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Synthesis, characterization 
and potential sensing application 
of carbon dots synthesized 
via the hydrothermal treatment 
of cow milk
Avinash Kumar , Ishant Kumar  & Arvind K. Gathania *

Carbon quantum dots (CQDs) were synthesized in this study by hydrothermally treating cow milk. 
The procedure is simple, non-hazardous to the environment, and does not necessitate the use of any 
special instruments or chemicals. CQDs were practically almost circular when they were manufactured 
and had an average size of 7 nm. Carbon (67.36%), oxygen (22.73%), and nitrogen (9.91%) comprised 
the majority of their composition. They feature broad excitation-emission spectra, excitation-
dependent emission, and temperature-dependent photoluminescence. They remained quite stable 
in the presence of a lot of salt, UV radiation, and storage time. Because luminescence quenching 
mechanisms are sensitive to and selective for  Sn2+, they can be employed to create a nanosensor for 
detecting  Sn2+.

Carbon quantum dots (CQDs) are carbon nanoparticles smaller than 10 nm in size. They have amorphous to 
nanocrystalline cores and are typically quasi-spherical in shape. They are made of graphene and graphene oxide 
sheets using sp3 hybridized carbon insertion or sp2 graphitic carbon  insertion1–5. Prior to CQDs, conventional 
dyes and semiconductor quantum dots were in use. However, their clinical applications are limited because of 
the utilization of highly hazardous heavy metal ions in their  manufacturing1,6–10. This leads to a thorough analy-
sis of CQDs. CQDs feature fluorescence qualities similar to semiconductor quantum dots, as well as minimal 
toxicity, low production cost, biocompatibility, and chemical inertness. They were discovered by chance in 2004 
during the electrophoresis purification of single-walled carbon nanotubes, and by laser ablation of cement and 
graphitic powder in  200611. They have recently received a lot of attention because of their unique properties like 
low toxicity, biocompatibility, tunable fluorescence, water-solubility, flexible surface  modification12, and a wide 
range of applications like chemical sensing, bioimaging, biosensing, nanomedicine, photocatalysis, drug delivery, 
fluorescent probes, and optoelectronic  devices13.

To date, several approaches for the synthesis of CQDs are available. There are two techniques for CQD syn-
thesis in general: top-down and bottom-up. Bulk material is broken down to form nano-sized particles using 
the top-down technique. The Bottom-up technique, on the other hand, entails the formation of nano-sized 
particles by assembling atoms or molecules into useful shapes. Arc  discharge14, Laser  ablation15,16, Carboniza-
tion,  Solvothermal17,  Hydrothermal18–24,  Microwave25, Ultrasonication  method26,  Pyrolysis27, Electrochemical 
 method28 and chemical oxidation are among these approaches. The Hydrothermal method has recently received 
a lot of attention because of its low cost, biocompatibility, high efficiency, and environmental friendliness. A 
precursor is delivered to an autoclave reactor and allowed to react at high temperatures and pressures in a 
hydrothermal process. To date, CQDs were synthesized using a variety of resources such as agricultural waste, 
organic compounds, hazardous chemicals, natural goods, and so on. Natural precursors have received widespread 
interest in these fields because they are readily available, cost-effective, and environmentally acceptable. Orange 
 juice29, Sugarcane  juice30, Apple  juice31, Lemon  juice32,33, Coffee  grounds34, Sweet  pepper35, Bamboo  leaves36, 
 Hair37, Konjac flour,  Grass38, Egg, Soya  milk39, Cocoon silk,  Garlic40, Red  lentils12, and Glucose have all been 
used to make CQDs. Mehta et al.41 synthesized CQDs from apple juice for imaging mycobacterium and fungal 
cells. Hoan et al.42 prepared CQDs from lemon juice and used them as a probe for  Mo6+ ion detection. CQDs 
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were synthesized from red lentils by Zubair et al.12 for  Fe3+ sensing. Thambiraj et al.43 prepared CQDs from sug-
arcane bagasse pulp using the chemical oxidation and exfoliation method. Rui-Jun et al.44 created CQDs from 
polyethylene glycol for use in cellular imaging. Aye Myint et al.45 used the  ClCO2 antisolvent technique to create 
CQDs from kraft lignin, followed by carbonization and chemical oxidation for HeLa cell imaging. Hong et al.46 
synthesized nitrogen-doped carbon nanoparticles from strawberry juice to detect mercury ions. Sen Lui et al.47 
synthesized CQDs from grass hydrothermal treatment as a fluorescent sensing platform for label-free detection 
of  Cu2+ ions. Betha et al.48 made fluorescent carbon dots from Carica papaya juice to image Bacterial and Fungal 
cells. Yang et al.49 created lignin-based CQDs for thermal energy storage applications.

Sn2+ has been utilized in dentistry to prevent tooth cavities since the  1950s50,51. Because of its importance to 
humans, its biological roles have recently been explored. It can be found in the human brain, liver, and  spleen52–54 
and is involved in growth or cancer  prevention50. Its overabundance can have an adverse effect on the digestive 
and respiratory systems, while a deficit can result in hearing loss or  dysplasia54. As a result, detecting  Sn2+ with 
high sensitivity and selectivity is critical. Traditional techniques for  Sn2+ sensing including high-performance 
liquid chromatography (HPLC)55, colorimetric  detection56, and anodic stripping voltammetry (AVS)57 have 
drawbacks like the requirement of sophisticated instruments and a long detection time. Fluorescence sensors 
based on fluorescence quenching methods have been found to be a good substitute for  Sn2+ detection due to 
their ease of use, high sensitivity, and quick  responses58,59.

We used a hydrothermal approach to synthesize CQDs from cow milk. CQDs have a quasi-spherical shape 
with an average size of 7 nm. They demonstrated excitation-dependent emission, temperature-dependent pho-
toluminescence (Pl), and excellent photostability. They were also looked into for metal ion sensing applications. 
Their sensitivity to various metal ions was studied, and they were discovered to be sensitive to  Sn2+. As a result, 
they can be used to build a nanoprobe sensor for detecting  Sn2+.

Materials and methods
Ethical considerations. An ethical committee’s approval was not required for the use of cow’s milk in this 
study because the research was conducted not on animals but on their milk, which we got from the cow’s owner.

Materials. In the Supplementary File, Image 1 depicts the cow from whom the milk was obtained. It is of the 
Jersey breed. It belongs to Mr. Rakesh Kumar, a resident of the Hamirpur district of Himachal Pradesh, India. 
The milk was taken directly from the cow by milking it with the help of Mr. Rakesh. Deionized water, Sodium 
hydroxide (NaOH, > 96%), Sodium sulfite  (Na2SO3, > 98%), hydrogen peroxide  (H2O2, 30%), Anhydrous etha-
nol, Metal salts  SnCl2·2H2O (98%),  CdCl2·H2O (99%),  ZnCl2 (98%), KCl (99%),  CaCl2·2H2O (98%), NaCl (99%), 
 FeCl3 (98%), LiCl (99%), and  HgCl2 (98%) were purchased from Sigma-Aldrich. All of the chemicals were of 
analytical grade and did not require further purification.

Preparation of CQDs. Stir vigorously for 20 min after adding 15 mL of deionized water to 19 mL of cow 
milk. Transfer this solution to a 50 ml Teflon-lined autoclave reactor and place it in a muffle furnace at 180 
degrees for two hours. Allow the reactor to cool to room temperature naturally. After the carbonization of the 
precursor, the obtained solution was centrifuged at 8000 rpm for 30 min and the supernatant is further filtered 
with a 25 mm/0.2 µm syringe filter.

Sn2+ detection process. After mixing 100 µL CQDs and 500 µL sodium-acetate buffer solution (pH = 7), 
different concentrations of metal ions and  Sn2+ were added. With deionized water, the final volume was increased 
to 2.5 mL. Pl spectra were collected after 5 min of incubation.

Characterizations. HR-TEM study was carried out by using the FEI company of USA (Model: FP 
5022/22-Tecnai G2 20 S-TWIN) instrument. XPS analysis was performed on Thermofisher scientific (Model: 
Nexsa base) with Al  Kα X-rays. FTIR spectra were taken on a Perkin-Elmer spectrum 65 spectrometers.PL stud-
ies were performed on Shimadzu RF-6000 Spectro fluorophotometer instrument equipped with a Xenon lamp. 
Photostability tests were performed with a light of 365 nm from an ultraviolet lamp at room temperature. UV–
visible spectra were acquired with Vis–NIR spectrophotometer (Make: PerkinElmer Model: UV-2450).

Owner’s consent statement. The owner of the cow gave us permission to use its milk in an experiment.

Results and discussions
HR-TEM study. HR-TEM analysis was performed to investigate particle morphology and particle size dis-
tribution. The TEM image is shown in Fig. 1a. The presence of black spots indicates that CQDs are forming. They 
are quasi-spherical in shape and have an average size of (7–8) nm (Fig. 1c). The absence of lattice fringes in the 
HR-TEM image in Fig. 1b indicates that the prepared CQDs are amorphous, which is consistent with previous 
studies  earlier46,60–63.

XPS study. The elemental composition and surface groups of CQDs were investigated using XPS. Figure 2a 
shows full scan XPS spectra. The spectrum shows three peaks at 286.12 eV, 400.3 eV, and 532.75 eV which cor-
responds to C 1 s, N 1 s, and O 1 s  respectively12,46,64. According to the findings, CQDs are primarily composed of 
carbon (67.36%), nitrogen (9.91%), and oxygen (22.73%). The high C and O content indicates that the particles 
have a lot of carboxyl groups on the  surface60. CQDs have good water solubility due to carboxyl groups and do 
not require further chemical  modification65. Oxygen-containing groups may be responsible for their solubility in 
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polar solvents including  water66. Deconvolution of C 1 s yields three peaks at 284.92 eV, 286.5 eV, and 287.9 eV, 
corresponding to C–C, C–N/C–O, and C=O in Fig. 2b 12,46. In Fig. 2c, the deconvolution of N 1 s produces three 
peaks at 399.58 eV, 400.2 eV, and 400.99 eV, corresponding to C–N–C, N–(C)3, and N–H,  respectively12,47. In 
Fig. 2d, the spectrum of O 1 s shows two peaks at 531.6 eV and 532.9 eV, which are attributed to C=O and C–
OH/C–O–C,  respectively46,47.

3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

80

100

120

140

160

180

200

stnuoC

Size (nm)

(c)

(b)

(a)

Figure 1.  TEM images of CQDs at, (a) 100 nm, (b) 20 nm resolution, (c) size distribution.
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FTIR and XPS studies indicate the presence of various functional groups on the surface of these CQDs without 
any surface modification. However the surface state of CQDs can be altered by the doping of Nitrogen, organic 
molecules, heteroatom doping e.g. Sulphur, Phosphorous, Boron, Fluorine, etc.66–72.

FTIR studies. Figure 3 shows the FTIR spectrum of the prepared CQDS at various hydrothermal tempera-
tures (150, 180, 230, 280 °C) and time (2, 4, 6, 8, 10 h). The absorption band from 3175 to 3551  cm−1 is attributed 
to O–H and N–H stretching vibrations of amine  groups46,65,73. The peak at 2129  cm−1 is assigned to weak C≡C 
stretching of alkyne. The peak at 1653  cm−1 is due to C=O bond  stretching12. The peak at 1037  cm−1 corresponds 
to C–O  stretching74,75. FTIR spectrum obtained at different times and temperatures suggests that there is no 
appreciable change in the spectrum.

UV–visible and Pl studies. The UV–visible spectra of CQDs and CQDs with  Sn2+ ion is displayed in 
Fig. S1. It demonstrates two shoulder peaks that are located at 275 nm and 330 nm respectively. It’s possible that 
the peak at 275 nm is caused by ח–ח* transitions in the C=C bond, and the peak at 330 nm could be caused by 
n–ח* transitions in the C=O  bond37. The Quantum yield of CQDs is calculated using quinone sulfate as a 
 reference12. The value comes out to be 38% which is comparable to the studies reported in the  literature76,77. The 
fluorescence excitation and emission spectra of CQDs are depicted in Fig. 4a. CQDs exhibit broad and feature-
less excitation and emission bands rather than characteristic absorption and emission peaks, as shown in Fig. 4a. 
The excitation wavelength ranges from 380 to 550 nm (in the UV–visible region), with a maximum of 475 nm. 
And the emission wavelength ranges from 480 to 730 nm, with a maximum of 550 nm. These broad excitation 
and emission bands could be caused by non-uniform particle sizes and functional groups on the surface of 
 CQDs60,78,79. The prepared CQDs exhibit excitation-dependent emission properties. This is depicted in Fig. 4b. 
We observed emission at various excitation wavelengths across the entire excitation range, from 380 to 580 nm 
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Figure 2.  (a) Full scan XPS of CQDs. High resolution spectra of (b) C 1 s (c) N 1 s (d) O 1 s.
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with a gap of 20 nm. There is an increase in PL intensity and a very slight shift of emission peaks to the longer 
wavelength from 380 to 475 nm. However, the pl intensity decreases from 480 to 580 nm, and emission peaks 
shift to longer wavelengths. This behaviour could be attributed to the CQDs’ varying sizes, random distribution, 
and the presence of various organic functional groups on their  surfaces44,47,60,65,80–82. The first reason for excita-
tion-dependent emission is due to non-uniform CQD sizes. Different band gaps correspond to different CQD 
sizes. When a specific wavelength of light is projected onto CQDs, particles of the same size emit. When other 
wavelengths are projected, particles of different sizes emit. As a result, the emission is dependent on excitation. 
The surface state of the CQDs is the second cause. XPS and FTIR studies show that CQD surfaces contain a 
variety of functional groups.

These functional groups have the ability to generate their own energy levels. As a result, an electron can reach 
the ground state via photon emission via various routes, resulting in excitation-dependent emission. The intensity 
of the Pl varies with temperature, ranging from room temperature 27–77 °C with a 5 °C difference. The variation 
is measured at three different wavelengths: one at maximum excitation (475 nm), one below maximum excitation 
(435 nm), and one above maximum excitation (515 nm). Figure 5 depicts this. To get a clear picture, they are 
all chosen at random. The figures show that the intensity of the Pl decreases with increasing temperature, and 
the variation is consistent across all wavelengths. This decrease in intensity could be attributed to an increase in 
non-radiative relaxation at high temperatures as a result of thermal activation of non-radiative  trapping83,84. The 
zeta potential of the prepared CQDs is shown in Fig. 5d. The obtained zeta potential is 6.57 mV. Its value is in the 
same order as given in the literature. Its value is close to reported values in the literature in terms of  order85,86.

Figure 6a,b depicts the change in Pl intensity over synthesis time and temperature. The figure shows that the Pl 
intensity increases with increasing hydrothermal time and temperature, but there is no shift in the maximum peak 

Figure 3.  FTIR spectra of CQDs (a) at different temperatures, (b) at different times.

450 500 550 600 650 700
0

2000

4000

6000

8000

)s/c(
ytis

net
nIl

P

Wavelength (nm)

 380 nm
 400 nm
 420 nm
 440 nm
 460 nm
 475 nm
 480 nm
 500 nm
 520 nm
 540 nm
 560 nm
 580 nm

(b)

400 500 600 700

0

2000

4000

6000

8000

)s/c(
ytis

net
nIl

P

Wavelength (nm)

 exc.
 emi.

(a)

Figure 4.  (a) Fluorescence excitation (dotted line) and emission spectra (red line) of CQDs. (b) Excitation-
dependent emission spectra of CQDs.
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Figure 5.  Variation of Pl intensity with the temperature at (a) 435 nm, (b) 475 nm, (c) 515 nm excitation 
wavelength, and (d) Zeta potential (mV).
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 position42,85. The reason for this could be that as the hydrothermal time and temperature increase, the constituents 
dehydrate, polymerize, and carbonize, and a greater number of constituents are converted to  carbonization85.

Response of CQDs to pH value and solvents. To test the solubility and luminescence properties of 
CQDs, they were dissolved in various diluted solvents. They were soluble in water, ethylene glycol, methanol, 
ethanol, and acetone, as well as other polar organic solvents. This could be due to the presence of polar functional 
groups on the surface of CQDs, such as carboxyl and  hydroxyl87. Pl intensity is higher in polar solvents than in 
pure CQDs, and it is greatest in water (Fig. 7a)85,88,89. As a result, water is an excellent CQD solvent. The effect of 
pH on the Pl intensity of CQDs was also investigated. Despite the fact that Pl intensity varies with pH, the maxi-
mum peak position was not shifted (Fig. 7b). The Pl intensity decreases significantly in the higher and lower pH 
regions, but it changes slightly in the pH range of 3–11, indicating that CQDs have good stability in this range 
and can be explored for potential  applications90.

Stability of CQDs. CQDs stability is critical for real-world applications. CQD photostability was tested 
using a variety of methods, including UV irradiation, storage time, and high salt conditions. CQDs were exposed 
to UV light for 180 min, resulting in a very small change in Pl intensity, as shown in Fig. 8a. They were then 
stored for 5 weeks, and the Pl intensity was measured at regular intervals; no significant change in the Pl intensity 
was observed, as shown in Fig. 8b. Similarly, no discernible change in Pl intensity was observed when various 
concentrations of NaCl (0–1 M) were added (Fig. 8c). In Fig. 8c F0 is the Pl intensity of the blank sample and F is 
the Pl intensity of CQDs in various NaCl concentrations. All of these findings suggest that CQDs are stable and 
can be used in practical applications.

Metal ion detection. Selectivity is an important factor in developing an effective sensor for detecting metal 
ions in aqueous solutions. It is investigated by introducing different metal ions into CQDs, such as  Ca2+,  Fe3+, 
 K+,  Cd2+,  Na+,  Li+,  Hg2+,  Zn2+,  Pb2+, and  Sn2+ to CQDs. 5 mM metal ions were added to 500µL buffer solution, 
100µL CQDs, and the final volume was raised to 2.5 mL by adding deionized water. The Pl spectra were captured 
at an excitation wavelength of 475 nm. Figure 9a shows the ratio of the intensity of Pl when different metal ions 
are added to CQDs (I) to the intensity of Pl in a blank sample  (IO). It was observed that adding  Sn2+ significantly 
reduced the intensity ratio. Other metal ions, with the exception of  Zn2+,  Hg2+,  Pb2+, and  Li+,  Pb2+ exhibit negli-
gible changes in intensity ratio. This implies that  Sn2+ has a strong interaction with CQDs. Other metal ions show 
negligible interference in the detection of  Sn2+ when mixed with  Sn2+ (Fig. 9b). As a result, CQDs demonstrated 
high selectivity for  Sn2+. Further, the sensitivity toward  Sn2+ was analyzed by adding different concentrations 
(0–1 mM) of  Sn2+ to CQDs and recording the Pl responses at 475 nm excitation wavelength and is shown in 
Fig. S2. It was observed that Pl intensity decreased with the increased concentration of  Sn2+ and the maximum 
peak position did not shift. It indicates that CQDs were sensitive to  Sn2+. So, the prepared sensor can be used for 
the detection of  Sn2+ in the environment. Similar quenching-based sensors have been reported in the literature 
as  well12,42,87,88,91. Figure S3 represents the I/I0 ratio vs various concentrations of  Sn2+ ion. It showed a good linear 
response in the range of 0–50 µM and the calculated limit of detection (LOD) value is 17 µM92. The calculations 
for the LOD are based on the method given in the  literature72. The whole curve is not linear, which may indicate 
the presence of static and dynamic quenching in the  sensor12.

The luminescence quenching mechanism is illustrated in Scheme 1.

Proposed detection mechanism. The proposed quenching mechanism can be elaborated on the basis of 
UV–Visible and FTIR spectra. UV–Visible spectra are shown in Fig. S1. The peaks at 275 nm and 330 nm cor-
respond to ח–ח* and n–ח* transitions of the C=C and C=O bond respectively depicted in Fig. S4. It was noticed 

Figure 7.  Effect on the Pl intensity of CQDs in (a) different solvents and (b) different pH environments.
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Figure 8.  Photostability of CQDs at, (a) UV-irradiation, (b) storage time, (c) in high salt conditions.
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that with the addition of  Sn2+ the shoulder peaks at 275 nm and 330 nm disappear, which may indicate the 
interaction of CQDs with  Sn2+37. Furthermore, Comparative studies of FTIR spectrum of CQDs and  Sn2+ in 
CQDs is shown in Figs. S5, S6. It reveals the presence of O–Sn–O functional group at 417  cm−1 indicating the 
complex formation between CQDs and  Sn2+ions93. In addition, the quenching of Pl intensity may be due to the 
presence of various functional groups such as carboxyl, hydroxyl, amine, etc. These groups may enhance metal 
ion chelation and non-radiative recombination, resulting in intensity  quenching94.

Conclusions
We used the hydrothermal method to synthesize CQDs from cow milk in this study. The method is simple and 
safe for the environment. CQDs prepared in this manner exhibit broad excitation and emission spectra, high 
quantum yield of 38% excitation-dependent emission, and excellent photostability. The variation in Pl intensity 
with temperature was also investigated. They were stable when exposed to UV light, when stored for a long time, 
and when there were high salt conditions. Because of their high sensitivity and selectivity for  Sn2+, they are used 
in the detection of  Sn2+ via the luminescence quenching mechanism. The limit of detection (LOD) value is 17 µM. 
Because of their excellent properties, they are a promising candidate for detecting  Sn2+ in the environment.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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