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Multimodal and multidomain 
lesion network mapping enhances 
prediction of sensorimotor 
behavior in stroke patients
Antonio Jimenez‑Marin 1,2, Nele De Bruyn 3, Jolien Gooijers 4,5, Alberto Llera 6,7,8, 
Sarah Meyer 3, Kaat Alaerts 3, Geert Verheyden 3, Stephan P. Swinnen 4,5,11 & 
Jesus M. Cortes 1,9,10,11*

Beyond the characteristics of a brain lesion, such as its etiology, size or location, lesion network 
mapping (LNM) has shown that similar symptoms after a lesion reflects similar dis-connectivity 
patterns, thereby linking symptoms to brain networks. Here, we extend LNM by using a multimodal 
strategy, combining functional and structural networks from 1000 healthy participants in the Human 
Connectome Project. We apply multimodal LNM to a cohort of 54 stroke patients with the aim of 
predicting sensorimotor behavior, as assessed through a combination of motor and sensory tests. 
Results are two-fold. First, multimodal LNM reveals that the functional modality contributes more 
than the structural one in the prediction of sensorimotor behavior. Second, when looking at each 
modality individually, the performance of the structural networks strongly depended on whether 
sensorimotor performance was corrected for lesion size, thereby eliminating the effect that larger 
lesions generally produce more severe sensorimotor impairment. In contrast, functional networks 
provided similar performance regardless of whether or not the effect of lesion size was removed. 
Overall, these results support the extension of LNM to its multimodal form, highlighting the 
synergistic and additive nature of different types of network modalities, and their corresponding 
influence on behavioral performance after brain injury.
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FWHM	� Full width at half maximum
HCP	� Human Connectome Project
LSM	� Lesion symptom mapping
LNM	� Lesion network mapping
LOOCV	� Leave-one-out cross-validation
M1	� Primary motor area
MCP	� Middle cerebellar peduncle
MPRAGE	� Magnetization prepared-rapid gradient echo
PCA	� Principal component analysis
PTT	� Perceptual threshold of touch
RSN	� Resting state networks
SBC	� Seed-based connectivity
SC	� Structural connectivity
T	� Maximum significant correlation
TBSAA	� Time between stroke and assessment
TE	� Echo time
TENS	� Transcutaneous electrical nerve stimulation
TR	� Repetition time
VAN	� Ventral attention network
Ve	� Variance explained

Mapping the behavioral impact of brain lesions is of vital importance in clinical practice. Regardless of the cause 
of the lesion, its size or precise location, evidence has accumulated in recent years in favor of the connectome 
hypothesis whereby the specific network(s) affected by the lesion can predict many of the patient’s responses 
through motor, non-motor, cognitive and behavioral domains1–23, leading to lesion-driven disconnectivity 
analyses24. A common computational framework was developed recently2, and successfully applied to several 
conditions and pathologies3,4,6,7,9–18,22,25. Due to the simplicity of this method to correlate behavioral outcomes 
with the extent of lesion-driven disconnection, the strategy was referred to as lesion network mapping (LNM). 
Here, we extend the classical LNM in to two strategic dimensions. Firstly, by proposing a multimodal strategy 
in which we introduce a combination of both structural and functional networks to predict behavior. Secondly, 
and motivated by previous work5,20,21, by assessing behavioral performance using a combination of several 
multidomain scores.

We applied our strategy to stroke, a highly disabling condition that typically produces multiple behavioral 
deficits. Even when stroke produces a focal damage, it is well known to affect remote areas, such as those regions 
directly connected to the lesion through long-range white matter tracts26 or connected regions indirectly by 
functional connectivity through the so-called common-neighbor interactions27–29. Significantly, the mapping of 
different behavioral deficits to imaging alterations localizes tightly within specific brain networks5,21,30,31. Indeed, 
the degree of network disruption was shown to be a good correlate of behavioral recovery from damage after 
stroke32–34, as also witnessed in longitudinal data35–37.

As stroke is a highly disabling condition, we assessed different aspects of the individual’s motor ability using 
two tests widely recognized as measures of motor performance: the Action Research Arm Test (ARAT) and 
the Fugl-Meyer assessment—upper extremity (FMA-UE) test38,39. In terms of everyday activities that involve 
different movement functions like grasping, grip and pinchforce, as well as gross movement, ARAT serves to 
measure upper limb dysfunction after stroke38,40,41. In addition, the FMA-UE test was used as a complementary 
assessment of motor dysfunction42. Somatosensory performance is also known to be highly impaired following 
stroke and it is generally associated with a deterioration in dexterity, manipulation abilities and bimanual hand 
coordination skills43,44. To assess somatosensory capacity, we used the Erasmus-modified Nottingham Sensory 
Assessment (Em-NSA)45,46 that evaluates tactile, proprioceptive and higher cortical somatosensation, along 
with the perceptual threshold of touch (PTT)47 that principally assesses tactile function and that has been used 
previously in neuroimaging studies48.

Our main hypothesis here was that by extending LNM using a multimodal strategy, similar to recent work49 
combining information of lesion disconnectivity of functional and structural networks, it would facilitate a better 
understanding of the synergistic contributions of individual modalities to explain multi-domain sensory-motor 
outcomes in stroke patients. We also hypothesized that by applying multimodal LMN, the variance explained 
in the brain maps would be enhanced by achieving greater coverage of the variation in multi-domain sensory-
motor behavior in stroke patients. For this purpose, we combined structure–function disconnectivity maps and 
employed a canonical correlation analysis (CCA) to link multi-domain behavior to different lesion connectivity 
maps.

Results
Multimodal LNM was applied to a cohort of first-time stroke patients with sensory-motor impairments (N = 54). 
Behavior alterations were evaluated with a battery of sensorimotor tests. Demographic, clinical and sensorimotor 
scores are given in Table 1.

After projecting all the patient’s lesions onto the same template (MNI152, 2 mm3), we obtained the functional 
and structural disconnection maps for each patient following the pipeline detailed in Fig. 1. This pipeline also 
made use of functional and structural imaging data from healthy HCP participants (N = 1000). Thus, our method 
analyzed the impact that the patient’s lesion had on the disconnection of specific networks that exist in healthy 
brains. At the population level (N = 54 stroke patients), we concatenated the different patient’s disconnection 
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maps into a final matrix and applied a PCA to get the principal components that were then used as independent 
variables for the CCA.

The dependent variables for the CCA were the behavioral sensorimotor scores (Fig. 2). The two ARAT and 
FMA-UE motor scores were correlated to each other (r = 0.85, p < 0.001), as were the sensory Em-NSA and PTT 
variables (r = − 0.7, p < 0.001). However, the correlations between motor and sensory variables were not significant 

Table 1.   Demographics, clinical characteristics and sensorimotor outcomes in stroke patients.

Variable, units Mean Sigma Range

Age, years 68.78 13.98 28–92

Males/females 25/29 NA NA

Time between stroke and assessment, days 25.61 20.32 4–64

Lesion size, cm3 45.71 58.95 0.30–255.94

ARAT​ 15.20 19.52 0–57

FMA-UE 26.22 20.61 0–59

Em-NSA 28.57 14.21 0–40

PTT 6.68 2.95 1.8–11

Figure 1.   Pipeline for multimodal and multidomain lesion network mapping and its association to behavioral 
outcome after stroke through Canonical Correlation Analysis (CCA). At the patient level (gray shading), 
brain lesion masks are used as seed regions to calculate the functional correlation maps (applying seed-based 
correlation analysis and using the segmented lesion as the seed for each HCP subject) and the structural 
correlation maps (applying tractography from the segmented lesion to the rest of the brain for each HCP 
subject) from a group of healthy control participants from HCP (N = 1000). After averaging all the participants 
in the HCP dataset (see Methods for details), we obtained the functional disconnection maps for each patient, 
accounting for the functional impact of lesion disconnection, and likewise for the structural disconnection 
maps. At the population level (purple shading), a matrix with dimensions (# of stroke patients) x (# of voxels) 
per modality map (FC or SC) was built and reduced using a PCA, which returns a new matrix with (# of 
patients) × (# of principal components) dimensions, the PCA components considered here as the brain map 
features. The association between the features of the SC and FC, and the behavioral scores was obtained 
by applying a CCA. As the number of features increases, the correlation between features and behavior 
(represented here as c-CCA) increases up to values close to 1 (red curve, Train), dealing with overfitting. Cross-
validation techniques can overcome this problem (for details see Methods). For the maximum CCA correlation 
value in the cross-val curve (black), represented by T, we built brain maps of those components producing 
maximum performance. The maps can be obtained in a single modality, here shown for FC or SC, or as a 
combination of them (not shown here but implemented in this study).
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(ARAT vs. Em-NSA p = 0.85; ARAT vs. PTT p = 0.55; FMA-UE vs. Em-NSA, p = 0.81; FMA-UE vs. PTT, p = 0.48), 
suggesting linear independence between the two motor and somatosensory domains. In addition, the differences 
in the scores between patients with left hemisphere lesions as opposed to those with right hemisphere lesions were 
not statistically significant (ARAT χ2 = 0.85, p = 0.36; FMA-UE χ2 = 0.003, p = 0.96; Em-NSA χ2 = 0.69, p = 0.41; 
PTT χ2 = 0.44, p = 0.51). Indeed, there was a high similarity between the lesion brain maps in the left hemisphere 
and those of the right (r = 0.71, p < 0.001: Fig. S1). Both factors (the non-significant differences between behavioral 
scores in patients with left or right hemisphere lesions, and the high similarity between the two lesion spatial 
maps) justified merging patients with left and right hemisphere lesions into a single cohort, thereby increasing 
the statistical power for our CCA analysis.

We next analyzed the statistical relationship between behavioral scores and confounding factors of age, 
time between stroke and the behavioral assessment (TBSAA), and lesion size (Figs. S2 and S3). The two latter 
variables showed significant correlations with the somatosensory outcome assessed by Em-NSA (r = 0.32, p = 0.02 
and r = − 0.45, p < 0.001, respectively), while lesion size was correlated with the PTT score (r = 0.42, p = 0.002). 
The three co-variables age, TBSAA and lesion size where regressed out from the sensorimotor scores for the 
following analyses.

Figure 2.   Distribution of behavioral—motor and sensory—scores. The principal diagonal panels represent the 
histogram values for each of the four behavioral scores, two being motor scores (ARAT and FMA-UE) and two 
somatosensory scores (Em-NSA and PTT). Off-diagonal panels (below the diagonal) show scatter plots between 
pairs of scores. We also provided Pearson correlation values (r) and associated p-values above the diagonal in 
the off-diagonal panels. The red and blue colors represent scores from patients having lesions in the left and 
right hemispheres, respectively. Behavioral outcome differences between patients with left and right hemisphere 
lesions were not significant (ARAT χ2 = 0.85, p = 0.36; FMA-UE χ2 = 0.003, p = 0.96; Em-NSA χ2 = 0.69, p = 0.41; 
PTT χ2 = 0.44, p = 0.51). Because these reasons, the left and right lesion datasets were pooled into a single cohort 
in this study. All the scores are represented here as Z-scores.
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Before studying the extent to which the disconnection caused by the lesion explained the sensorimotor 
outcome, we applied lesion symptom mapping (LSM), in which only the location and size of the lesion are 
taken into account (but not its connectivity) to predict behavior. In particular, we follow LSM similar to50 but 
extending it to multi-domain sensorimotor behavior, for the purpose of comparing the performance of LSM 
with that of LNM (using the network disconnection paradigm). In all cases studied, including LSM and LNM 
(unimodal or multimodal), we followed a similar computational pipeline consisting of an iterative CCA. In 
particular, after sequentially increasing the number of PCA components, the best cross-validation curve model 
(black curve in Fig. S4) was chosen, selecting the number of components (#Comp) that yields the maximum 
significant correlation (T) through CCA. The resulting brain maps (Z > 2) are illustrated in Fig. 3 for LSM and 
Fig. 4 for LNM, presenting the results for unimodal (FC or SC) versus multimodal (FC + SC). The results with 
Z without threshold are also shown in Fig. S5. In addition, the amount of explained variance (Ve) in #Comp for 
each case is also shown (Figs. 3 and 4).

LSM maps corresponding to the highest behavioral association provided brain regions in both grey matter 
(Table S1) and white matter (Table S2). The GM regions were composed majorly of bilateral supramarginal gyrus, 
bilateral insula, bilateral thalamus, right postcentral, and right precentral. The WM regions coincided majorly 
with bilateral arcuate fasciculus, bilateral superior thalamic radiation, and bilateral corticospinal tract.

Highest behavioral association LNM maps obtained from SC lesion-disconnectivity (Tables S3–S4) revealed 
major tracts participating in unimodal and multimodal analyses were the forceps major, left frontal aslant 
tract, left anterior thalamic radiation, bilateral superior longitudinal fasciculus and bilateral optic radiation. 
Importantly, some tracts in the brain only appeared to participate during multimodal association, specifically, 
the right corticospinal tract and the middle cerebellar peduncle. Next, when looking at the overlap between SC 
maps and major sensorimotor-tracts represented in the SMATT atlas (a more specific sensorimotor atlas, cf. 
Tables S5–S6), unimodal SC maps included the left dorsal and ventral premotor cortices, right pre-supplementary 
motor and right primary somatosensory cortex. By contrast, SC multimodal maps included the right primary 
motor area, right primary somatosensory cortex and left ventral premotor cortex. When comparing the 
significant association (Z > 2) between the two hemispheres (L and R), we found significant differences in the 
region of significant association measured by the number of voxels between unimodal analysis N = 12,203 (L) 
and N = 2589 (R) and multimodal N = 7450 (L) and N = 5606 (R). Hence, the proportion of left vs. right voxels 
was significantly lower in the multimodal as compared to the unimodal (χ2 = 2160.04, p < 0.001).

Highest behavioral association LNM maps obtained from FC lesion-disconnectivity revealed that brain 
regions that participated in both unimodal and multimodal associations were the brainstem (specifically the 
pons), left supramarginal gyrus (the part overlapping with the secondary somatosensory cortex), left thalamus, 
bilateral superior frontal cortex (overlapping with the premotor cortex and supplementary motor area), left 
inferior parietal and right precentral cortex (overlapping with the primary motor cortex and primary sensory 
cortex). For a complete description of all anatomical areas with significant association see Tables S7–S8. More 
specifically, when looking at the overlap between FC maps and the major Resting State Networks (RSNs: 
Tables S9–S10), the unimodal FC maps overlapped with the dorsal attention and limbic networks, while a major 
participation for ventral attention and sensorimotor networks was evident in the FC multimodal analysis. Similar 
to what happened for SC, when the region of significant association in the two hemispheres was compared, we 
found N = 4023 (L) and N = 3269 (R) significant voxels in the unimodal analysis, and N = 3369 (L) and N = 1958 
(R) for multimodal, confirming an opposite trend as in SC, namely, we have a lower proportion of left vs. right 
voxels in the unimodal as compared to the multimodal (χ2 = 82.70, p < 0.001).

When looking to the behavioral weights corresponding to the best model solution (Figs. 3 and 4), we found 
LSM and unimodal LNM analyses, but not multimodal LNM, to have an imbalance in the optimal weights, 

Figure 3.   Brain maps with maximal behavioral association from Lesion Symptom Mapping and CCA. Final 
map corresponding to the CCA solution and providing the maximum correlation between the X variables 
(the PCA components from lesions maps) and the Y variables (a combination of several behavioral scores 
represented in Fig. 2). Together with the map, we provide the number of PCA components used (#Comp), the 
maximum correlation value (T), p-value (p) with the error intervals, and the amount of variance explained (Ve). 
For visualization, the map was threshold to Z > 2 , but a complete map without thersholding is given in Fig. S5. 
In the left panel we represent the behavioral weights corresponding to the maximum behavioral-association 
solution.
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Figure 4.   Brain maps with a maximal behavioral association from the unimodal and multimodal Lesion 
Network Mapping and CCA. Final maps of the CCA solution that provide the maximum correlation 
between the X variables (the PCA components from each modality) and the Y variables (a combination 
of several behavioral scores represented in Fig. 2). From top to bottom, SC brain maps (accounting for SC 
disconnectivity), FC brain maps, and SC + FC multimodal maps (box with dashed line). Moreover, the bottom 
panel also shows the individual SC and FC contributions to the maximum performance achieved by the 
multimodal SC + FC strategy. Together with the maximum behavioral-association maps, in all cases we provide 
the number of PCA components used (#Comp), the maximum correlation value (T), p-value (p) with the 
error intervals, and the amount of variance explained (Ve). For visualization, all maps were threshold to Z > 2 , 
but complete maps with no thersholding are given in Fig. S5. In the left panel of each row we represent the 
behavioral weights corresponding to the maximum behavioral-association solution.
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with greater weights assigned to the somatosensory domain than to the motor domain. By contrast, the LNM 
multimodal solution provided a more balanced state between motor and somatosensory contributions. Moreover, 
the individual contributions of SC and FC within the multimodal best solution had different strengths, as 
witnessed by the median value of the weight distribution for the SC (0.08) and FC (0.12), and indicating a 
major participation of FC as opposed to SC in the multimodal solution. Furthermore, when comparing the 
performance of the behavioral association between the unimodal and multimodal analyses, FC outperformed 
SC at approximately 30% higher values of maximum correlation and at 16% higher values of explained variance.

In relation to performance, both the unimodal LNM SC or unimodal LNM case and the multimodal LNM 
SC + FC case worked better than LSM (LSM T = 0.38 vs. LNM unimodal SC T = 0.42, LNM unimodal FC T = 0.54, 
LNM multimodal SC + FC T = 0.56). Therefore, network data improved prediction beyond lesion location. 
Moreover, the maximum performance corresponded to multimodal LNM. Finally, in an attempt to address 
which modality was more dependent to the elimination of the effect of lesion size, we repeated a similar strategy 
as before but without eliminating such effect (Fig. S6 for LSM and Fig. S7 for LNM). In this case, we found that 
LSM and unimodal LNM SC, both had greater variation in performance when eliminating the effect of lesion 
size (LSM eliminating T = 0.38 vs not eliminating T = 0.61; unimodal LNM SC eliminating SC = 0.42 vs not 
eliminating T = 0.63). On the other hand, the unimodal FC LNM practically maintained the same performance 
when eliminating or not eliminating the effect of the size of the lesion (eliminating T = 0.54 vs not eliminating 
T = 0.56). These results indicated that both SC disconnection maps and lesion maps are more dependent to lesion 
characteristics than FC maps. Finally, we found that in any of the four cases studied (LSM, unimodal LNM SC, 
unimodal LNM FC and multimodal LNM SC + FC), and independently on eliminating or not the effect of the 
size of the lesion, the best performance occurred for the multimodal LNM.

Discussion
Lesion network mapping (LNM) is a novel technique based on brain connectivity that it is conceptually 
straightforward and has shown impressive performance in the study of brain-behavior interactions51. Critically, 
LNM makes use of only patient’s lesion data and reconstructs which brain regions in a healthy population 
of young adults (N = 1000) are putatively disconnected by the patients’ lesion. By this simple association or 
correspondence, LNM has been capable of explaining the presence or absence of a similar symptom within 
a clinical cohort, depending on whether or not the patients’ lesions are connected to a common network. 
Importantly, a recent review has shown that while LSM was not sufficient to explain motor, non-motor, sensory 
and behavioral changes after brain damage, LNM successfully explained a total of 40 different changes52, relating 
symptoms to lesions connected to a common network, and where more often than not, the location of the lesion 
alone (the gold standard in clinical practice) was not able to explain these symptoms.

In relation to this, recent data have linked LNM with improvement in behavior53, linking networks resulting 
from LNM as candidates to explain behavioral changes with better outcome after deep brain stimulation (DBS) 
in patients with tics. In particular, patients with electrode locations connected to LNM had a better outcome 
after DBS, regardless of whether or not the stimulation was targeted to the thalamus or globus pallidus, thus 
reinforcing the clinical meaning of LNM independently to which brain structure is connected with.

In other words, the work in53 showed that the predicted LNM has physiological significance, because patients 
who responded well to DBS had electrodes connected to LNM.

In this way, LNM has shown to stratify lesion-triggered symptoms through differentiated network mapping, 
offering two direct advantages over other patient-specific brain connectivity approaches (using the same 
terminology as in20, they refer to the direct method when patient connectivity data is used, in contrast to an 
indirect method, where only normative connectivity data is used in combination with patient lesion data). The 
first advantage of LMM is technical, as the reconstruction of networks in lesioned brains remains a challenge54, 
and this step is not necessary for LNM. The second advantage of LNM is practical, as LNM can be performed 
simply by acquiring a few FLAIR or T2 slices around the lesioned area, rather than having to acquire a full 
multimodal MRI protocol. Our contribution here further extends the classical LNM in two critical directions. 
First, by performing fusion of FC and SC networks similar to recent work49, we assess the multimodal impact 
of a stroke lesion in predicting behavior. The incorporation of other modalities within the multimodal strategy 
would be straightforward simply by spatial concatenation of the connectivity matrix of each individual. Second, 
we study the association between multimodal networks and multidomain sensorimotor behaviour, since the 
dysfunctionality caused by stroke affects different behavioral domains. Therefore, a systemic characterization of 
patients requires the use of methods that can deal with this behavioral complexity. In the present work, these two 
aspects of multimodal and multi-domain are combined in an original manner using CCA, a successful paradigm 
to map brain images onto behavior55–58.

Our multimodal LNM results highlight several improvements when compared to classical LSM and the 
unimodal LNM approach. First, multimodal LNM reveals that functional maps contribute more strongly than 
structural maps to the optimal prediction of sensorimotor behavior. FC provided highest explained variance 
than SC, which might reflect the fact that it is easier to adjust FC than SC after the brain injury. In relation to 
the number of behavioral domains covered by the best solution to link brain maps and behavior, we found that 
while LSM, unimodal LNM SC and unimodal LNM FC better captured the sensory domain, the multimodal 
LNM provided a more balanced sensorimotor representation, supporting the notion that multidomain behavior 
is better represented on multimodal circuits. Finally, when looking at the shared variance of the multimodal 
analysis—across functional and structural data at the patient level—, we unveiled the participation of some 
regions and networks that did not appear in the unimodal analyses, such as the corticospinal tract (CST) and the 
primary motor area (M1), and the middle cerebellar peduncle (MCP), the two former CST and M1 well-known 
critical structures for motor function. In addition, MCP mediates the communication between the cerebellum 
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and the prefrontal cortex in the coordination and planning of motor tasks59. Moreover, the networks emerging 
from the multimodal analysis were the ventral attention network (VAN) and sensorimotor network, the former 
known to be relevant for stimulus driven attention, such as when somatosensory input is being processed60.

Another issue to highlight is what happened when we removed the effect of lesion size from our analyses, 
as the disconnectivity amount was expected to be higher in bigger lesions. Unimodal LNM SC and LSM were 
highly dependent on this step and their performance deteriorated dramatically after lesion size was removed, 
as witnessed here by the amount of variance explained and the maximum correlation with behavior achieved. 
By contrast, FC provided similar performance irrespective of any correction for lesion size, suggesting that the 
FC is less localized (or more redundant) when processing sensorimotor tasks relative to the structural maps.

An interesting observation from our data was that lesion size was significantly correlated with the two sensory 
tests (Em-NSA and PTT) but not with either of the two motor tests (ARAT and FMA-UE), in agreement with 
previous work61. These results show that the motor outcome assessed in this study was apparently processed in 
more localized brain regions that, once affected, would provoke a worse outcome regardless of the lesion size. 
Conversely, because lesion size was correlated with sensory outcomes, it suggests that the sensory consequences 
of the lesion are distributed more broadly across circuits encompassing different brain areas (visual—parietal—
frontal), in agreement with previous results showing a stronger interaction between brain areas for sensory 
processing than for motor tasks62. This phenomenon might also be related to the amount of cognitive intervention 
required. While motor outcomes can be processed in a more straightforward manner, the somatosensory 
outcomes require the recruitment of more resources involved in cognitive control, including those required for 
attention deployment, although this possibility clearly requires further clarification.

Recent work acknowledged certain limitations to LNM63,64. For example, when dealing with large lesions 
containing both white and grey matter, using the segmented whole lesion as the only seed to perform LNM 
can introduce relevant methodological biases due to the differences in the BOLD signal between voxels 
belonging to gray or white matter. To address FC, here we adopted a more fine-grained approach by averaging 
the signals within the gray matter. In relation to our study, a limitation is that our clinical population is highly 
heterogeneous with regards to TBSAA, in this sample raging within the acute to sub-acute recovery epochs 
(4–64 days). Although we have used TBSAA as a covariate for all of our analyses, and therefore we were correcting 
for this effect, we cannot in any manner assess chronic sensorimotor outcome (e.g., > 12 months), although 
our methodology is perfectly valid to be applied to such data, which should be answered in future studies. A 
second limitation is that the stroke patients studied were recruited paying attention to whether they had sensory 
impairment and independently whether they suffered any effect in motor performance, which might introduce 
some bias with respect to other studies in which patients with greater motor dysfunction were recruited.

Conclusion
By applying a multimodal and multidomain LNM approach, we have predicted sensorimotor behavior, showing 
evidence about the synergistic and additive role of different types of brain networks on patients after brain injury, 
affecting their outcome and thereby making the whole more than the sum of its parts. Moreover, when a patient’s 
behavior is assessed across multiple domains of cognitive, sensory and motor function, our methodological 
approach, combining structural and functional maps, appears to be the most suitable and clinically relevant for 
assessing such multidomain outcomes.

Methods
Participants.  In this study we included two cohorts of stroke patients previously assessed elsewhere65,66. The 
first cohort consisted of 25 patients who developed upper limb sensorimotor impairments after stroke, and they 
were recruited from the University Hospital Leuven and the University Hospital St-Luc Brussels. The second 
cohort consisted of 29 stroke patients recruited at four different centers: UZ Leuven (Pellenberg), Jessa hospitals 
(Herk-de-Stad), Heilig Hart Hospital (Leuven) and RevArte (Antwerp). The two cohorts were combined into 
one, improving the statistical power of the analyses. Thus, in total we analyzed 54 first-stroke patients (25 
males) with a mean age of 68.78 (σ = 13.98, range 28–92 years), and a mean time interval between stroke and 
behavioral assessment of 25.61 days (σ = 20.32, range 4–64). The lesions were distributed across the left and right 
hemispheres (27 lesions in each hemisphere) and the size of the lesions varied from 0.30 to 255.94 cm3. Due 
to the large variation in time between stroke and behavioral assessment (TBSAA), and in the participant’s age 
and lesion size, these three covariables were regressed out for further analyses. The behavior of both cohorts of 
patients was assessed at the hospital using a dedicated procedure not included in the daily clinical routine. Full 
details of the demographic and clinical characteristics of the participants in this study are given in Table 1.

Ethics declarations.  The study was approved by the Ethical Committee of UZ/KU Leuven (codes S60278 
and S54601) and all the participants provided their signed informed consent before enrolling on the study. All 
methods were performed following all approved recommendations by the ethical committee.

Image acquisition.  T1 anatomical MRIs were acquired from all the stroke patients (N = 54) using a 
Philips 3 T Achieva scanner equipped with a 32-channel head coil and applying the following parameters: 182 
coronal slices covering the whole brain, repetition time (TR) = 9.6 ms, echo time (TE) = 4.6 ms, field of view 
(FOV) = 250 × 250 mm2, slice thickness = 1.2 mm and no interslice gap. FLAIR images were acquired with the 
following parameters: 321 transverse slices covering the whole brain, TR = 4800  ms, TE = 351  ms, inversion 
time = 1650  ms, FOV = 250 × 250 mm2, slice thickness = 1.12  mm and interslice gap = 0.56  mm. For the first 
cohort, we only acquired the FLAIR sequence. These images were used only for lesion segmentation.
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We also analyzed images from healthy subjects (N = 1000, ages ranging from 22 to 35 years old) obtained 
from the Human Connectome Project (HCP, WU-Minn Consortium, Principal Investigators David Van Essen 
and Kamil Ugurbil: 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH 
Blueprint for Neuroscience Research, and by the McDonnell Center for Systems Neuroscience at Washington 
University. For each HCP subject, MRI acquisition was performed using a 3 T Siemens Connectome Skyra 
with a 100 mT/m and 32-channel receive coils. The acquisitions used for network disconnectivity analyses 
were: (1) a high-resolution anatomical T1-weighted 3D MPRAGE sequence with the parameters TR = 2400 ms, 
TE = 2.14 ms, Flip angle = 8 deg, FOV = 224 × 224 mm2, Voxel size = 0.7 mm isotropic, Acquisition time = 7 min 
and 40 s; (2) functional data at rest to obtain the blood-oxygenation-level-dependent (BOLD) signals using a 
gradient-echo EPI sequence with the parameters TR = 720 ms, TE = 33.1 ms, Flip angle = 52 deg, FOV = 208 × 
180 mm2, Matrix = 104 × 90, 72 slices per volume, a total number of 1200 volumes, Voxel size = 2 mm isotropic, 
Acquisition time = 14 min and 33 s; (3) diffusion weighted data with a Spin-echo EPI sequence and the parameters 
TR = 5520 ms, TE = 89.5 ms, Flip angle = 78 deg, FOV = 210 × 180 mm2, Matrix = 168 × 144, 111 slices per volume, 
Voxel size = 1.25 mm isotropic, 90 diffusion weighting directions and six unweighted (b = 0) acquisitions, three 
shells of b = 1000, 2000 and 3000 s/mm2, Acquisition time 9 min 50 s. For further details on the acquisition 
parameters of the HCP participants see the documentation available at https://​www.​human​conne​ctome.​org/.

Image processing.  Lesion segmentation.  Lesion segmentation was based on both T1 and FLAIR images, 
and it was performed semi-automatically using the clusterize toolbox67 implemented in SPM12 and running in 
MATLAB R2019b, followed by manual inspection and correction in MRIcron by experienced researchers. After 
segmentation, the lesion masks were non-linearly co-registered to the MNI152 template with the dimensions 
2 × 2× 2 mm3. To enhance this co-registration we used the T1 sequence (or FLAIR in the first cohort), filling the 
lesioned area with healthy tissue from the contralateral hemisphere.

Functional images from healthy HCP participants.  Resting state functional MRIs from HCP healthy controls 
(N = 1000) were used to generate functional connectivity maps of lesions. First, the images were corrected for EPI 
gradient distortions and normalized to the MNI152 standard template with a voxel size equal to 2 × 2 × 2 mm3 
using the HCP fMRIVolume and fMRISurface pipelines. After image normalization, we removed all nuisances 
with a procedure that mixes a volume-censoring strategy and a movement-related time-course regression, 
together with physiological signal regression. To do so, volumes were marked as censored when the frame-
wise displacements (FDs) were greater than 0.2 or the derivative of the root-mean-squared variance was greater 
than 0.75%, following previous recommendations68–70. Moreover, the volume prior to, and the two following the 
censored one, were also marked as censored. The entire time series was then split into segments of 5 volumes in 
length, to finally remove all segments containing at least one contaminated volume, as well as the first segment. 
The 1000 subjects selected were those with the least contaminated volumes. Subsequently, any nuisances were 
removed while simultaneously applying a bandpass filter between 0.01 and 0.08 Hz. Nuisance signals were the 
first five principal components of the CSF and white matter signals, the linear and quadratic trends, and the 
24-parameter movement-related time-series. Finally, each filtered image was spatially smoothed with a Gaussian 
kernel of 6 mm FWHM.

After image preprocessing and to speed up computation, functional disconnection maps were obtained using 
only the first six minutes of the preprocessed 4D image. To do so, the lesion mask for each stroke patient was used 
as the seed for the analysis of seed-based connectivity (SBC), applied separately to each HCP subject. In such a 
way, the time-series of the BOLD signals were obtained from HCP data, while the stroke patients provided the 
seed for SBC. The Pearson correlation values, ‘ r ‘, between the seed-time series (obtained by averaging all the 
voxel-time series within a given lesion) and all other voxel-time series in the brain, were Fisher-transformed 
by applying the inverse hyperbolic tangent of r, i.e., z = artanh(r). Therefore, for each HCP subject and stroke 
patient we obtained a 3D brain map of z-values. The final functional disconnection map per patient was obtained 
after one-sample T-test statistics were applied to the 1000 HCP different maps.

Diffusion weighted images from healthy HCP participants.  Inspired by the strategy to obtain functional 
disconnection maps, we applied SBC to the diffusion data in order to obtain structural disconnection maps. 
We first made use of the bedpost71 results obtained after applying the HCP pipeline to each subject. The 
Camino software (http://​camino.​cs.​ucl.​ac.​uk/) was then used to obtain a deterministic tractography, with fiber 
assignment using a continuous tracking algorithm72 and all voxels within a given lesion as seeds for whole-
brain fiber generation, employing a maximum curvature of 60° and a fractional anisotropy threshold of 0.15. 
The voxel-level fiber-counting maps were then binarized for each HCP subject, defining the extent to which 
a given voxel in the brain is connected to any voxel within the lesion. Finally, we obtained the final structural 
disconnection map by averaging across all HCP participants, one for each of the stroke patients in our cohort. 
Therefore, a given voxel in the final map had a value of 1 when the stroke patient’s lesion was connected to that 
voxel in all HCP participants and conversely, 0 if it was not connected in any HCP participant.

Sensorimotor assessment as a behavioral outcome in stroke patients.  Somatosensory 
performance was evaluated using the Em-NSA45 to assess exteroception, proprioception and higher cortical 
functions. The Em-NSA evaluates five distinct somatosensory modalities73 including light touch, pressure, 
pinprick, sharp-blunt discrimination and proprioception. Light touch was tested with cotton wool, pressure with 
an index finger pinprick with a toothpick, and sharp-blunt discrimination by alternating a toothpick prick of the 
index finger with that at the following contact points: fingers, hand, forearm, and upper arm. Proprioception was 
assessed during passive movements of the different upper limb joints. Each point of contact was assessed 3 times 

https://www.humanconnectome.org/
http://camino.cs.ucl.ac.uk/
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and graded on an ordinal scale as: 0, patient fails to detect any sensation on all 3 occasions; 1, patient identifies 
test sensation, but not on all 3 occasions; or 2, patient correctly identifies the test sensation on all 3 occasions. In 
total, the scores for each modality ranged from 0 (complete somatosensory impairment) to 8 (no somatosensory 
impairment). The total score for the Em-NSA (including all modalities together) ranges from 0 to 40, with 
a higher score representing better upper-limb somatosensory performance and a score below 36 indicating a 
degree of somatosensory impairment40. A second test that was used for somatosensory performance was the 
PTT47, which assesses gentle touch perception by applying transcutaneous electrical nerve stimulation (TENS) 
with a CEFAR Primo Pro apparatus (Cefar medical AB, Sweden). The scores reflect the mA applied to detect 
stimulation on the affected tip of the index finger and thus, higher PTT scores indicate more somatosensory 
impairment, with maximal stimulation being set at 10 mA to prevent burning. If a patient was unable to feel any 
sensation at the maximum stimulation level they were awarded a score of 11.

Motor performance was assessed with the ARAT to evaluate upper limb activity41, a 19-item test divided into 
4 categories: grasp, grip, pinch, and gross arm movement. Each category is rated with an integer value ranging 
from 3 (patient performs test with normal motor pattern) to 0 (patient cannot perform any part of the test). 
Therefore, the maximum score after the ARAT test is 57, indicating normal motor performance of the arm. Motor 
performance was also assessed with the FMA-UE42 test, addressing motor function of the upper extremity as a 
whole (including shoulder, elbow, wrist and hand movements), from reflex activity to voluntary activation73. The 
total FMA-UE score ranges between 0 and 66, with a higher score representing better upper-limb motor function.

In any case, for each participant the assessment was performed in their affected limbs.

Association between behavioral outcomes and the disconnectivity maps.  Sensory‑motor 
data pre‑processing.  Because there were some missing values in the behavioral scores from stroke patients, 
we applied the following procedure to this data. Rather than penalizing the sample size by eliminating these 
patients, we generated the missing values using an iterative imputer algorithm with extra tree regressors, seen 
to be highly effective in generating missing data74,75. The total number of missing values was zero for the ARAT 
test, 3 for the FMA-UE test, 2 for the Em-NSA and 2 for the PTT.

Canonical correlation analysis (CCA).  First, we merged the patients’ maps from lesions in the left and right 
hemisphere into a single cohort, thereby increasing the statistical power for our CCA analysis. Next, by 
identifying the set of voxels in each map with non-zero values from each subject and modality, we added all 
these voxels into a single mask for the entire population, and allowing us to obtain matrices with dimensions (# 
of stroke patients) × (# of voxels within the modality mask). The principal components (PC) of these matrices 
were used as the input of the CCA. In particular, we applied an iterative CCA to establish associations between 
imaging and behavioral outcomes. For this, the residuals of the behavioral variables were used as the dependent 
variables (after regressing out lesion size, patient age, and TBSAA) and the PCs as the independent variables, 
starting with one component as the X variable and ending with a matrix including all the PCs. When the number 
of components in X increased, the CCA strategy led to overfitting, making the extent of the correlation achieved 
meaningless. To overcome this limitation, we performed a predictive CCA approach using leave-one-out cross-
validation (LOOCV). Thus, to obtain the CCA predicting correlation value, for every step (subject) we adjusted 
the CCA with all-except-one participants and predicted the canonical scores of the remaining participant with 
the learned model. Statistical significance was assessed by surrogate generation of 1000 random permutations of 
the X variables (we also applied 5000 and 10,000 surrogates and significance did not change), and the p-value 
estimated by counting the number of instances where the surrogate correlations were greater than those produced 
by CCA divided by the total number of permutations76, which in our case was sufficient for controlling all false 
positives in the null-distribution within our p-value granularity, determined by 1/#permutations which is the 
minimum achievable p-value. We also estimated p-value errors by calculating 

√

p ∗ (1− p)/#perm77. Finally, 
we selected the best model as that for which the PCA order achieved the maximum correlation T using the 
predictive LOOCV-CCA introduced.

This procedure was performed for SC and FC separately (unimodal analyses), and combined through spatial 
concatenation of standarized SC and FC matrices (used for the multimodal analysis). This was followed by 
a PCA and the mixed components obtained were used for CCA, the same as for the unimodal cases. In the 
multimodal approach, to control for the variability and the differences in the range values between modalities, 
we first transformed the SC to logarithmic values, and then standardized both the SC and FC matrices before 
concatenation.

Brain maps corresponding to best CCA solutions.  Using the weights of the best model and their coefficients, we 
projected this solution back onto the brain space. The final maps were obtained by transforming the values to 
z-scores and representing only the Z > 2 values (the maps with no thresholding are also included in Fig. S5 for 
comparison purposes). For the multimodal strategy, we first back-projected the best solution, and then we split 
the different coefficients identifying the separate SC and FC contributions.

Neurobiological description of brain maps.  Brain maps were described using four different atlases. The first one 
was XTRACT​78, composed of 42 different white matter tracts, including: 10 association tracts (L/R hemispheres), 
4 commissural tracts, 4 limbic tracts (L/R hemispheres), and 5 projection tracts (L/R hemispheres). The second 
atlas was Desikan-Killiany79 with 88 regions, 8 of them subcortical (L/R hemisphere) and 36 cortical (L/R 
hemispheres). To this atlas, we added the brainstem as an additional region. The third atlas was SMATT​80 with 
60 regions in total, 30 sensorimotor tracts (L/R hemispheres). Finally, the fourth atlas was an overlay of several 
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partitions proposed by Yeo and collaborators, including the cortex81, cerebellum82, striatum83 and thalamus (to 
the best of our knowledge released by the author but not yet published in any citable reference).

Statistical analyses.  Unless otherwise specified, group comparisons of different metrics used in this study 
(e.g., scores in patients with a lesion in the right hemisphere compared to those in the left hemisphere) were 
performed with two-sample Kruskal–Wallis non-parametric tests, reported as χ2 stat. Statistical dependencies 
between behavioral scores were assessed through Pearson correlation analysis. Spatial similarity between brain 
maps was assessed using Pearson spatial correlation.

Data and code availability
MRI anatomical, functional and diffusion images from the 1000 healthy subjects are available under registration 
at https://​www.​human​conne​ctome.​org/. Specific code for the analyses, patient’s lesion masks normalized to 
common template, lesion volumes, dis-connectivity structural and functional maps from stroke patients and 
their behavioral data are available under request to corresponding author.
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