Feature ranking using RLF generates better results for all machine learning algo-
rithms than other feature-ranking models. (d) The classification results of SVM surpass all other machine 
learning classifiers. (e) {CR+ SVM} produces the best accuracy of 82.98% for the initial 14 soil features 
{N,OM,SS,K,Na,pH,Cd,Cr,Mg,Ni,Ca,MO,Fe,Si} . (f ) in multi-dimensional classifications, various machine 

Table 6.  A Comparison of results from various Feature-ranking methods against different Machine learning 
classifiers using C. burnetii dataset.

Subset

FRM Clf 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

CR

rk 8 4 3 21 18 1 17 12 10 13 20 2 19 7 5 11 6 16 15 9 14

SVM 64.89 62.77 61.7 62.77 61.7 64.89 67.02 67.02 68.09 71.28 70.21 70.12 75.53 82.98 76.6 76.6 75.53 73.4 74.47 74.47 73.4

LDA 62.8 61.7 63.8 64.9 62.8 61.7 62.8 64.9 67 63.8 69.1 68.1 78.7 78.7 78.7 76.6 74.5 75.5 74.5 73.4 73.4

LR 62.77 61.7 62.77 63.83 60.64 59.57 57.45 59.57 63.83 65.96 67.02 67.02 71.28 73.4 75.53 74.47 71.28 70.21 70.21 69.14 69.14

MLP 60.64 59.57 62.77 58.51 60.64 56.38 60.64 65.96 62.77 62.77 69.15 69.15 75.53 79.79 75.53 78.72 74.47 74.47 74.47 71.28 73.4

RLF

rk 12 21 18 8 4 17 20 10 19 7 13 2 3 15 6 16 1 9 11 5 14

SVM 57.45 53.19 56.38 62.77 61.7 64.89 69.15 72.34 75.53 78.72 80.85 81.91 81.91 79.79 75.53 75.53 76.6 75.53 74.47 74.47 73.4

LDA 55.3 52.1 57.4 64.9 63.8 69.1 70.2 71.3 78.7 77.7 78.7 77.7 79.8 78.7 75.5 76.6 76.6 74.5 75.5 73.4 73.4

LR 57.45 47.87 59.57 62.77 62.77 64.89 68.09 75.73 76.6 79.79 78.72 77.66 74.47 74.47 73.4 71.28 71.28 69.14 70.21 69.14 69.14

MLP 55.32 53.19 58.51 57.45 61.7 68.09 73.4 78.72 75.53 77.66 77.66 80.85 78.72 75.53 74.47 77.66 75.53 76.6 73.4 71.28 73.4

ONR

rk 17 21 1 12 15 13 3 7 8 6 4 10 2 14 19 9 18 11 16 5 20

SVM 57.45 56.38 57.45 64.89 62.77 65.96 70.21 72.34 71.28 71.28 70.21 72.34 71.28 71.28 73.4 74.47 74.47 73.4 75.53 75.53 73.4

LDA 59.6 54.3 64.9 64.9 69.1 64.9 70.2 68.1 70.2 70.2 69.1 66 66 68.1 71.3 72.3 70.2 71.3 70.2 64.9 73.4

LR 60.64 54.25 63.83 64.89 68.09 63.83 68.09 65.96 71.28 72.34 71.28 70.21 68.09 64.89 69.15 65.96 65.96 68.09 67.02 64.89 69.14

MLP 59.57 54.26 61.7 63.83 64.89 62.77 69.15 65.96 72.34 71.28 76.6 65.96 68.09 67.02 69.15 70.21 67.02 68.09 67.02 71.28 73.4
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Figure 5.  Accuracy of various classifiers depending upon CR.
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Figure 6.  Accuracy of various classifiers depending upon RLF.
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Figure 7.  Accuracy of various classifiers depending upon ONR.
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learning models depict a similar trend. Therefore, the correct classifier selection is essential to yielding good 
classification results in unseen examples.

Comparision with previous machine learning approaches. Although some researchers applied 
machine learning to classify soil-borne pathogens like F. tularensis and the environment that help its persistence 
in soil, there needs to be more data available specifically for C. burnetiia in the soil-related environment, as 
shown in Table  7. Furthermore, our model applies a two-phase feature-ranking on a novel C. burnetiia dataset, 
contrary to previous works.

Discussions. Machine learning models are used as a standard in different disciplines, for example, soil 
 classification46, medical  science47, bio-informatics48, and  agriculture49–51. Our research reveals that machine 
learning models, instead of contemporary statistical models show exceptional results for classifying C. burnetii 
and understanding the pathogen’s behavior in the soil-related environment.

The results propose that potassium, chromium, cadmium, nitrogen, organic matter, and soluble salts are the 
top 6 most significant features for the persistence of the Coxiella, as exhibited in Table 4. Previous works also 
propose that abiotic characteristics such as pH, organic matter, and soil nutrients, are not only the driving force 
for soil bacterial  community52–55 but are also positively linked with the persistence of soil  pathogens56–58. Some 
recent  studies9,22,23 also highlight the significance of soil’s physiochemical characteristics, like organic matter, 
soluble salt, nitrogen, clay, potassium, cobalt, chromium, and cadmium, etc., for the sustenance of B. anthracis, 
C. burnetii and F. tularensis.

Our analysis further reveals that potassium is the most noteworthy feature for the presence of Coxiella in soil. 
Some fantastic  works9,22,23,59 prove that the prevalence of various pathogens like B. anthracis, C. burnetii, and F. 
tularensis positively correlates to potassium in the soil. The next essential features that improve the likelihood 
of persistence of the pathogenic bacteria are chromium, cadmium, nitrogen, organic matter, and soluble salts. 
 Studies23,56–58 in the recent past indicate that the presence of organic matter and chromium is helpful for persis-
tence of pathogens in the soil. Another  study60 reveals that nitrogen is essential for the sustenance of pathogens 
within their plant and animal hosts. A  study22,61 suggests that cadmium, nitrogen, soluble salts and organic matter 
positively correlate with the prevalence of F. tularensis in soil. The prevalence of B. anthracis is also associated 
with the presence of organic matter, chromium, and potassium in  soil23. Recent  works9,59 highlight that soluble 
salts is positively correlated with the persences of C. burnetii and F. tularensis. Similarly, a  work61 provides evi-
dence that nitrogen and organic matter are helpful in the persistance of C. burnetii and another research also 
illustrates that nitrogen and organic matter are also positively related to the sustenance of a nitrogen-fixing 
bacteria called A.  brasilense62.

The remaining contributing features from Table 4 are sodium, pH, nickel, and magnesium. Previous 
 researches53–55 show that soil texture, pH, and nutrients are essential for bacterial communities. Our results 
conform with a recent  study23 that reveals that features like magnesium, potassium, and sodium are positively 
correlated to C. burnetii in soil-related environments. Another  work9 also shows a substantial difference between 
Coxiella negative and positive sites with reference to magnesium and sodium. A  study30 also reveals that F. tular‑
ensis has a positive affinity with souble salts, nickel, and pH for its existence in soil. Another  research59 reveals that 
soluble salts and nickel positively contribute towards the presence of F. tularensis. Magnesium plays a substantial 
part in the persistence of microbes during starvation and cold  shocks63. A  work25 illustrates magnesium, sodium, 
potassium, and sulfate are conducive to F. tularensis growth in soil and water.

Our study also depicts that silt, moisture, and cobalt fall in the middle. Previous research reveals that silt 
possesses substantial organic matter due to the rise in surface area compared to the sandy portion, which may 
augment the possibility of the prevalence of  pathogens64. Another  research23 shows that the persistence of C. bur‑
netii is associated with higher concentration of cobalt in the enviornment. A  study22 reveals that the persistence 
of F. tularensis is positively correlated to the presence of silt in soil. Another  work65 proposes that F. tularensis 
has a great affinity to moisture and low temperature.

Our machine learning analysis reveals that the least contributing seven features are manganese, clay, phos-
phorous, copper, lead, sand, and calcium as shown in Table 5. A recent  research9 also substantiates our view-
point by exhibiting no significant difference between Coxiella negative and positive sites regarding manganese, 
phosphorous, clay, lead, copper, and sand in the soil. A  study22 also reveals that manganese, phosphorous, cal-
cium, copper, and sand do not show any positive affinity with F. tularensis in soil. Similar  research59 also reveals 

Table 7.  Comparison with previous Machine learning approches.

Approach Soil pathogen Novel dataset
Classification & 
feature-ranking

Two-phase feature-
ranking Most relavant features

Least contributing 
features

Classification 
accuracy (%)

Our Model C. burnetiia � � �

Potassium, nitrogen, 
organic matter, chro-
mium, cadmium, and 
magnesium

Manganese, phospho-
rous, clay, moisture, 
and copper

82.98

Ahmad et al.30 F. tularensis × � ×
Clay, nitrogen, organic 
matter, soluble salts, 
zinc, silt and nickel

Potassium, phospho-
rous, iron, calcium, 
copper, chromium and 
sand

84.35

shahbaz et al.29 F. tularensis × × × × × 82.61
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that clay, phosphorous, copper, lead, sand, and calcium are not positively correlated with F. tularensis. Some 
 suggest66 that during hot and dry weather, high manganese contents are seen in B. pseudomallei positive sites 
as appose to negative sites. However,  others67 believe that the aerobic heterotrophic population of microbes is 
very susceptible to different minerals, like cadmium, nickel, manganese, mercury, chromium, copper, and zinc. 
An analysis also reveals that manganese and zinc are essential for biological processes, and they exist as protein 
components in many  species67,68. Some works propose that zinc helps in multiple cellular functions, like pH 
regulation, metabolism, bacterial gene expression, DNA replication, glycolysis, synthesis of Amino acids, and 
processes as a cofactor of microbial  virulence69. However, the surplus amount of zinc can cause toxicity; thus, 
these microbes possess a mild structure to maintain zinc’s equilibrium for executing crucial cellular functions 
and abstain from the damages it may  cause70.

Classification outcomes of C. burnetii in soil employing different machine learning techniques reveal that 
SVM surpasses all other machine learning models by generating an accuracy of 82.98% utilizing the initial 14 
top-ranked features.

Conclusion
The soil texture, physical and chemical factors play an important role in the growth and survival of bacteria. Thus, 
their relationship with C. burnetii is investigated in this study. The recent machine learning models can help us 
better understand the association of microbes with various soil features. The research presents the classification 
and feature-ranking of the pathogen using a soil feature dataset. Potassium is the top-ranked attribute, followed 
by chromium, cadmium, nitrogen, and organic matter. However, manganese, clay, phosphorus, and copper are 
the least contributing features. The RLF shows the best result for most of the ranking algorithms. SVM produces 
the best accuracy of 82.98% for the initial 14 soil features {N,OM, SS, K,Na, pH, Cd, Cr,Mg,Ni, Ca,MO, Fe, Si} , 
using CR. In contrast, like SVM and MLP generate accuracies of 81.91%, and 80.85%, respectively for RLF. These 
machine learning models can also help us better understand the contribution of various soil features towards 
the survival of the pathogenic bacteria in the environment.

Future works
Various pathogens behave differently in the environment due to variations in their cell structure. Some of these 
pathogens are highly resistant to environmental factors and can survive in the environment for years. Under-
standing how these pathogens behave in different environmental conditions is crucial for the research community 
to predict future outbreaks. So machine learning models can significantly help in achieving this task. In our 
previous works, we tried to classify and learn how F. tularensis behaves in the environment. Our current work 
focuses on the classification of C. burnetii and how it behaves in the environment. In the future, we intend to 
expand this work for other pathogens to devise a comprehensive model that could help us in predicting various 
disease outbreaks by these pathogens.

Data availability
The corresponding author can be contacted at fareed.ahmad@uvas.edu.pk for data relating to this study.
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