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Physics‑embedded inverse analysis 
with algorithmic differentiation 
for the earth’s subsurface
Hao Wu 1*, Sarah Y. Greer 1,2 & Daniel O’Malley 1

Inverse analysis has been utilized to understand unknown underground geological properties by 
matching the observational data with simulators. To overcome the underconstrained nature of inverse 
problems and achieve good performance, an approach is presented with embedded physics and a 
technique known as algorithmic differentiation. We use a physics‑embedded generative model, which 
takes statistically simple parameters as input and outputs subsurface properties (e.g., permeability or 
P‑wave velocity), that embeds physical knowledge of the subsurface properties into inverse analysis 
and improves its performance. We tested the application of this approach on four geologic problems: 
two heterogeneous hydraulic conductivity fields, a hydraulic fracture network, and a seismic inversion 
for P‑wave velocity. This physics‑embedded inverse analysis approach consistently characterizes 
these geological problems accurately. Furthermore, the excellent performance in matching the 
observational data demonstrates the reliability of the proposed method. Moreover, the application of 
algorithmic differentiation makes this an easy and fast approach to inverse analysis when dealing with 
complicated geological structures.

Inverse analysis gives the solution of inverse problems aiming to find unknown properties of an object, or a 
medium, from observing a response of this object or  medium1. The inverse analysis process describes finding 
the matched predictions through a forward model calculation, which takes the parameters describing unknown 
properties as input, to the observational  data2,3. A representative example is seismic inversion, which often 
involves triggering a source wavefield at the earth’s surface and collecting the scattered data at receivers from 
various positions along the surface. Accounting for the received data, it is possible to find the heterogeneous 
subsurface structures, such as the existence of an oil deposit, a cave, or a  mine1. In earth science, geological 
reservoir characterization is of essential value for maximizing oil production from mature hydrocarbon prov-
inces, detecting fluid distributions (groundwater, oil, gas, etc.)4,5, and many other important issues affecting our 
daily  lives6–8. In addition, reservoir properties show spatial heterogeneities from pore to reservoir scale, and it 
is critical to properly resolve the heterogeneity effects on the underground fluid flow  system9,10. However, since 
physical properties can not be observed directly in the field, inverse analysis techniques have to be applied in 
order to understand the heterogeneous reservoir properties depending on observational data, such as pressure 
for hydraulic conductivity fields.

In this study, we propose a novel method for inverse analysis, which generalizes different inverse analysis 
approaches and can include embedded physics understanding. In addition, we test this novel inverse analysis 
method for different earth science problems: heterogeneous hydraulic conductivity of a groundwater flow sys-
tem, hydraulic fracture distribution in a gas-producing reservoir, and seismic inverse for subsurface aquifer 
determination. Porous media has been the source of valuable fluids such as groundwater and petroleum, as 
well as both liquid and natural  gas11. In a groundwater flow system, fully understanding the heterogeneous 
subsurface hydraulic conductivity distribution is of importance for estimation of drinking groundwater utiliza-
tion and contamination  mitigation6–8. In addition, the earth’s subsurface has also been used for the injection of 
slurried wastes, like hazardous chemicals or radioactive  byproducts12,13, and certain geological reservoirs have 
been used for  CO2 storage and  recovery10,14–17. Characterizing the underground structures, which enables the 
prediction of the fluid flow system behavior, is essential for successfully using geological sources and avoiding 
environmental contamination for the projects mentioned above. Notably, we focus on two different scales of 
heterogeneity in this study. Furthermore, among the producing wells drilled in North America since the 1950s, 
around 70% of gas wells and 50% of oil wells have been hydraulically fractured. Once a hydraulic fracture is 
generated, fluid in the reservoir will flow out or into the fracture face and then, along the fracture path, flow out 
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or into the injection or production  well18–20. Over the past decades, hydraulic fracture simulation has become 
a significant part of the design and analysis of oil fields through reservoir characterization and  simulation21. 
This study depicts the hydraulic conductivity distribution of a hydraulic fracture network by applying inverse 
analysis for future oil production estimation and optimization. Last but not least, we exploit a physics-embedded 
generative model for seismic inversion problems for predictions about underground  lithology22. Seismic inver-
sion aims to reconstruct the subsurface structure based on seismic measurements, like trapping mechanisms 
for hydrocarbon reservoirs and fracture distribution for groundwater  storage23. During the seismic inversion, 
reservoir properties of interest, such as lithologies, can be transformed from elastic properties (e.g., velocities), 
which are inverted from seismic  data24. Here, resulting from inverse analysis, seismic inversion of underground 
geological properties is easy and fast.

The inverse analysis provides support for underground feature characterization in earth sciences. Despite its 
effectiveness, inverse analysis is challenging to conduct, and is computationally  expensive8. In addition, another 
concern of inverse analysis is that it may lead to many viable solutions resulting in a second-round calibration or 
investigation due to the underconstrained or ill-posed  features25. There are many feasible ways to conduct inverse 
analysis, for example, the geostatistical  approach26,27, physics-based imaging  methods28, and machine learning 
(ML)29,30. The stochastic geostatistical inversion approach was recognized at unknown parameters  estimation31, 
which describes the unknown underground geological properties, like permeability. However, the randomness 
of the variables reflects the lack of certainty about their values, which are coded as the probability distributions of 
the quantities. As a result, the solution to an uncertainty quantification turns out to be the maximum likelihood 
probability distribution of the target variables, based on all the information completed to be  interpreted32. Given 
this feature of the traditional geostatistical approach, the high computational cost may be one concern when 
dealing with large-scale systems. Even if some recent developments overcome this challenge, like the principal 
component geostatistical approach (PCGA)26,27, reducing the dimension parameter space by only focusing on 
principal components of the covariance matrix, the struggle still cannot be avoided when dealing with highly 
complicated surface structures that are not amenable to a two-point correlation structure. In the use of reflection 
seismic data, various migration methods are often used to map recorded surface data to their corresponding 
subsurface reflection points. More robust methods, such as reverse-time migration and full-waveform inversion, 
can work on models with complex geologic structures but require significant computational  cost33,34. An addi-
tional representative method is ML, which recently improved inverse analysis in the geological  area35,36. These 
ML studies did use a physics model during the initial training, which led to a scenario with a steep up-front cost 
to generate the training data, even if they can produce excellent  results37. In some situations, the computational 
cost of generating training data is higher than the pure inverse analysis step, which can be self-defeating. It 
results from the limitation of these ML models that each training data point needs to run through the forward 
model for generation, which is a high computational cost. This process means explicitly developing a label for 
each training data point and going through the supervised ML training afterward. However, the VAE training 
does not request the generation of data set with a label. In addition, the success of the ML models is subject to 
the appropriate selection of ML structures, while the uncertainty of results cannot be predicted from different 
structures (e.g., sometimes shallow networks can reach better results than deep networks)37,38. In the work  of39, 
they applied deep learning for inverse problems about image reconstruction, which illustrates the pressing need 
for model structure selection, even if there is a considerable improvement in the demand for the training data.

To overcome the aforementioned challenges, including physical calibration during inverse analysis has been 
successful in enhancing the final results and the model  performance40–43. Take the work  of44, for instance; they 
addressed the physics-informed diagnostics by testing various ML algorithms’ capability for turbulence flow. 
Interestingly, this physics-informed ML contributes to taking advantage of the mathematical properties of the 
underlying physics foundation, yielding interpretable strategies from numerical methods and computational 
fluid dynamics. As a result, it increased the reliability of ML schemes by its high efficiency and  accuracy45. 
Other similar examples, like the work  of46,47, present similar approaches to incorporating knowledge of physics 
as a soft physics constraint for the loss function penalty in the area of quantum mechanics. In earth sciences, 
physics-embedded inverse analysis has been widely applied. In our previous  work48, we proposed an approach 
(RegAE) to achieve an easy and fast inverse analysis to interpret complex heterogeneous hydrogeologic reservoir 
properties by applying the variational autoencoder (VAE), which combines the strengths of the traditional geo-
statistical approach and recent ML techniques. In addition, we tested the different neural network architectures 
based on result stability and reliability. Similarly, the physics-informed autoencoders have been investigated for 
underground fluid flow prediction, and it provides a comprehensive understanding of model stability and pre-
diction certainty  improvement49. As a result, involving the understanding of physics foundation by applying the 
mathematical properties of physics laws when generating the target fields is a powerful tool for inverse analysis 
problems, which provides fundamental support for accuracy and efficiency enhancement. Triggered by the find-
ings in our previous work, here, we address the importance of including physics understanding during inverse 
analysis and provide a more generalized idea to systematically create an inverse analysis for different applications. 
Therefore, this study describes our novel approach to physics-embedded inverse analysis and demonstrates its 
efficacy on multiple subsurface problems, including subsurface flow and seismic wave propagation.

Underground reservoir property characterization is complicated because the underlying system is  unknown50. 
For inverse analysis, it is essential to rely on observational data to discover the underground structures and fea-
tures since it is impossible to directly observe all the detailed information about the whole system in the field. 
Given this reason, especially for large-scale inverse models, the use of many observations is  essential51. Thanks to 
the rapid development of sensor networks, we can collect a wealth of variable fidelity observations and monitor 
the evolution of complex phenomena at large spatial and temporal  scales37. Consequently, it leads to a scenario 
where the inverse analysis based on observational data can be performed. Beyond this, another key factor to 
achieving successful inverse analysis is result calibration by matching observational data. Even though enough 
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observational data has been utilized during calibration to reach good performance of the inverse model, regulari-
zation, a numerical technique involving adding a term to the objective function, is highly valued for improving 
results. Adding a regularization term to the objective function seeks to develop additional desired features to the 
inverse solution, such as smoothness, convexity, or respecting prior knowledge of geologic features. In addition, 
optimization is the most time-consuming step during inverse analysis, but we apply algorithmic differentiation 
to increase the computational  efficiency52. Algorithmic differentiation can compute gradients with a low com-
putational cost for complicated computer programs by applying the chain rule repeatedly. Specifically, reverse 
model algorithmic differentiation is good at calculating high-dimensional derivatives (in this study, we map a 
high-dimensional input to a low-dimensional output), which is often useful for inverse analysis problems with 
substantial computational savings. Because of regularization and algorithmic differentiation techniques, inverse 
analysis becomes more feasible to estimate interest quantities reasonably based on available  data32.

The remainder of this manuscript describes the workflow of the general physics-embedded inverse analysis, 
the inverse analysis results for different problems, and the benefits and improvement of this approach in “Meth-
ods”, “Examples and results”, and “Discussion” sections. Finally, we present our conclusion about applying this 
approach in “Conclusion” section.

Methods
The physics-embedded inverse analysis starts with the physics-embedded generative model generation. Spe-
cifically, in this study, the physics-embedded generative models describing the quantities of interest are the 
heterogeneous hydraulic conductivity distribution, hydraulic fracture distribution, and seismic P-wave velocity. 
These are the targets of what inverse analysis is trying to predict through observational data matching. Several 
key factors are picked to represent the variability of the targets through the physics-embedded generative model 
for the stability test. For example, in the hydraulic fracture problem, five key factors (which can be understood 
as latent variables) are utilized to represent the lengths of the hydraulic fractures in a cluster, which is correlated 
with permeability. The physics-embedded generative model describes the relationship between the latent vari-
ables to the target properties we are interested in. In addition, the physics-embedded generative model embeds 
physical knowledge of the system. Continuing with the hydraulic fracture example, once the lengths of the 
hydraulic fractures are figured out, the permeability of the fractures could be calculated based on the mathemati-
cal models, e.g., we apply the fracture size-transmissivity relationship. Finally, we build a model that characterizes 
the hydraulic fracture permeability distribution based on the representative latent variables. Broadly speaking, 
the physics-embedded generative model links the small number of latent variables to many target properties of 
interest, encoding the relationship between them. The physical knowledge embedded in the generative model 
increases the reliability and accuracy of the inverse analysis.

Once the physics-embedded generative model has been constructed, the second step is the objective func-
tion set up, where a forward physical model takes the output from the physics-embedded generative model 
to simulate the mechanisms of the study system, like fluid flow for hydraulic conductivity fields. Using the 
hydraulic fracture problem as an example again, a gas production situation has been simulated. The fluid flow 
from fractures to the pumping well, specifically the pressure drop, is calculated through the forward model. The 
objective function characterizes the difference between the observational data and the predicted output from 
the forward model. The final step is performing the inverse analysis using gradient-based optimization with the 
gradients being computed by algorithmic differentiation. During this step, the output from the forward model is 
compared with the observational data through the loss function to achieve final optimized results. The detailed 
workflow is illustrated in Fig. 1.

During this study, the notation p and p̂ are used to represent a physical reservoir property field in vector form, 
z and ẑ represent the latent variables, and h and ĥ represent a vector of observations for inverse analysis and the 
calculation from the forward physical model, respectively. This study obtained observations h from different 
problems directly from the related reference fields p through the forward model. The forward physical model 
predictions ĥ are obtained based on the guess of target properties p̂ through the iterations. The error used to 
measure the difference between the true and predicted values should be differentiable for the inverse analysis. 
This loss takes the simplified form of the sum of squared residuals in the examples studied here.

The optimization problem of inverse analysis is formulated in terms of the key factors or latent variables, ẑ 
and includes regularization in the objective function. The optimization problem of inverse analysis is formulated 
in terms of the latent variables, z:

where the regularization term varies depending on application, and we call f (z) the objective function. The spe-
cific objective function is discussed in the subsections of Examples and Results. During the optimization process, 
through gradient calculation, seeking the minimum value of the objective function represents the finding of 
the optimized final results. Regularization adds additional benefits to the inverse analysis, avoiding side effects 
like overfitting. In addition, algorithmic differentiation is used to compute the gradients for the optimization. 
Our method not only includes the physics understanding in the inverse analysis, but also finds the potential to 
conduct optimization calculations for complicated geological problems easily and efficiently, which is algorithmic 
differentiation. Specifically, the algorithmic differentiation library we applied is Zygote.jl52, and we use the dif-
ferentiable physics simulator,  DPFEHM53. As for optimizing the objective function, a gradient-based optimiza-
tion method is utilized, which is the limited-memory Broyden–Fletcher–Goldfarb–Shanno54 (L-BFGS) method 

(1)f (z) =[�(h− ĥ)2] + [regularization]

(2)ẑ = argmin
z

f (z)
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with a Hager-Zhang line  search55. The Optim.jl56 software package is specified for this process. Of course, other 
gradient-based optimization routines could also be used. For all the problems, to start the inverse analysis, the 
initial guess of key factors is set to be 0.

Examples and results
This study provides a generative approach to physics-embedded inverse analysis. We focus on three problems: 
heterogeneous hydraulic conductivity field, hydraulic fracture distribution, and seismic inversion of P-wave 
velocity property. Two types of heterogeneity have been considered for heterogeneous hydraulic conductivity 
fields. For larger-scale heterogeneous fields, to improve the inverse analysis performance, the ML method was 
applied. To estimate the performance of inverse analysis, the comparison of reference fields and the final inverse 
results are conducted for different problems and are presented in Figs. 2, 4, 5 and  6. The convergence of different 
inverse analyses showing the optimization process is described in the supplementary information, Figs. S1–S4. 
The comparison of observational data and the prediction of the forward physical model after inverse analysis 
are shown in the supplementary information, Figs. S5–S7.

In Figs. 4, 5 and 6, the comparison results, the first rows are the three “true” reference fields. The following 
rows demonstrate the inverse results, while the last rows are the difference calculated between the “true” and 
results estimated by the inverse analysis. On top of the inverse results (second row) the relative error is displayed, 
which measures how close the inverse result is to the reference field and is defined as

where p̄ is the mean of the reference field. Especially for the Gaussian hydraulic conductivity field in Fig. 2, only 
one reference field (as the Gaussian field is easier to be characterized than the bimodal field, which demonstrates 
three examples in Fig. 4) has been represented to investigate the performance of the proposed approach.

Principal component geostatistical approach for Gaussian hydraulic conductivity. One of this 
work’s focuses is a heterogeneous hydraulic conductivity field. First, we discuss a multivariate Gaussian field of 
small-scale heterogeneity in the hydraulic conductivity field. A 200 m × 200 m subsurface aquifer is simulated 
with a unit thickness. Two hundred eigenvalues z , as latent variables (the principal components), have been 
introduced to go through a Gaussian distribution, with mean 0, variance 1, and correlation length 50 m, to create 
the heterogeneity of the research area. We use the GaussianRandomFields.jl package to generate the multivariate 
Gaussian field for the Julia programming  language57. The heterogeneous hydraulic conductivity field p (200 × 
200) is shown in Fig. 2a. For the physics-embedded generative model, we utilize the principle components of the 
covariance matrix to represent the Gaussian distribution. The principle components of the covariance matrix are 

(3)
||p− p̂||2

||p− p̄||2
,

Figure 1.  Physics-embedded inverse analysis leverages the underground geological property characterization 
with physics law understanding and algorithmic differentiation. Inverse properties are calculated based on the 
physics-embedded generative model, and calibration is performed on the output of the forward model. The first 
row characterizes the “true” situation in the field, and the generative model describes the physics understanding 
of the problem. This generative model is applied in the inverse analysis (second row) to represent the physics-
embedded feature. The application of regularization and algorithmic differentiation makes the optimization 
process simple.
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calculated by Karhunen-Loève theorem. This embeds knowledge of the statistical structure of the permeability 
fields. Our approach generalizes existing PCGA and accelerates it through algorithmic differentiation (PCGA 
was designed for black-box models where algorithmic differentiation is not possible). We intend to establish 
that our approach can replicate a method familiar to geoscientists (especially hydrologists) and provide better 
performance.

More importantly, the background groundwater flow is simulated through a forward physical model for 
inverse analysis calibration. The boundary condition yields a constant 5 m head drop from left to right. In addi-
tion, in the center of the research area, water is injected at a rate of 1.0 m3/s. The observation used to inform the 
inverse analysis is the hydraulic head, from a static forward Darcy’s law and considering mass conservation, on 
a 16 × 16 regular grid within the domain. Figure 3a shows the reference head distribution, and the positions for 
all the observations are shown in Fig. 3d. The objective function is specified as the following equation, which 
considers latent variables as well:

For the Gaussian hydraulic conductivity field in Fig. 2, the “true” reference field and the estimated result are 
similar, particularly for the center area, which indicates the good performance of the inverse analysis. However, 
the error reaches around one order of magnitude, only existing at the top and bottom edges. We hypothesize 

(4)f (z) =[�(||h− ĥ||2)] + [�(z2)] .

Figure 2.  The reference conductivity field is shown in subfigure (a), and the corresponding inverse results are 
shown in subfigure (b). The hydraulic conductivity shows on the ln scale. Subfigure (c) shows the difference 
between the related reference fields and the inverse results. The convergence of the inverse analysis is shown in 
subfigure (d).
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this is partly due to the fixed pressure boundary conditions, which make the observations less sensitive to the 
hydraulic conductivity near these boundaries.

ML approach for bimodal hydraulic conductivity. Beyond the Gaussian field, to show our approach 
generalizes additional methods, we show how it generalizes  RegAE48. RegAE is a method that can solve more 
challenging permeability fields than the principal component geostatistical approach. The domain is a 100 m × 
100 m subsurface aquifer with a unit thickness. In this type of field, the higher heterogeneity is applied and is 
represented by two hydrogeologic facies with distinct properties, each of which is a multivariate Gaussian distri-
bution. The two multivariate Gaussian structures are shown as conductivity 1 and 2 in Table 1. More importantly, 
the “Split” model has a different multivariate Gaussian structure that has been utilized to indicate which of the 
facies is present at a given location. As a result, the new type of field shows a bimodal hydraulic conductivity 
distribution, and the reference fields are represented in Fig. 4a, d, and g.

In terms of the higher heterogeneity of the bimodal fields, a generative machine learning model VAE is 
included to capture the hydrogeological properties distribution in this study.  VAE58 is a generative ML model 
with neural network architecture and has widespread application for image  data59. VAE consists of two parts: an 
encoder and a decoder. The encoder step maps a high-dimensional space p (such as pixels in an image) into a 

Figure 3.  The head distribution of the reference conductivity field is shown in subfigure (a), and subfigure (b) 
shows the corresponding inverse estimated head distribution. The black dots in subfigure (d) represent the 16 × 
16 regular grids for observation points, and the one red dot illustrates the injection position, with a rate of 1.0 m3

/s. Finally, the comparison of the observed head and predicted head for all the observational points are shown in 
subfigure (c).
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smaller parameter space. Specifically, the smaller parameter space is the key factor containing the features of the 
image, which is the hydraulic conductivity distribution in this study, and used to be called the latent variables z . 
In reverse, the decoder maps the latent variables back to their original high-dimensional space. In the bimodal 
case, the reference fields have a resolution of 100 × 100 pixels, which is a high dimensional space. The training 
of VAE goes through these two encoder and decoder steps. The dimensions of the latent variable, z , are 50, 100, 
and 200, and 100 epochs are performed during the VAE training for characterizing the relationship between the 
latent variables and the property distribution. For more details on how the VAE was trained, refer  to48. After the 
training of the VAE, z is applied to represent the physics meaning of the hydraulic conductivity distribution fea-
ture. At the same time, the decoder step accounts for the physics-embedded generative model. Here, the physics 
is embedded through the process of training the VAE on images that contain the physical understanding of the 
subsurface—in this case, the two facies. In this study, three z values, 50, 100, and 200, are tested for the inverse 
analysis performance in terms of key factors.

Like the Gaussian case, for bimodal fields, a constant head drop of 1 m from the left boundary to the right 
has been set up for the fluid flow system. The head distribution is calculated through the forward physical model 
(Darcy’s law) of groundwater dynamics at a static state and considering the mass conservation. Oppositely, a 
coarse 5 × 5 regular grid within the domain is demonstrated for observation during inverse analysis calibration, 
shown in Fig. 4a, since VAE is a powerful tool to capture the property distribution with less input information. 
The regularization term of optimization for bimodal fields takes latent variables covariance into account, and 
the objective function is defined as:

where �z is the covariance matrix for the latent variables, and z̄ is the mean of the latent variables. A more detailed 
description of inverse analysis for Gaussian and bimodal fields is specified  in48.

More heterogeneous, bimodal hydraulic conductivity fields are simulated through VAE as the physics-embed-
ded generative model, which is good at spacial feature characterization, to test our idea of the physics-embedded 
inverse analysis; the results are shown in Fig. 4. For bimodal fields in Fig. 4, the broad similarity in each facies 
between the reference fields and simulated results implies that the inverse analysis approach captures the salient 
aspects of the hydraulic conductivity distribution features. Even if the relative error is comparably higher than 
those from Gaussian fields, the phenomena lie in the higher complexity of bimodal fields. Meanwhile, for the 
difference in Fig. 4c, f, and i, the major error only occurs at the edge of the two facies; oppositely, in each face, 
the difference is small and close to zero. In conclusion, including the physics-embedded generative model dur-
ing inverse analysis, even for the ML-specific approach, turns out to be a good application for different types 
of heterogeneous hydraulic conductivity fields based on having consistently good results. However, even if it 
approves the application of the physics-embedded inverse analysis, specifically for more complicated fields, like 
the edges in bimodal fields, it needs more calibration or on-site investigation for future field applications. On the 
other hand, it also implies that more detailed physics understanding or background should be included when 
dealing with complicated field situations.

Hydraulic fracture network. Most drilled wells have been fractured in the oil and gas production field, 
resulting from fluid pressure  differences11,18,19. Fully understanding the distribution and properties of the 
hydraulic fractures is of essential importance for production estimation and reservoir protection. In the cases 
of drilled wells, they are now turned fully horizontally into the target geologic formations. At the same time, for 
almost all depths of interest, the hydraulic fracture will be normal to the direction of the horizontal well. In this 
study, a cluster with five hydraulic fractures has been selected to present the process of inverse analysis during 
gas  production60. A medium-scale matrix of size 100 m × 100 m, with a 78 m drilled well in the center position, 
was used to represent the research domain. Hydraulic fractures are in the normal direction to the drilled well 
and distributed in a constant interval between them. The length of the hydraulic fractures follows a power law, 
given  by61

where r is the length of hydraulic fracture, p is the power, R1 and R0 are the maximum and minimum of the 
hydraulic fracture length range, and f(r) is the possibility of a certain length r. Based on a literature review of 
fracture length  distributions62, the power p is set up to be 1.8, while the length range of fractures spans from 10 
m to 90 m in this problem. After the fracture length has been determined, a size-transmissivity relationship, 
which describes the transmissivity of fractures and shows a positively correlated power law with the length of 
fractures, is introduced. The size-transmissivity relationship is defined  in63,64 as

(5)f (z) =[�(||h− ĥ||2)] + [z − z̄]T�−1
z [z − z̄] ,

(6)f (r) =
(1− p)

(R1)
(1−p) − (R0)

(1−p)
∗ r(−p) ,

Table 1.  The statistical parameters used to generate the hydraulic conductivity data.

Models Mean (m/s) Variance (m2/s2) Correlation length (m)

Conductivity 1 10
−5 1.0 50.0

Conductivity 2 10
−8 1.0 50.0

Split 10
−8 1.0 200.0
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where T is the fracture transmissivity, and α and β are related parameters with values 1.3 ∗ 10−9 , and 0.5, respec-
tively. In this study, the reservoir has a 10 m thickness. In addition, the permeability of the matrix and the drilled 

(7)log(T) = log(α ∗ rβ) ,

Figure 4.  Three bimodal reference conductivity fields are shown in subfigures (a), (d), and (g). The black dots 
in the first row represent the 5 × 5 regular grids for observation points. The corresponding inverse results are 
shown in the second row, subfigures (b), (e), and (h). The hydraulic conductivity shows on the ln scale. The 
relative errors above inverse figures represent the difference between related reference and simulation figures. 
The last row shows the difference between the related reference fields and the inverse results.
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well are set to be at the scale of 10−22 m2 and 10−10 m2 , respectively. Specifically, at the two tips of the fractures, a 
harmonic mean is introduced to represent the change from fracture to the matrix. Hence, five random key fac-
tors (latent variables) were selected to represent the possibility of five fracture lengths. Then the permeability of 
the fractures in the cluster ( p ) is calculated through the physics-embedded generative model mentioned above 
for the following inverse analysis.

Figure 5.  Three hydraulic fracture reference conductivity fields are shown in subfigures (a), (d), and (g). 
The two grey dots in the first row represent the positions for observation, and the black dot illustrates the gas 
pumping position. The corresponding inverse results are shown in the second row, subfigures (b), (e), and (h). 
The permeability shows on the ln scale. The relative errors above inverse figures represent the difference between 
related reference and simulation figures. The last row shows the difference between the related reference fields 
and the inverse results. The color bars only apply for the hydraulic fractures, and the permeability for the matrix 
and well are −52.16 and −24.53 (ln scale), respectively.
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In this study, gas production has been simulated. Especially the gas pumping position is set to be at the right 
end of the drilled well with a rate of 0.82 m3/s based on data from the Marcellus Shale Energy and Environment 
Laboratory (MSEEL)65. The shale layer of gas production is located at a depth of 2300 m, and the temperature 
and pressure of the subsurface are 75 ◦ C and 15 MPa, respectively. A transient flow model based on mass con-
versation and Darcy’s law is built for the pressure drop calculation, assuming single-phase gas flow based on the 
experience at MSEEL, which is very dry. Two observation points are located at the two ends of the drilled well, 
as shown in Fig. 5. As the pumping goes on, the observation lasts for two weeks, with a 30-min frequency of data 
collection. The objective function for this problem utilizes the same equation as Eq. (4) in “Principal component 
geostatistical approach” section. 

Similar results in the Gaussian fields for the hydraulic fracture problem are shown in Fig. 5. Surprisingly, 
the high similarity between the reference fields and the simulated results illustrates the characterizing ability of 
inverse analysis when including the physics understanding of the relationship between fracture distribution and 
permeability. In addition, the extremely low relative error additionally supports the conclusion. The error in the 
permeability of the hydraulic fractures mainly exists at the two ends of the fractures and is small. The more we 
understand the physics background in the hydraulic fracture problem, the higher possibility we can predict the 
underground fluid flow system and make a more reliable estimation of oil and gas production.

Seismic inversion. Seismic inversion estimates subsurface properties by matching predicted data generated 
on a proposed model to observed data collected at receiver locations. This study only tests the inverse analysis 
from the seismic records h observed at the surface to elastic properties p , which is the velocity at which the 
P-wave passes through subsurface layers. The research area is an underground reservoir of size 2 km × 1 km, 
consisting of four horizontal layers. In addition, our physics-embedded generative model embeds the domain 
knowledge that the velocity tends to increase with depth. Four key factors (latent variables) are developed to 

Figure 6.  Three reference seismic P-wave velocity fields are shown in subfigures (a), (d), and (g). The red 
triangle in the first row represents the positions for source location, and the white triangles illustrate the 100 
receiver locations, which are not to the real scale. The corresponding inverse results are shown in the second 
row, subfigures (b), (e), and (h). The relative errors above inverse figures represent the difference between related 
reference and simulation figures. The last row shows the difference between the related reference fields and the 
inverse results.
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compute the increasing velocity trend with depth. The reference fields of the geological layer properties ( p with 
size 2000 × 1000) are shown in Fig. 6a, d, and g.

To generate the observed data, a seismic wave has to be triggered; in this application, the location of the source 
point is fixed at the center of the domain on the surface. Since we constrain our models to only vary with depth 
and not horizontally, we only use one source per model in our experiments. In this study, the wave has been 
computed using a finite difference model. In addition, 100 seismic receivers are located symmetrically beside the 
source position along the surface, as shown in Fig. 6. Data sets are recorded at the receivers for a record length 
of 0.8 s. The data from the 100 receivers for the whole simulation time has been implemented for calibration 
during inverse analysis. The objective function for this problem utilizes the same equation as Eq. (4) in “Principal 
component geostatistical approach”.

Finally, we also investigate seismic inversion by applying the physics-embedded inverse analysis. Not surpris-
ingly, the simulated data from the estimated model closely matches the reference field data, indicating a good 
match between the reference and estimated models. The maximum error is around 11%, which is acceptable for 
the deep layers. It is more convincing when considering the difference subfigures; the error is only notable for the 
deepest layer, while all the shallow layers illustrate outstanding results. Hence, we can conclude that the genera-
tive approach of physics-embedded inverse analysis is successful for the seismic inversion problem. Meanwhile, 
one conclusion from these results is that shallow layers have higher reliability during the inverse analysis, and 
more investigation or calibration is needed when facing deep layers.

Comparison of observational results. Beyond only the comparison between the “true” reference fields 
and the simulated inverse results, the comparison between the observational data and outputs of the forward 
model is represented in Figs. 3, S5–S7 to further demonstrate the performance of the physics-embedded inverse 
analysis. After reviewing all the observation data comparison figures, an inevitable conclusion is that the inverse 
analysis successfully captures all the observational information features. Therefore, it further approves the appli-
cation of the physics-embedded inverse analysis for underground reservoir property characterization based on 
observational information on the earth’s surface.

Convergence. The convergence results are depicted in the supplementary information in Figs. 3 and S1–S4. 
The convergence is generally obtained from 20 to 120 iterations for all the problems. Generally, the higher accu-
racy (hydraulic fracture problem) needs more iterations to reach good results; however, this relationship also is 
affected by the complication of the reference fields and the quality of the physics-embedded generative model. 
More discussion about the computational time and cost follows in the next section.

Discussion
Inverse analysis is fundamental to help us find the underground structure and the geological properties distri-
bution. However, since the underground situation is complicated and we only have some observational data 
at specific locations, the inverse analysis is sometimes hard to conduct, and the results accuracy is unreliable 
sometimes. It is essential to improve the accuracy and reliability of inverse analysis in geosciences. Since our 
model incorporates the physics of the underlying problems, it reaches accurate final results and decreased model 
time. This demonstrates the advantages in considering the physics background which is the importance of 
our  study40,41. The physics-embedded inverse analysis provides an approach including the physics background 
understanding to perform inverse analysis effectively. At the same time, the application of algorithmic differen-
tiation shows fast and efficient gradient calculation during optimization, as is discussed below. Our goal here is 
to demonstrate an inverse analysis approach that uses a physics-embedded generative model by showing how it 
generalizes some existing methods and can be used more broadly in both subsurface flow problems and seismic 
inverse problems. Three inverse problems are completed to investigate the accuracy of the proposed approach; 
mainly, for the heterogeneous hydraulic conductivity fields, we discussed the two types of heterogeneity and the 
various physics-embedded generative models during the inverse analysis. Generally, the comparison results in 
Fig. 2, 4, 5 and 6, which show the high similarity between the reference fields and the simulated results, support 
the discovery of the underground properties using these inverse methods. However, for Gaussian hydraulic 
conductivity problem, which is based on the statistical characterization of the system as the physics understand-
ing, brings some concerns about accuracy only at the edges of the research area. At the same time, for the more 
heterogeneous problem, the bimodal fields, including the VAE method, which can thoroughly characterize the 
property distribution in each face from image data, illustrate its strong capability for the complicated scenario. 
However, the VAE leading inverse analysis struggles at the boundary of the two facies. Therefore, it shows that 
more complicated problems need a complete understanding of the physics background to reach the perfect 
performance of the inverse analysis.

Specifically, the hydraulic fracture problem provides the best inversion results of all the research problems. 
Understanding the physics mechanism of the fractures generation and distribution convinced us of its immense 
potential for highly successful inversion of the hydraulic fracture network, which provides the following esti-
mation or protection plans for oil and gas production. However, in this study, the two ends of the fracture also 
draw attention to more calibration. It indicates the difficulty of inversion when considering the connection of 
the hydraulic fracture network with the existing natural fracture system. In addition, we only pick one cluster of 
hydraulic fractures to conduct the inverse analysis; in an actual situation, the production well is several km long, 
where there are many hydraulic fracture clusters along with it. Similarly, in the scenario about seismic inversion, 
the low relative error and high similarity illustrate the success of the physics-embedded inverse analysis approach. 
The error mainly focuses on the deep layers, even if the error is relatively small, which indicates that more con-
sideration may be needed for deeper layers. Again, there are large fractures, caves, and mines in the subsurface 
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environment, which creates the discontinuity of the properties of interest and brings difficulty to the inversion. 
However, our generative physics-embedded inverse analysis provides an approach to easily and rapidly conduct 
underground property characterization. Our approach generalizes several different inverse analysis approaches 
(e.g., PCGA and RegAE), and the accuracy of the final results depends on the choice of the generative model. 
Even if we need to discuss the more complicated problems in the future, the solution would be to improve the 
physical background understanding, which leads to applying an appropriate generative model to the related 
simulations. As a result, we only provide some fundamental insight into how to invert the underground geologi-
cal structures by applying the inverse analysis method.

Our analysis was performed on a machine with an Intel(R) Core(TM) i9-9960X CPU @ 3.10GHz with 32 
threads and an NVIDIA RTX 2080 Ti GPU only for the VAE training. Except for the VAE training for bimodal 
fields, all the other problems only need to prepare the three reference fields through the physics-embedded gen-
erative model, which does not require much generation time. However, the optimization is most time-consuming, 
and the time to perform the inverse analysis varies somewhat depending on the reference fields. For example, 
for the Gaussian hydraulic conductivity problem, each epoch needs around 10 s to finish, while for the hydrau-
lic fracture problem, the average time for each epoch is 10 m. As a result, the inverse analysis process time for 
all the problems mentioned in this study spans from 5 minutes to 1 day. Furthermore, the gradient calculation 
dominates the total computational cost of the inverse analysis. However, algorithmic differentiation efficiently 
improves the computation rate for the gradient calculation. Even if the reduction to z parameters from p interest 
properties makes the inverse analysis easy and fast, the application of algorithmic differentiation shows its extra 
benefit. The cost of computing a gradient with finite difference methods is ∼200 model runs (proportional to the 
number of components of z ), while the cost of computing a gradient including algorithmic differentiation is ∼ 2 
model runs on average. Therefore, applying algorithmic differentiation helps speed up these computations by an 
additional factor of up to ∼100. In our research, there is only one objective function without any optimization 
constraints, which makes the optimization easier to achieve. In addition, the application of regularization allows 
for easy optimization. Combining these two features illustrates their vast potential for computational cost-saving 
for easy and efficient inverse analysis.

This study proposes the generative approach to include the physics-embedded generative model during 
inverse analysis. The framework can efficiently characterize various underground properties inversion and dem-
onstrate accurate and trustworthy prediction results. Understanding the subsurface geological structure and 
properties helps in groundwater management and protection, oil and gas production estimation and optimi-
zation, and heterogeneous underground structure detection. Our approach provides new avenues of support 
for achieving good performance for inverse analysis by including the physics-embedded generative model. In 
addition, with algorithmic differentiation, the optimization can be completed fast and efficiently. Finally, we 
will explore more complicated and realistic geologic research problems by applying our proposed approach to 
expand its application in geologic properties inversion.

Conclusion
We have presented the application of an inverse analysis approach with a physics-embedded generative model 
for underground geological properties characterization, which provides an efficient method of regularization 
and algorithmic differentiation. In this study, a novel method for inverse analysis is proposed, which generalizes 
different inverse analysis approaches, and we have tested the application of this approach for various problems. 
We used four physics-embedded generative models: one based on the principal components arising from the 
geostatistical structure of the parameter fields, another using a variational autoencoder that was trained on images 
of the parameter maps, a third that embeds the structure of a hydraulic fracturing well (including a relation-
ship between fracture length and permeability), and a fourth that includes geologic layers with distinct P-wave 
velocities. As a result, the physics-embedded inverse analysis provides accurate and consistent performance for 
various inverse problems. Using the physics-embedded generative model in combination with observational 
data enables to construction of a loss function that can be automatically differentiated. Our approach is compu-
tationally efficient and obtains an excellent solution to the inverse problem by easing the regularization process 
and applying algorithmic differentiation. In the future, different observational strategies need to be discussed 
to enhance the accuracy for more significantly complicated problems and deliver a high level of reliable inverse 
results based on an efficient observational plan.

Data availability
A computer program automatically generated all the data used in this manuscript. The code for generating the 
data, training the data, and performing the inverse analysis is available at https:// github. com/ Orcha rdLANL/ 
Regul ariza tion- DP- paper. PCGA-ex.jl, RegAE-ex.jl, Fract-ex.jl, and Wave-ex.jl are the running files for the prob-
lems presented in “Principal component geostatistical approach”–“Seismic inversion” sections. Especially for the 
bimodal hydraulic conductivity problem, ex bimodal.jl generates the training data set for VAE training. So these 
files, ex_bimodal.jl and RegAE-ex.jl need to run in order. In addition, if first time running, the related packages 
are available at https:// github. com/ Orcha rdLANL.
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