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Safeguarding pollinators requires 
specific habitat prescriptions 
and substantially more land area 
than suggested by current policy
Alana Pindar 1,2* & Nigel E. Raine 2

Habitat loss and fragmentation are major drivers of global pollinator declines, yet even after recent 
unprecedented periods of anthropogenic land-use intensification the amount of habitat needed to 
support insect pollinators remains unknown. Here we use comprehensive pan trap bee survey datasets 
from Ontario, Canada, to determine which habitat types are needed and at what spatial scales to 
support wild bee communities. Safeguarding wild bee communities in a Canadian landscape requires 
11.6–16.7% land-cover from a diverse range of habitats (~ 2.6–3.7 times current policy guidelines) to 
provide targeted habitat prescriptions for different functional guilds over a variety of spatial scales, 
irrespective of whether conservation aims are enhancing bee species richness or abundance. Sensitive 
and declining habitats, like tallgrass woodlands and wetlands, were important predictors of bee 
biodiversity. Conservation strategies that under-estimate the extent of habitat, spatial scale and 
specific habitat needs of functional guilds are unlikely to protect bee communities and the essential 
pollination services they provide to both crops and wild plants.

Human-induced land-use changes are driving unprecedented, widespread and increasing global biodiversity 
 losses1,2. These alarming declines in biodiversity result in the degradation of many essential ecosystem services 
and  functions3,4, including pollination. Indeed, wild bees and the pollination services they provide to crops and 
wild plants are experiencing global declines in response to intensive anthropogenic landscape changes, climate 
change, parasites and diseases, competition from invasive species, and rising agrochemical  usage5–7.

The Sustainable Development Agenda set globally agreed goals to end poverty, protect the planet, and ensure 
peace and prosperity for all by  20308. However, less than a decade from this deadline little apparent progress 
has been made towards many of these key targets, including the need to ‘ensure the conservation, restoration 
and sustainable use of terrestrial and inland freshwater ecosystems and their services’ (Goal 15.1)8 including 
pollination services. Efforts to slow, or even reverse global pollinator declines have led many countries to initi-
ate conservation strategies in agricultural  areas9–11, urban  environments12, and other sensitive lands to mitigate 
the loss of vital pollinators and the ecosystem services they  provide5,7. Selection and implementation of specific 
conservation strategies will strongly depend on conservation priorities and may differ substantially if the goal is 
to: (1) enhance pollination by pollinators visiting particular  crops13,14, (2) maintain wider pollinator  biodiversity13 
or (3) specifically target the recovery of pollinator species-at-risk15.

In 2016, the government of Ontario, Canada, mandated provincial policy to “restore, enhance and protect 
one million acres of pollinator habitat”16, which represents about 4.5% of the land area of Southern Ontario 
(mixed wood plain ecozone) where most of province’s rich agricultural lands are situated. As part of Ontario’s 
provincial Pollinator Health Action  Plan16, the Ministry of Natural Resources and Forestry (MNRF) was tasked 
with the action of ‘assessing land cover in natural habitats, and in agricultural and urban landscapes in southern 
Ontario to identify and map probable pollinator habitat’. The creation of the pollinator habitat (PHaB) mapping 
layer revealed that Southern Ontario has over ~ 2.7 million hectares of pollinator habitat (approximately 20% 
of the total area: Fig. 1a), representing 24 different habitat types (see Ontario Land Classes in Tables S4, S4). 
However, creating the PHaB mapping layer also revealed that there has been a net loss of nearly 10,000 hectares 
of pollinator habitat in Ontario over the 10-year period 2002–201217.

Whilst one million acres (or 404,686 hectares) of pollinator habitat sounds like an impressively large area, 
there is no evidence to suggest that this much pollinator-suitable habitat will be sufficient to conserve healthy 
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communities of wild pollinators and the essential ecosystem services they provide for agricultural  production18–20 
and native plant  communities21 in a landscape. Although studies have shown the importance of specific habitat 
types (such as semi-natural and natural habitat, urban, and consistent foraging crops) for particular bee species 
at various spatial scales and over quality gradients in a  landscape10,22–26, there still remain significant fundamen-
tal knowledge gaps on basic relationships between most pollinator species and habitat  types27. The species-area 
relationship is one of the most studied patterns in ecology, with many studies using the relationship as a tool 
to better understand biological diversity and  habitats28,29. Fundamentally, the slope of the species-area curve 
predicts the number of species found within an area. However, and quite surprisingly, there is not yet any clear 
understanding of how much of each specific habitat type is required to support a pollinator community, or indeed 
over what spatial scale such habitats are needed. This lack of information not only severely limits the ability to 
make and implement evidence-based recommendations to support pollinators at local or landscape scales, but 
also jeopardizes the chances of meeting globally agreed Sustainable Development  Goals30 and the success of 
government policy, such as those outlined by the province of Ontario.

While bee species richness and abundance are tightly linked to availability and quality of floral and nest-
ing resources, these associations do not necessarily predict how much of a specific habitat is needed by any 
 species31,32. In most ecosystems the provision of any additional suitable habitat will increase pollinator abun-
dance and  diversity31,32. Here, we use an extensive dataset of bees including ~ 66,000 observations from 361 
species, 86% of the species recorded from Ontario, Canada, from published surveys conducted over a 12-year 
period. Specifically we aim to explore the relationship between the maximum number of bee species representing 
commonly used functional guilds: (1) solitary ground nesters, (2) social ground nesters, (3) cavity nesters, (4) 
bumblebees or Bombus spp. (except subgenus Psithyrus), and (5) cleptoparasites and social parasites (including 
Bombus subgenus Psithyrus) and the amount of specific habitat types they require at three spatial scales in a 
landscape. Our main objective in this work is to provide evidence-based information on the amount of habitat 
types needed to support pollinators at local and landscape scales to aid in reaching sustainable conservation 
measures of these important species.

Figure 1.  (a) Landscape gradient across Southern Ontario, Canada (Ecoregions 5E and 6E) a North American 
landscape. Red (urban areas), black (intensive wind pollinated crops), and light blue (open water areas) reflect 
areas that provide little or no pollinator habitat. Pink represents intensive agricultural crops that provide 
pollinator foraging habitat, while light- to darker-green colours represent a gradient of natural and semi-
natural habitats; (b) The expected relationship between extent of pollinator habitat and the bee species richness 
supported in the landscape. Initial increases in the amount of pollinator habitat in a landscape are associated 
with a steep increase in bee species richness. However, the slope of this red line become shallower with 
additional increases in the extent of pollinator habitat, until it reaches an asymptote—signifying the optimal 
landscape composition to support maximal bee species richness (marked with black dotted lines). Map was 
produced using SOLRIS v.2.160 and ACI  data61 in ArcGIS v. 10.6.x (https:// deskt op. arcgis. com/ en/ system- requi 
remen ts/ 10.6/ arcgis- deskt op- system- requi remen ts. htm).

https://desktop.arcgis.com/en/system-requirements/10.6/arcgis-desktop-system-requirements.htm
https://desktop.arcgis.com/en/system-requirements/10.6/arcgis-desktop-system-requirements.htm
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Results
How much habitat is needed? Our results suggest that different amounts of habitat are required for 
maintaining the highest species richness and abundance of wild bee functional guilds at different spatial scales 
(Fig. 2a). Specifically, we found all functional guilds, other than solitary ground nesters, showed a preference 
for habitat at foraging distances between 750 and 1250 m over more localized (< 500 m) and more dispersed 
scales (> 1500  m) for maintaining species richness (social ground nesters: x = 3.4% ± 0.17; cavity nesters: x = 
2.5% ± 0.13; Bombus spp.: x = 4.2% ± 0.21; cleptoparasites: x = 2.1% ± 0.10) (Fig. 2a). In contrast, more habitat 
occupying a greater percentage of the landscape at larger spatial scales would be needed to support a higher 
richness of solitary ground-nesting species (> 1500 m: x = 5.3% ± 0.27) (Fig. 2a). Only bumblebees (Bombus spp.) 
showed the same significant trend for maintaining both the highest abundance and species-richness from habi-
tat needs between 750 and 1250 m (Fig. 2a). We found no differences in the amount of habitat needed to support 
the abundance of solitary ground nesters among spatial categories (< 500 m: x = 2.6% ± 0.10; 750 m-1250 m: x = 
2.8% ± 0.14; > 1500 m: x = 2.9% ± 0.14). The abundance of social ground nesters, cavity nesters, and cleptopa-
sites was not significantly different when considering the amount of habitat required between 750 and 1250 m 
and > 1500 m, however all exhibited increased abundance from localized (< 500 m) to larger scales of habitat 
extent (750–1250 m) (Fig. 2a,b).

We found robust support for positive logarithmic relationships between the proportion (amount) of suitable 
habitat within a landscape and bee species richness across all functional guilds at all tested spatial scales, except 
for bumblebees (Bombus spp.) at foraging distances < 500 m (Fig. 3d, blue line; Table 1). In contrast, we found 
no significant logarithmic relationships between the proportional abundance of species in functional guilds and 
the amount of suitable habitat with the landscape at any foraging distances (Fig. 3f–j; Table 1).

Figure 2.  (a) The mean amount of habitats; (b) the maximum and minimum amounts of habitat within a 
landscape to maintain the species richness (red-) and proportional abundance (blue columns) of five functional 
bee guilds: solitary ground nesters, social ground nesters, cavity nesters, bumblebees (Bombus spp. excluding 
subgenus Psithryus), and cleptoparasitic species (including Bombus subg. Psithryus) expected community 
parameters at each foraging category (< 500 m, between 500 and 1500 m, and > 1500 m).
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Figure 3.  Relationship between the proportion of pollinator habitat within a landscape in Southern Ontario 
and community parameters, species richness and proportional abundance of solitary ground nesting bee species 
(a, f); social ground nesters (b, g); cavity nesters (c, h); bumblebees (Bombus spp.) (d, i); cleptoparasites (e, j). 
Logarithmic trendlines in blue are for spatial scale < 500 m, green trendlines represent spatial scale between 500 
and 1500 m, and red trendlines are distances > 1500 m. Regression coefficients and p values associated with each 
spatial scale trendline and functional guild community parameter can be found in Table 1.
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Figure 3.  (continued)

Table 1.  Species richness and proportional abundance, for each of the five functional guilds: solitary ground 
nesters, social ground nesters, cavity nesters, bumblebees (Bombus spp.) and cleptoparasites in relation to the 
total amount of pollinator habitat at each spatial scale. F is the spatial scale (m) from each site. Significant 
results are shown in bold (alpha = 0.05), p values < 0.005 represented by *** due to space constraints in table.

F/(m)

Solitary ground Social ground Cavity Bombus spp. Cleptoparasite

Richness Abundance Richness Abundance Richness Abundance Richness Abundance Richness Abundance

R2 p R2 p R2 p R2 p R2 p R2 p R2 p R2 p R2 p R2 p

250 0.26 0.02 0.13 0.12 0.14 0.11 0.005 0.76 0.05 0.34 0.11 0.15 0.01 0.67 0.06 0.51 0.37 0.01 0.08 0.11

300 0.22 0.04 0.08 0.39 0.14 0.17  < 0.001 0.98 0.09 0.20 0.13 0.13  < 0.001 0.85 0.002 0.92 0.39 *** 0.04 0.24

350 0.08 0.19 0.02 0.54 0.07 0.25 0.022 0.52 0.25 0.02  < 0.001 0.89  < 0.001 0.97 0.002 0.68 0.11 0.14 0.001 0.97

400 0.30 0.01 0.02 0.45 0.29 0.01 0.05 0.30 0.39 *** 0.002 0.87 0.10 0.16 0.01 0.53 0.42 ***  < 0.001 0.60

450 0.29 0.01 0.03 0.39 0.25 0.01 0.062 0.22 0.44 *** 0.003 0.81 0.03 0.40 0.01 0.51 0.48 *** 0.017 0.30

500 0.29 0.01 0.03 0.44 0.24 0.01 0.0004 0.92 0.36 *** 0.04 0.31 0.009 0.65 0.03 0.33 0.44 *** 0.012 0.28

750 0.23 0.01 0.07 0.14 0.22 0.02 0.006 0.78 0.36 0.04 0.23 0.01  < 0.001 0.95 0.002 0.71 0.38 *** 0.05 0.09

1000 0.29 0.01 0.07 0.12 0.32 *** 0.04 0.40 0.17 0.06 0.18 0.02 0.025 0.44 0.03 0.46 0.33 *** 0.09 0.20

1250 0.24 0.01 0.05 0.23 0.27 0.01 0.05 0.31 0.14 0.07 0.10 0.09 0.025 0.44 0.012 0.69 0.33 ***  < 0.001 0.32

1500 0.22 0.01 0.02 0.41 0.18 0.03 0.09 0.15 0.13 0.18 0.25 0.01 0.013 0.58 0.003 0.96 0.30 0.01 0.003 0.41

1750 0.14 0.05 0.001 0.73 0.10 0.11 0.14 0.07 0.07 0.31 0.31 *** 0.008 0.67  < 0.001 0.92 0.19 0.03 0.004 0.73

2000 0.27 0.01 0.05 0.24 0.28 0.01 0.01 0.62 0.04 0.01 0.16 0.08 0.003 0.78 0.003 0.62 0.42 *** 0.004 0.29



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1040  | https://doi.org/10.1038/s41598-022-26872-x

www.nature.com/scientificreports/

Which habitats are most important? The full heat map clearly shows a diverse range of habitat types 
are needed to support wild bee communities across a range of spatial scales (Fig. S1). However, to help decision-
makers successfully prioritise the most important habitats to maintain, restore or create we filtered the full heat 
map (by removing habitat types with interquartile ranges < 0.25 for significant β coefficients) to highlight the 
most important habitat types in a landscape (Fig. 4). If the goal is to safeguard wider pollinator biodiversity 
(species richness), more habitat and distinctly different habitat types are required (Fig. 4) than if the goal is to 
enhance crop pollination through increasing the abundance of specific functional groups or indeed particularly 
important species that dominate crop flower  visitation33,34 (Fig. 2; Table 2).

Partial regression coefficients (β1) for habitat covariates (independent variables) used in models of best fit for 
each spatial category were reported as a way to assess the importance of habitat types for target bee community 
parameters for each functional guild (Tables S8–9). The importance of conserving sensitive lands, such as tallgrass 
woodlands and wetland habitat, for bee species appeared to far outweigh other habitat types such as hedgerows 
and semi-natural habitat (Fig. 4; Table 2; Tables S8–9). Wetland and forest edge habitats were significant predic-
tors of species richness in all bee groups across a range of foraging distances (Fig. 4).

We found a number of habitat types were not highlighted among the six most important for any functional 
guilds within our spatial categories (Tables S8–9). Abandoned extraction-vegetated, plantations, and treed sand 

Figure 4.  Heat map showing the most important habitat types driving key bee biodiversity metrics (species 
richness and proportional abundance) of five functional bee guilds: solitary ground nesters, social ground 
nesters, cavity nesters, bumblebees (Bombus spp. excluding subgenus Psithryus), and cleptoparasitic species 
(including Bombus subgenus Psithryus) at three spatial scale categories (< 500 m, 500–1500 m, and > 1500 m); 
lighter shades of yellow indicate most preferred habitat types at different spatial distances, darker shades of 
blue suggest a less desirable habitat for supporting functional guild species richness and abundance. Black 
cells indicate the habitat has a neutral impact on bee species richness in the landscape. Habitat similarity is 
characterized by similar groupings of colours, either among function guilds (horizontal rows) or across spatial 
distances and habitat types (vertical columns). Forested habitats represented 50 m edges of habitat. This is a 
filtered version of the overall heat map (Fig. S1) from which habitat types with an interquartile range of < 0.25 of 
significant β coefficients (habitat types) have been removed. Heat map was produced using XLSTAT v.4.163.
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dunes were not found to be important drivers of functional guild species richness or abundance at the most 
local scales (< 500 m: Tables S8–9). Abandoned extraction-open and coniferous forest habitats were not the 
most important for supporting abundance of any functional guild, whereas built-up pervious habitats were not 
important parameters for species richness for any guild (Tables S8–9).

Our results show both abandoned extractions-open and treed sand dunes to be less important than other 
habitat types for maintaining species richness and abundance of functional guilds at 750–1250 m (Tables S8–9). 
Built-up pervious, and total pollinator habitat were not among the most important covariates for any functional 
guild abundance, whereas mixed forests, pastures, and plantations appeared not to be the most important pre-
dictors of functional guild species richness in our analyses (Tables S8–9).

Table 2.  The three top models testing relationships between bee functional guild (solitary ground nesters, 
social ground nesters, cavity nesters, bumblebees (Bombus spp.) and cleptoparasites) metrics (species richness 
and proportional abundance) and pollinator habitats (model explanatory variables). F is the spatial scale (m) 
from each site within the landscape; K is the number of parameters included in each candidate model; model 
parameters are habitat types and study year, AIC is Akaike’s Information Criterion, and w is Akaike weight. 
Bolded Rows represent functional guild abundance while non-bolded rows represent species richness. F is 
the spatial scale (m) from each site within the landscape; K is the number of parameters included in each 
candidate model; model parameters are habitat types and study year, AIC is Akaike’s Information Criterion, 
and w is Akaike weight. Rows in grey represent functional guild abundance while non-coloured rows represent 
species richness.

F K Model variables (Ontario land classes/habitat types) AICc Δ AICc w

Solitary ground

450 6 Treed Swamp/ Deciduous Forest/ Thicket Swamp/ Consistent Foraging Crop/ Tall Grass Savanah/StudyYear 38 − 5.21 0.049

1000 5 Treed Swamp/ Forest/ Thicket Swamp/ Built Up Area Pervious/ StudyYear 45 − 10.84 0.813

2000 6 Forest/ Coniferous Forest/ Deciduous Forest/ Plantation/ Tall Grass Savanah/ StudyYear 54 − 5.32 0.051

500 6 Coniferous Forest/ Mixed Forest/ Thicket Swamp/ Marsh/ Tall Grass Savanah/ StudyYear − 109 − 25.29 0.685

1000 6 Treed Swamp/ Coniferous Forest/ Deciduous Forest/ Hedge Row/ Tall Grass Savanah/ StudyYear − 115 − 3.52 0.000

1500 6 Thicket Swamp/ Built Up Area Pervious/ Abandoned Extraction Vegetated/ Tall Grass Woodland/ Tall Grass Savanah/ 
StudyYear − 111 0.00 0.000

Social ground

350 6 Treed Swamp/ Pasture/ Forest/ Plantation/ Consistent Foraging Crop/ StudyYear 41 − 9.24 0.730

1000 6 Treed Swamp/ Deciduous Forest/ Marsh/ Built Up Area Pervious/ Consistent Foraging Crop/ StudyYear 56 − 4.00 0.053

2000 5 Treed Swamp/ Coniferous Forest/ Thicket Swamp/ Semi-Natural (Shrub and Grassland)/ StudyYear 62 − 1.42 0.015

250 6 Treed Swamp/ Pasture/ Mixed Forest/ Plantation/ Tall Grass Savanah/ StudyYear − 78 0.00 0.087

1000 6 Treed Swamp/ Coniferous Forest/ Plantation/ Hedge Row/ Semi-Natural (Shrub and Grassland)/ StudyYear − 102 0.14 0.083

2000 3 Thicket Swamp/ Semi-Natural (Shrub and Grassland)/ StudyYear − 104 − 3.25 0.077

Cavity

500 6 Treed Swamp/ Forest/ Semi-Natural (Shrub and Grassland)/ Consistent Foraging Crop/ Tall Grass Woodland/ StudyYear 31 − 23.56 0.934

1250 5 Treed Swamp / Thicket Swamp / Plantation / Hedge Row / StudyYear 45 − 3.75 0.000

2000 6 Forest / Coniferous Forest / Mixed Forest / Deciduous Forest / Abandoned Extraction - Open / Tall Grass Savanah 47 − 1.22 0.000

450 6 Treed Swamp / Coniferous Forest / Marsh / Semi-Natural (Shrub and Grassland) / Consistent Foraging Crop / StudyYear − 137 − 35.35 0.970

1250 6 Pasture / Forest / Coniferous Forest / Marsh / Abandoned Extraction Vegetated / Tall Grass Savanah − 125 0.48 0.000

2000 6 Treed Swamp / Coniferous Forest / Deciduous Forest / Thicket Swamp / Consistent Foraging Crop / StudyYear − 131 1.29 0.000

Bombus species

250 6 Treed Swamp / Forest / Coniferous Forest / Mixed Forest / Marsh / StudyYear − 2 0.00 0.041

1000 6 Deciduous Forest / Thicket Swamp / Semi-Natural (Shrub and Grassland) / Abandoned Extraction Vegetated / Tall Grass 
Savanah / StudyYear 0 − 5.54 0.657

2000 6 Pasture / Forest / Deciduous Forest / Semi-Natural (Shrub and Grassland) / Tall Grass Savanah / StudyYear − 7 − 1.27 0.078

400 6 Pasture / Marsh / Built Up Area Pervious / Consistent Foraging Crop / Tall Grass Woodland / StudyYear − 214 − 34.30 0.829

750 6 Deciduous Forest / Thicket Swamp / Marsh / Built Up Area Pervious / Consistent Foraging Crop / StudyYear − 219 0.00 0.000

2000 6 Coniferous Forest / Mixed Forest / Thicket Swamp / Abandoned Extraction - Open / Tall Grass Woodland / StudyYear − 211 − 3.19 0.000

Cleptoparasite

350 5 Deciduous Forest / Semi-Natural (Shrub and Grassland) / Consistent Foraging Crop / Tall Grass Woodland / StudyYear 38 − 3.72 0.270

750 6 Deciduous Forest / Thicket Swamp / Plantation / Semi-Natural (Shrub and Grassland) / Consistent Foraging Crop / StudyYear 46 0.00 0.042

2000 6 Pasture / Semi-Natural (Shrub and Grassland) / Built Up Area Pervious / Tall Grass Woodland / Tall Grass Savanah / StudyYear 48 − 3.85 0.289

500 2 Deciduous Forest / Tall Grass Woodland − 159 − 32.36 0.971

1250 6 Treed Swamp / Coniferous Forest / Thicket Swamp / Hedge Row / Semi-Natural (Shrub and Grassland) / Tall Grass 
Savanah − 168 − 1.70 0.000

2000 2 Tall Grass Woodland / Tall Grass Savanah − 166 0.00 0.000
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Abandoned extraction-open, tallgrass savannah and treed swamps appeared not to be important predictors for 
any functional guilds at the largest spatial scales (> 1500 m: Tables S8–9). Furthermore, at spatial scales > 1500 m, 
four different habitats (built-up previous, deciduous forest, consistent crop, and semi-natural) were not selected 
in any of our best fitting candidate models for functional guild abundance, and two more habitats (marsh and 
mixed forest) were not selected as supporting species richness for any functional guild (Table S8).

Discussion
Existing information on the provision of pollinator habitat in a landscape suggests its value is context depend-
ent, and that there comes a point when adding more habitat provides little or no further measurable pollinator 
biodiversity  benefits28 (Fig. 1b). We tested this predicted law of diminishing returns between the maximum spe-
cies richness supported when different amounts of suitable habitat are found in the landscape, closely following 
the species-area relationship. Our analyses provided robust support for such positive logarithmic relationships 
between the proportion (amount) of suitable habitat within a landscape and bee species richness across all 
functional guilds, except for bumblebees (Bombus spp.) at spatial scale < 500 m (Fig. 3d, blue line; Table S6). We 
did not expect to find a significant logarithmic relationship between the proportional abundance of species in 
functional guilds and the amount of suitable habitat as this is more likely influenced by site level characteristics 
(including the availability of nesting and floral resources) at each sampling location—a view supported by previ-
ous studies in  agricultural35 and urban  habitats12. In fact, our results demonstrated that increasing either the avail-
ability of nesting or foraging resources at our measured spatial scales did not support increases in bee abundance 
for social ground nesters, cavity nesters or bumblebees Bombus spp. (Fig. 3g,h,i); but it did for solitary ground 
nesters and cleptoparasites (Fig. 3f,j). It is plausible that social ground nesters, cavity nesters and cleptoparasites 
are finding resources within a relatively shorter distance, or habitat at farther distances is less desirable (Fig. 3). 
Furthermore, our results also show that quite an increase of species richness and abundance can be achieved 
with much less habitat in the landscape (Fig. 3), however, conservation strategies aiming for landscapes achiev-
ing less than maximum species richness/abundance would be significantly detrimental to ensuring ecosystems 
and their services are fully protected.

Given models of best fit were different at all spatial scales (Table 2; Tables S8–9), our results suggest that 
conservation strategies to support wider bee biodiversity should preserve 11.6–16.7% of the land area as suitable 
habitats within a North American landscape (Fig. 2; 750–1250 m). Current policy recommendations suggest to 
conserve 4.5% of habitat to support pollinators in Ontario,  Canada16. Compared to our results (that assume com-
munities sampled from 34 wild bee surveys are healthy and sustainable), this policy substantially under-estimates 
the amount of habitat needed to support diverse bee communities and safeguard the pollination services they 
provide to crops and wild plants by 2.6–3.7 times. Any strategies aiming to safeguard pollinator biodiversity using 
targets below our evidence-based recommendations will likely provide insufficient habitat area for wild bees.

Many of the identified pollinator species-at-risk in North America are  bumblebees36,37. Given that these major 
crop pollinators showed considerable preferences for habitat between 750 and 1250 m in our study (250–1000 m 
in the  UK25), we suggest that implementing agri-environmental conservation schemes in North American land-
scapes that focus on ensuring natural/agricultural pollination resources at habitat distances of < 750 m will likely 
miss opportunities to enhance pollination services provided by wild Bombus species (Fig. 2a,b). The importance 
of conserving sensitive lands, such as tallgrass woodlands and wetland habitats, for bumblebee species appeared 
to far outweigh other habitat types such as hedge rows and semi-natural habitat (Fig. 4).

Promoting and maintaining a variety of forest edge habitats in agricultural areas where Bombus species and 
cavity nesters are the predominant crop pollinators could represent a more effective strategy to increase crop 
pollination services than implementing flowering field margins that may provide less varied nesting opportuni-
ties for these target groups (Fig. 4). Given that many habitat losses in North America are often the result of the 
conversion of natural land to agricultural  uses38,39, and that agricultural expansion has resulted in significant 
loss of phylogenetic diversity in bee  communities40, it is important that environmental policy in agricultural 
landscapes consider addition, restoration or creation of wetland habitats. Evidence-based conservation policies 
for supporting pollinators may also deliver other biodiversity benefits, for example providing suitable habitat for 
other beneficial arthropods (e.g., spiders and parasitoid wasps that can provide crop pest bio-control41), birds 
and other wildlife in the landscape. The ecosystem services provided by wetlands extend far beyond pollinators—
wetlands increase the water table height and therefore the quantity of water available for crop irrigation, improve 
drinking water quality, flood mitigation and habitat for other wildlife, including other species-at-risk42–44.

It is critical to continue to implement wild pollinator monitoring programs and to identify specific ecological 
requirements for individual pollinator species before and after the implementation of conservation strategies. 
Such monitoring programs will be the best indicators of how populations are responding to any new or modified 
management  practices6,45 at relevant spatial scales. Overall, we still know very little about the foraging patterns 
and flower preferences of the majority of wild bee  species46, although some species (e.g., Eucera (Peponapis) 
pruinosa (hoary squash bee), Nomia melanderi (alkali bee), and common bumble bee species) are comparatively 
well  studied47,48. Further studies of the foraging, nesting and other ecological requirements of other wild bee 
species would provide valuable bottom up information to inform conservation strategies, complimentary to the 
top down approach we have taken here.

In the face of evidence that intensive landscape management can severely limit the diversity and extent of 
habitat to support wild  pollinators3,5, global conservation policies must not under-estimate what pollinators 
actually need to survive and thrive. Our results provide clear-cut habitat prescriptions to support specific con-
servation needs for wild bees. As a society we need to have a clear understanding of the specific aims, priorities 
and outcomes required for pollinator conservation with regards to crop pollination, maintaining wider biodi-
versity or targeting key species-at-risk. Our results clearly highlight that whether supporting species richness 
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or abundance, the wrong habitat prescription will ultimately continue to prove ineffective for safeguarding wild 
pollinator biodiversity and the essential ecosystem services they provide.

Methods
Quantifying maximum bee community biodiversity targets in a common North American 
landscape. Recent estimates of bee diversity suggest that the province of Ontario is home to 421 of the 
927 bee species found in Canada, making Ontario a national bee biodiversity hotspot and a critical location for 
strong pollinator conservation  policy49,50. Ontario is one of the few provinces or territories in Canada in which 
multiple survey studies of wild bees have been conducted. We compiled a database that includes data from 34 
wild bee surveys conducted in Ontario between 2002 and  201451–57 (Table S1) and consists of 66,343 individual 
bee specimen records, representing 34 of the 39 genera, and 361 species out of a possible 421 species (85.7% of 
the known species) recorded for the province (Table S2). Given our main objective was to assess the importance 
of specific habitat types for maximizing wild bee diversity and abundance, selecting studies from a range of natu-
ral and agricultural landscapes with similar sampling techniques, and species identifications of bee specimen 
records that were all verified was crucial to discern the importance of habitat types at different scales and across 
 taxa58. We chose to use bee species richness (number of species present) and abundance (number of individuals 
present) as target metrics for this study as both are widely used as fundamental measures of assessing changes in 
biodiversity across time and  space13. An additional benefit to using simple biodiversity metrics, like the numbers 
of individual bees present and the number of species recorded (rather than more derived biodiversity parameters 
like species diversity and evenness) is that this ensures our results are more understandable and directly relevant 
for policymakers, farmers, land owners, conservationists and other important stakeholders that will use this 
information to implement actions to promote pollinator conservation on the ground.

In order to calculate the maximum (expected) bee biodiversity metrics (species richness and abundance), and 
to account for differences in sampling effort among the 34 surveys included in the database, we assessed whether 
our bee biodiversity metrics reported in each survey differed from  random59. To do this, we created an expected 
distribution for each survey by randomly sub-sampling the same number of individuals collected in a survey 
from the full database of 66,271 individual specimen records. All individuals were equally weighted to allow the 
same chance of sampling individuals with different social structures and nesting preferences (see Supplemental 
materials for more information). We tested for an impact of sampling effort on bee species caught in published 
and unpublished studies by investigating the differences between expected and observed bee species richness 
and abundance for each of the 34 surveys using a mood test. We chose a mood test over other parametric tests as 
none of the samples used in the analyses were normally distributed (i.e. Grixti and  Packer51, Richards et al.52 and 
 Pindar55), yet all exhibited similar distributions. Furthermore, we chose the mood test as it is sensitive to changes 
in distribution. This was desirable as we expected different species to be found in different habitats. Despite high 
variation of observed bee species richness and abundance among survey sites and over time, these differences 
between observed and expected values were only significant for solitary ground nesting-, social ground nest-
ing-, and cleptoparasite species richness (Fig. 5; Table S3). Species richness and proportional abundance for all 
other functional guilds (cavity nesters, Bombus spp.,) showed no significant differences between observed and 
expected bee community metrics (Table S3). These results were robust to variations in the number of times we 
randomly sampled bees from the overall dataset of 66,271 observations, suggesting functional roles within a 

Figure 5.  Notched-box plots depicting differences between observed and expected (maximum) (a) species 
richness and (b) proportion of bee species representing each functional guild: solitary ground nesters; social 
ground nesters; cavity nesters; cleptoparasites; and bumblebees (Bombus spp.). Alignment of notches denotes 
no significant difference between observed and expected species richness and proportional abundance for each 
functional guild.
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pollinator community remain largely consistent across a landscape although the particular species found within 
specific habitat types  vary13.

Quantifying pollinator habitat needs. To examine the relationships between bees and habitats within a 
landscape, we used ground-truthed land cover data in our study. The Pollinator Habitat Baseline (PHaB) map-
ping layer integrates the Southern Ontario Land Resource Information System 2.1 (SOLRIS)60 and the Annual 
Crop Inventory (ACI) produced by Agriculture and Agri-Food Canada (AAFC)61, land cover products that pro-
vide a ground-truthed comprehensive, standardized landscape level inventory of natural, rural and urban lands 
at a 15-m resolution (please refer to Hogg and  Jones17 for more detailed information on criteria for selecting high 
quality pollinator habitats in Ontario). Using this data was critical as it provided greater confidence that habitat 
type designations from map datasets are realistic descriptions of habitats types (and critically the resources they 
provide to pollinators) on the ground. Pollinator habitat within a landscape at each of the 34 bee survey locations 
was quantified using the PHaB mapping layer for the province of Ontario. The total extent (amount) of each of 
the 24 different pollinator habitat classes (defined by Ontario land classes (Tables S4, S5)) was quantified in non-
overlapping buffer rings with radii 250, 300, 350, 400, 450, 500, 750, 1000, 1250, 1500, 1750 and 2000 m centred 
around the 34 survey sites at which bee species were surveyed and collected. Habitat estimates from each of these 
areas were then categorized into three distinct spatial range categories: < 500 m, 500–1500 m, and > 1500 m from 
the survey location. Calculations of the extent of pollinator habitats were conducted for each of the 12 radii sepa-
rately, and were not initially added across the twelve radius distances. That is, the extents of habitats within each 
foraging radius were not cumulative with increasing distance from the survey site to ensure the same patches of 
habitat were not included multiple times into analyses.

In our study, we defined pollinator habitat as land that meets all of the forage, nesting and hibernation 
requirements of wild bee species. Therefore, to determine the total amount of habitat needed to maintain spe-
cies richness and abundance (target bee community metrics) for each functional guild (solitary ground nesters, 
social ground nesters, cavity nesters, Bombus spp. and cleptoparasites), we calculated the proportion of pollinator 
habitat found from the overall area at each spatial scale (the radius of the circle centred on the study site loca-
tion) in relation to the target bee community metric calculated from resampling the 34 bee surveys (Fig. 1b). 
The amount of habitat needed to maintain bee community metric at each spatial scale for each functional guild 
was calculated separately using Eq. (1):

where E(a, r) is the expected proportional abundance (a) and species richness (r) of functional guilds, β0 is the 
slope of each trendline at each spatial scale (circles with radius 250 m, 300 m, 350 m, 400 m, 450 m, 500 m, 750 m, 
1000 m, 1250, 1500 m, 1750, or 2000 m centred on each study site), β1 is the partial regression coefficient, and xi 
are covariates (the amount of habitat at each spatial scale). We examined the shape of this relationship between 
the cumulative number of bee species supported when different amounts of suitable habitat are found in the 
landscape (closely following a species-area relationship) to find the point at which further additional habitat area 
no longer enhanced species richness—a law of diminishing returns (Figs. 1b, 3, Table 1).

Statistical analyses. We explored potential correlations among the measured habitat covariates at the 
maximum foraging radius (2 km) using Spearman’s rank correlation coefficients  (rs). Generally where  rs coeffi-
cients between two variables exceed 0.7 they are considered to have a strong relationship and should be removed 
from the  analyses62. In our analyses there were correlations between habitat types, but while none of the  rs values 
were higher than 0.7, many were significant (p < 0.05: Table S6). The relationship between total pollinator habitat 
and several other habitat types, especially treed swamp were strongly associated  (rs = 0.68, p < 0.05; Table S6). A 
stronger relationship between total pollinator habitat and individual habitat types was expected as total habitat 
incorporates each individual habitat type. The correlation between total pollinator habitat and several habitat 
types was greater in comparison to other reported relationships (Table S6), thus, to be conservative we removed 
this parameter (total pollinator habitat) from our analyses.

To test which habitats were most important for each bee functional guild we used generalized linear mixed 
models (GLMMs), to explore the relationship between the amount of habitat of each habitat type (explanatory 
fixed variables) and species richness and proportional abundance separately at each radius distance (i.e., 5 func-
tional guilds × 12 radius distances × 2 community parameters = 120 GLMMs in total; Table S7) using a GLMM 
structure with poisson error distribution with a log link, where E(Y) is expected response variables (species rich-
ness and proportional abundance at each radius distance), n is the number of variables included in the model; 
βn are the partial regression coefficients; Xn are the covariates (habitat types), and ϵ represents the residuals. 
Furthermore, the Newey-West covariance correction (lag = 1) was also applied in our models to account for 
heteroscedasticity and autocorrelation of habitat types.

To account for study/survey differences in sampling methods and variation across multiple years, our models 
also included random effects for study/year. Delta AICc (∆AICc), AICc, and AICc weights (w) of candidate 
models were used to select the best fitting model within each spatial category (< 500 m, 500–1500 m, > 1500 m) 
shown in bold in Table S7 as they provided a better understanding of the relative effects of each of the modelled 
 variables23. Both functional guild abundance and species richness were log-transformed using ln [a + 1, r + 1] 
prior to analyses to account for some studies/years having values of species richness and abundance of zero.

Although 24 different pollinator habitat types were found in the landscape (Tables S4, S5), we parameter-
ized our global models for each functional guild to test for main effects of the six most influential habitat types 
on bee biodiversity metrics (i.e., species richness and abundance). Six habitats were chosen as it represents the 

(1)ln(xi) =
E(a, r)− β0

β1
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lowest number of habitats that were found within a 2 km radius of a bee survey (Table S1). Prioritising the most 
important (six) habitat types in this way provides end users with a more targeted set of habitat recommendations 
to meet their specific conservation needs. We did not include interactions between different habitat covariates 
in our models due to a lack of biological justification for reporting statistical interactions among habitats, that 
may or may not be within close proximity of one another in a landscape. Partial regression coefficients (β1) and 
95% confidence intervals (CIs) for habitat covariates (independent variables) used in the best fitting models at 
each spatial category were reported (significance was reported if CIs did not include zero) as a way to assess the 
importance of habitat types for target bee community metrics for each functional guild (Tables S8, S9).

To explore the extent of correlation between habitat types among functional guilds and across spatial scales, 
we clustered partial regression coefficients of significant habitat types using ascendant hierarchical clustering 
based on Euclidian distances, then mapped these using a heat map function to visually report results to be more 
easily accessible for all end-users (e.g., academics, conservation practitioners, farmers, and policymakers) want-
ing to interpret the results for conservation and maintenance of habitat for wild bee species (Fig. S1). We used 
XLSTAT and R 3.0.2 functions to run all statistical  analyses63,64.

Data availability
Most bee and GIS dataset generated and analysed during the current study are from already published studies and 
available online. Bee datasets are available from: Grixti and  Packer51 (https:// doi. org/ 10. 4039/ n05- 034); Richards, 
et al.52 (https:// doi. org/ 10. 4039/ n11- 010); Colla, et al.53 (https:// digit alcom mons. lmu. edu/ cate/ vol2/ iss1/4); Taylor 
and  Catling54 (https:// doi. org/ 10. 22621/ cfn. v125i4. 1258);  Pindar55 (https:// yorks pace. libra ry. yorku. ca/ xmlui/ 
handle/ 10315/ 31967);  James56 (https:// curve. carle ton. ca/ system/ files/ etd/ c58ba a1b- fc25- 4d99- a79a- b10a4 f8d9b 
66/ etd_ pdf/ 87c79 03a1c 5b9dd 810db b32c4 7257e 4a/ james- nativ ebeed ivers ityin conve ntion alorg anich edger ows. 
pdf);  Andrachuk57 (https:// uwspa ce. uwate rloo. ca/ handle/ 10012/ 8254); and GIS datasets are from:  OMNRF60 
(https:// www. javac oeapp. lrc. gov. on. ca/ geone twork/ srv/ en/ main. home? uuid= 63552 9ce- 2639- 46f8- 9fc2- 43fbd 
d68aa d1),  AAFC61 (http:// www. agr. gc. ca/ atlas/ suppo rtdoc ument_ docum entde suppo rt/ annua lCrop Inven tory/ 
en/ ISO19 131_ AAFC_ Annual_ Crop_ Inven tory_ Data_ Produ ct_ Speci ficat ions. pdf). Two datasets are not publicly 
available due to several sites being located on private land and landowners do not want exact locations shared 
but bee lists are available from the corresponding author upon reasonable request.
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