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Multi‑omics investigation 
reveals functional specialization 
of transcriptional cyclin dependent 
kinases in cancer biology
Micah G. Donovan 1,2, Matthew D. Galbraith 1,2 & Joaquin M. Espinosa 1,2*

Transcriptional addiction is recognized as a valid therapeutic target in cancer, whereby the 
dependency of cancer cells on oncogenic transcriptional regulators may be pharmacologically 
exploited. However, a comprehensive understanding of the key factors within the transcriptional 
machinery that might afford a useful therapeutic window remains elusive. Herein, we present a cross‑
omics investigation into the functional specialization of the transcriptional cyclin dependent kinases 
(tCDKs) through analysis of high‑content genetic dependency, gene expression, patient survival, and 
drug response datasets. This analysis revealed specialization among tCDKs in terms of contributions 
to cancer cell fitness, clinical prognosis, and interaction with oncogenic signaling pathways. CDK7 and 
CDK9 stand out as the most relevant targets, albeit through distinct mechanisms of oncogenicity and 
context‑dependent contributions to cancer survival and drug sensitivity. Genetic ablation of CDK9, 
but not CDK7, mimics the effect on cell viability the loss of key components of the transcriptional 
machinery. Pathway analysis of genetic co‑dependency and drug sensitivity data show CDK7 and 
CDK9 have distinct relationships with major oncogenic signatures, including MYC and E2F targets, 
oxidative phosphorylation, and the unfolded protein response. Altogether, these results inform the 
improved design of therapeutic strategies targeting tCDKs in cancer.

Neoplastic transformation is facilitated by genetic and epigenetic changes that alter transcriptional programs, 
which eventually become essential for cancer cell  survival1. The recognition of such ‘transcriptional addiction’ 
has elicited a flurry of research and development activities in pursuit of specific pharmacological agents target-
ing major transcriptional regulators, such as transcriptional cyclin-dependent kinases (tCDKs)2–6. Members of 
the tCDK family regulate various phases of the RNA polymerase II (RNAPII) transcription cycle, as well as co-
transcriptional RNA  processing7,8. However, it is still unclear how the various members of the tCDK family (i.e., 
CDK7, - 8, -9, -10, -11A, -11B, -12, -13, -19, -20) are specialized in terms of cellular and organismal functions, 
both within and outside the transcription cycle. Moreover, it remains to be determined which tCDKs could serve 
as effective targets to exploit transcriptional addiction in cancer, which cancer types are the most dependent on 
these tCDKs, and which molecular features confer sensitivity to tCDK inhibition. Therefore, additional inves-
tigations are needed to fully reveal the functional specialization of the tCDK family members and to determine 
their contributions to cancer development.

Several tCDKs have been shown to regulate the RNAPII transcription cycle through their kinase activity, 
often targeting subunits of the core RNAPII machinery and/or accessory factors. For example, several tCDKs 
(e.g., CDK7, CDK9) can directly phosphorylate the C-terminal domain (CTD) repeats of the RPB1 subunit of 
RNAPII, with distinct substrate specificity, thus contributing to control of transcriptional initiation, elongation, 
and  termination9–11. Other tCDKs are known to target accessory components of the transcription machinery, 
such as the Mediator-associated CDK8, which indirectly affects RNAPII transcription through phosphorylation 
of transcription  factors12. In addition to specialization, there is both functional cooperation and redundancy 
among tCDKs. For example, CDK7, acting as part of the TFIIH general transcription factor, has been shown 
to be required for RNAPII pause-release through T-loop phosphorylation of CDK9, the catalytic subunit of the 
positive transcriptional elongation factor (P-TEFB), a key regulator of the transition from transcription initia-
tion to  elongation13. Conversely, other tCDKs may compensate for CDK7  activity14,15 and the full network of 
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compensatory interactions among the tCDK family is unclear. Although multiple transcription-related activities 
have been documented for tCDKs, it is not entirely clear which of these functions sustain transcriptional addic-
tion in cancer cells. Often the same tCDK has been shown to contribute to both oncogenic and tumor suppressive 
transcriptional programs. For example, CDK8, which works as a co-activator of both the Wnt/B-catenin and the 
p53 transcriptional programs, among  others12,16–20. Moreover, some tCDKs may play key roles beyond transcrip-
tional control, as demonstrated for CDK7 in the realm of cell cycle regulation and DNA  repair21–26. Collectively, 
these observations reveal many knowledge gaps that hamper the effective design and clinical development of 
tCDK-based cancer therapies.

Numerous small molecule CDK inhibitors have been reported, including broad-spectrum inhibitors that can 
target multiple tCDKs at once, as well as selective inhibitors that are claimed to target single kinases or closely 
related paralogs (e.g., CDK8/19, CDK12/13)27. Although broad-spectrum CDK inhibitors showed promising 
results in preclinical studies and some clinical trials, their clinical application has been limited due to low 
specificity and significant side  effects4. In contrast, more selective CDK inhibitors have shown more promise, 
such as Palbociclib, an inhibitor of the closely related CDK4 and CDK6, which is FDA-approved as a first-line 
treatment for HR+/HER2- breast  cancer28. Moreover, tCDK inhibitors such as SY-5609 (CDK7)29, THZ1 (CDK7, 
CDK12/13)30,31, THZ2 (CDK7, potentially CDK12/13)32,33, AZD4573 (CDK9)34, THZ531 (CDK12/13)35–37 and 
cortistatin A (CDK8/19)17,38 among several others have demonstrated significant anti-tumor activity in preclinical 
studies. SY-5609 is currently in clinical trials (ClinicalTrials.gov, NCT04247126) to test its effects in combination 
with Fulvestrant in advanced hormone receptor-positive, HER2-negative breast tumors. This compound pro-
duced strong pro-apoptotic effects in breast and ovarian cancer cell cultures and prevented xenograft tumor for-
mation in vivo. Interestingly, the cytotoxic effects of SY-5609 in cell culture were not observed in non-malignant 
fibroblast cells and the anti-tumor effects in vivo occurred without concomitant changes in weight loss, indicating 
a potential therapeutic  window29. Despite the promising results seen for tCDK inhibitors, it is currently unclear 
which tCDKs are the most relevant targets across different cancer types and what tumor features represent valid 
biomarkers of sensitivity to tCDK inhibition. Therefore, there is a critical need for large-scale investigations using 
models and datasets representative of diverse cancer types.

Within this context, we describe here an investigation of the functional specialization of tCDKs using genetic 
dependency data from genome-wide knockout screens, global transcriptome analyses, patient survival data, and 
pharmacological inhibitor response data derived from cell lines and/or tumor samples representing all major 
cancer types. This analysis revealed differences among tCDKs regarding their effects on cancer cell fitness, 
tumor progression, and genetic co-dependencies. We found that tCDKs have a wide range of effects on cancer 
cell viability, with CDK7 and CDK9 being the most essential across different cancer lineages, while other tCDKs 
display context-dependent essentiality that is independent of cancer type. Analysis of the tCDK gene effect cor-
relations confirmed some expected relationships based on current understanding of the biochemical properties 
of tCDKs, while also revealing potentially novel functions not necessarily tied to the RNAPII transcription cycle. 
Notably, these analyses illuminated specialization among close paralogs, i.e., CDK8 versus CDK19, and CDK12 
versus CDK13. Finally, analysis of pharmacological inhibitor data and genetic co-dependency data identified 
gene signatures associated with tCDK dependency that could potentially serve as biomarkers of drug efficacy. 
Altogether, the analyses and datasets herein provide key insights into roles of tCDKs in cancer biology and 
resources for follow-up investigations.

Results
Human tCDKs have diverse effects on cancer cell viability and tumor growth. Based on a phylo-
genetic analysis of full-length CDK protein sequences, tCDKs segregate away from CDKs involved in control of 
the cell cycle (Supplementary Fig. 1)39,40. The tCDKs include CDK7, CDK8, CDK9, CDK10, CDK11A, CDK11B, 
CDK12, CDK13, CDK19, and CDK20 with three paralog pairs among them (i.e., CDK8/CDK19, CDK11A/
CDK11B, and CDK12/CDK13) (Supplementary Fig. 1). To investigate functional specialization within the tCDK 
sub-family, we analyzed genetic dependency data from the Cancer Dependency Map (DepMap)  project41, gen-
erated via CRISPR-Cas9 knockout screens across 1070 cancer cell lines. In this dataset, negative gene effect 
scores are indicative of genes required for cell viability and proliferation, as exemplified by the oncogene KRAS 
(Fig. 1a). Genes with effect scores lower than − 0.5 are considered essential for cell viability. On the other hand, 
positive gene effect scores indicate enhanced growth effects upon knockout of a gene, such as for the tumor sup-
pressor RB1 (Fig. 1a). Importantly, the widespread essentiality of multiple subunits of the RNAPII enzyme across 
cancer cells demonstrates their clear dependence on RNAPII-dependent transcriptional processes to sustain 
viability (Supplementary Fig. 1). The distributions of effect scores for the tCDKs reveal a range of contributions 
to cancer cell fitness (Fig. 1a, Supplementary Data 1). This is also the case for cell cycle related CDKs (Fig. 1b, 
Supplementary Data 1) Given that CDK11A and CDK11B could not be knocked out with specific gRNAs, they 
are not included in this analysis. Notably, knockout of CDK7 and CDK9 produces essential gene effect scores 
(below − 0.5) across all cell lines screened, with even stronger average effects than those observed upon knockout 
of KRAS and the cell cycle-related CDK4 and CDK6 (Fig. 1a,b). In fact, the median gene effect scores for CDK7 
and CDK9 are among the top 3% strongest in the genome, and, among CDKs, the only kinase with stronger 
contributions to cell viability is CDK1 (Fig. 1b). Whereas CDK19 and CDK20 are not essential in any of the 
cancer cell lines tested, there is a minor proportion of cell lines in which CDK8 (~ 3%), CDK10 (~ 1%), CDK12 
(~ 27%) and CDK13 (~ 3%) are essential. When considering the paralog pairs (i.e., CDK8/19 and CDK12/13), 
not only is CDK8 essential in 3% of cell lines whereas CDK19 is not essential in any, but also less than half of the 
cell lines dependent on CDK13 do not require CDK12 (Supplementary Fig. 1). These results indicate functional 
specialization of the tCDK family members, including within paralog pairs, in the context of cancer cell fitness in 
the cell culture conditions employed in the DepMap project. To determine if the essentiality of CDK8/10/12/13 is 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22505  | https://doi.org/10.1038/s41598-022-26860-1

www.nature.com/scientificreports/

++++++++++

++++++++ ++++++++++++++++++++++++++++++++++++ ++++++++++++ +++++++++++++++++++++

e

c

a

-3

-2

-1

0

1

2

KRAS
RB1

CDK7
CDK9

CDK12

CDK10

CDK13
CDK8

CDK20

CDK19

G
en

e 
ef

fe
ct

 s
co

re

Distributions of gene effect scores

* * * *
*

* * * * * * *

*
*

*
* *

*

*
* * * * * *

* * * * * * * *
* * *

* * * * *
* *

Progression-free survival

CHOL
GBM
UVM
ACC
KIRC
UCEC
OV
SARC
BLCA
CESC
LUAD
TGCT
HNSC
COAD
SKCM
READ
BRCA
PRAD
THYM
THCA
LUSC
STAD
KIRP
LGG
LIHC
ESCA
PAAD
MESO
UCS

CDK9

CDK20

CDK10

CDK12

CDK19
CDK8

CDK13
CDK7

log2(PFS)

-2.2

0

2.2

CDK7

CDK8

CDK9

CDK10

CDK12

CDK13 CDK19CDK20

CDK1

CDK2

CDK4

CDK6

CDK5

-2

-1

0

Rank

M
ed

ia
n 

ge
ne

 e
ffe

ct
 s

co
re

Ranked gene effect scores

ACC

KIRC

KIRP

LGG
LIHC

THCA

KIRC
KIRP

LGG

LIHC
PAAD

UVM

KIRC

PAAD
PRAD

KIRP

LGG

UVM

CDK12 CDK13

CDK7 CDK9

0

2

4

6

0

2

4

6

log2(PFS ratio)

-lo
g1

0(
FD

R
)

tCDK expression
associated

with prognosis:

favorable

n.s.

unfavorable

0-1 1 -1 0 1

0 5000 10000 15000

b

d

-0.8

-0.4

0.0

ey
e

so
ft t

iss
ue

pro
sta

te
live

r

co
lor

ec
tal

ute
rus
ce

rvi
x
sk

in
PNS

bo
ne

ga
str

ic

uri
na

ry 
tra

ct

pla
sm

a c
ell

pa
nc

rea
s
lun

g

es
op

ha
gu

s
CNS

kid
ne

y
UAD

blo
od
bre

as
t

ov
ary

bil
e d

uc
t

lym
ph

oc
yte

thy
roi

d

G
en

e 
ef

fe
ct

 s
co

re

Distributions of CDK12 gene effect scores

LGG

+++++
++ +

++++++++++++++++++++++ + + +
+ +

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++ ++

0.00

0.25

0.50

0.75

1.00

Time

PF
S 

pr
ob

ab
ilit

y

++++++++++
+++++++++++++++++++ +++ ++++++++++++++ ++++ + +

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +

0.00

0.25

0.50

0.75

1.00

Time

PF
S 

pr
ob

ab
ilit

y

tCDK expression:

+
+

CDK7 expression:
Kidney renal papillary carcinoma (KIRP)

CDK9 expression: 
Kidney renal clear cell carcinoma (KIRC)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

High

Low

f

n= 230
n= 59

n= 430
n= 102

all genes
non-transcriptional CDK

Key

*significant effect
(q<0.1)

split 20:80; q= 5.5e-5; unfavorable

split 19:81; q= 1.2e-5; unfavorable

Figure 1.  Human tCDKs have diverse effects on cancer cell viability. (a) Distributions of gene effect scores for tCDKs, proto-oncogene 
KRAS and tumor suppressor RB1. Dashed line indicates threshold for essential gene effect scores (− 0.5). Dotted line indicates strong 
killing effect (− 1.0). Box plots show median with first and third quartiles at hinges. Whiskers extend to largest/smallest values no 
further than 1.5*IQR from hinge. (b) Ranked plot of median gene effect scores of all genes tested in DepMap data set. The location of 
all tCDKs (multi-colored) and non-transcriptional CDKs (gray) are denoted. (c) Distributions of gene effect scores for CDK12 across 
all lineages with at least 5 representative cell lines. Box plots show median with first and third quartiles at hinges. Whiskers extend 
to largest/smallest values no further than 1.5*IQR from hinge. (d) Volcano plots for prognosis associated with tCDK expression in 
the TCGA dataset. Results show adjusted (log2) of progression-free survival (PFS) ratio versus adjusted (− log10) false discovery 
rate (FDR, q value). (e) Heatmap showing adjusted (log2) progression-free survival (PFS) associated with tCDKs expression across 
TCGA cancer lineages. Dendrograms represent results from unsupervised clustering. Asterisks denote significance (FDR < 0.1). (f) 
Results from iterative Kaplan–Meier survival analysis of low (20th percentile) versus high (80th percentile) CDK7 expression in kidney 
renal papillary carcinoma (KIRP) and low (19th percentile) versus high (81st percentile) CDK9 expression in kidney renal clear cell 
carcinoma (KIRC).
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dependent on cancer type, we examined their gene effect score distributions across 26 different tissues of origin 
(Fig. 1c, Supplementary Fig. 1). Notably, none of these lineages are distinctly dependent on any of these four 
kinases. Instead, there are cell lines from several different lineages in which they are essential. This suggests that 
the conditions dictating essentiality for these four kinases are not lineage-dependent and are likely determined 
by other molecular and cellular features.

To further investigate the role of tCDKs in the context of human cancer, we analyzed gene expression and 
survival data from The Cancer Genome Atlas (TCGA)  project42. In line with the DepMap analysis, higher 
expression of CDK7 is associated with worse progression-free survival (PFS) for several cancer types includ-
ing kidney renal papillary and kidney clear cell carcinoma (KIRP and KIRC, respectively), low-grade gliomas 
(LGG), liver hepatocellular carcinoma (LIHC), and thyroid carcinoma (THCA) (Fig. 1d–f, Supplementary Data 
2). Similarly, CDK9 expression is associated with unfavorable prognosis in KIRC and prostate adenocarcinoma 
(PRAD) (Fig. 1d–f). However, for all tCDKs in the analysis, higher expression is associated with either favorable 
or unfavorable prognosis in at least one cancer type (Fig. 1d,e, Supplementary Fig. 1). For example, high CDK7 
expression is associated with favorable prognosis in adrenocortical carcinoma (ACC) and high CDK9 expres-
sion with favorable prognosis in pancreatic adenocarcinoma (PAAD) and low-grade glioma (LGG) (Fig. 1d,e). 
Interestingly, expression of CDK19 and CDK20, which did not appear to influence cell survival in the in vitro 
conditions used to generate the DepMap dataset, are nonetheless associated with better/worse tumor progres-
sion free survival (PFS) in multiple tumor types (Fig. 1e, Supplementary Fig. 1). These differences could be 
potentially explained by cell-autonomous effects of the tCDKs measured in vitro versus cell-extrinsic effects in 
the context of human tumors and their in vivo microenvironments. This analysis also demonstrated differences 
between tCDK paralogs regarding their association with the prognosis of different types of cancer, as illustrated 
by opposite associations between CDK12 and CDK13 expression and KIRP prognosis (Fig. 1d,e). Altogether, 
these results highlight the functional specialization of the tCDKs in terms of cancer cell viability and the potential 
for context-specific influences on tumor progression.

Analysis of genetic co‑dependencies reveals known and unexpected relationships between 
tCDKs and cyclins. To gain further insight about the functional specialization of tCDKs, we performed an 
in-depth analysis of their genetic co-dependencies in the DepMap dataset. Co-dependent genes are defined as 
those whose effects on cell growth are positively or negatively (i.e., inverse co-dependency) correlated, indicating 
potential biological  relationships43. First, we mapped the tCDK genetic co-dependencies by ranking Spearman 
correlations of gene effect scores for all genes in the DepMap dataset against each individual tCDK (Supplemen-
tary Data 3). For comparison purposes, we also performed this analysis for all other CDKs (i.e., CDK1-6, 14-17). 
Given that CDK activation requires binding by a cyclin binding partner, and many biochemical interactions 
have been defined for tCDKs and various cyclins (Supplementary Fig. 2), we first examined the association of 
all cyclins previously reported to bind to and regulate CDK activity (Fig. 2a, Supplementary Fig. 2). Notably, 
in some instances the known cyclin partner is the top positive co-dependency overall, such as in the case for 
association of cyclin C (CCNC) with CDK8 (Fig. 2a,b). In other instances, the known cyclin partner is the top co-
dependency among the cyclins, such as in the case of association of cyclin H (CCNH) with CDK7 and cyclin K 
(CCNK) with CDK9 (Fig. 2c–e). These results demonstrate the capacity of genetic co-dependencies to highlight 
bona fide functional relationships between genes. However, for other tCDKs, the known cyclin partner shows 
no significant co-dependency, such as the case for CCNC versus CDK19 or CCNK versus CDK12 and CDK13 
(Fig. 2b,c,e, Supplementary Fig. 2). Thus, whereas depletion of a tCDK or its partner cyclin may have largely 
similar effects across hundreds of cell lines in some instances (e.g., CDK8 and CCNC), this is not always the 
case (e.g., CDK19 and CCNC) (Fig. 2b,c). Some tCDKs had stronger co-dependencies with cyclins other than 
their established binding partners. For example, in the cases of CDK12 and CDK13, CCNH and CCNC are the 
top correlated cyclins, respectively (Fig. 2c,e, Supplementary Fig. 2). Interestingly, for CDK12, cyclins H, B2, 
L1, B1, O, G1 and L2 all rank higher than cyclin K. Similarly, for CDK19, multiple cyclins rank above CCNC, 
including significant co-dependencies with cyclin L2 (CCNL2), Y (CCNY), A2 (CCNA2), O (CCNO) and YL1 
(CCNYL1) (Fig. 2c, Supplementary Fig. 2). Other unexpected observations include significant co-dependency 
between CCNL2 and CDK10, and CCNL2, cyclin B2 (CCNB2), and CCNK with CDK20 (Supplementary Fig. 2). 
Altogether, these results demonstrate the capacity for the DepMap dataset to both highlight known functional 
interactions of the tCDKs and also identify potentially novel biological relationships including possible alterna-
tive CDK/cyclin partnerships.

tCDKs exhibit differential genetic co‑dependencies with the RNAPII machinery. Next, we 
turned to the RNAPII transcription cycle. This process is regulated by diverse events at several steps involv-
ing the kinase activity of multiple tCDKs, whereby RNAPII and several transcriptional co-factors are direct 
phosphorylation  targets7. Thus, we assessed co-dependencies between tCDKs and genes encoding key factors 
involved in the transcription cycle, including RNAPII subunits, general transcription factors (GTFs, i.e., TFIIA, 
B, D, E, F and H), the Mediator complex, regulators of RNAPII pause, release, and elongation (negative elonga-
tion factor, NELF; DRB Sensitivity Inducing Factor, DSIF; and the super elongation complex, SEC), as well as 
the capping and 3’ processing machineries (cleavage and polyadenylation specificity factor, CPSF; and cleavage 
stimulation factor, CSTF) (Fig. 3a, Supplementary Fig. 3, Supplementary Data 4). Analyzing the full matrix of 
correlations by unsupervised clustering shows four distinct gene clusters (Fig. 3a). Cluster 1 does not contain 
any tCDKs and is comprised of mostly non-essential subunits of the Mediator complex. This cluster has the 
strongest associations in this analysis, as illustrated by the co-dependencies between MED23 and MED16 with 
MED24, components of the Mediator tail module (Fig. 3b, Supplementary Fig. 3). Previous studies have also 
indicated tail subunits are not essential for cell viability, despite the tail being the main docking site for DNA-
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binding transcription  factors44. Interestingly, in yeast, the Mediator tail module is not required for recruitment 
to DNA promoters and only a small subset of genes is affected by tail  depletion45,46. Cluster 2, which like Cluster 
1 does not contain any tCDKs, consists of essential subunits mainly from Mediator and RNAPII, as illustrated 
by co-dependency between MED6 and POLR2H (Fig. 3c) and MED14 and MED6 (Supplementary Fig. 3). This 
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Figure 2.  Analysis of genetic co-dependencies reveals predicted versus unexpected relationships between 
tCDKs and their cyclins. (a) Ranked correlations of gene effect scores for CDK8. Location of all cyclins depicted 
in red. Above and below the dashed lines denote significant (FDR < 0.1) positive and negative correlations, 
respectively. Cyclins with significant (FDR < 0.1) correlations are annotated by name. (b) Scatter plot showing 
gene effects of CDK8 and CDK19 versus gene effects of CCNC across all 1070 cell lines in the DepMap data set. 
(c) Ranked gene effect correlations between tCDKs and all cyclin genes in the DepMap dataset. Asterisks denote 
significant (FDR < 0.1) interactions. Arrow shows higher correlation values equate to higher co-dependency 
scores. (d) Scatter plot showing gene effects of CDK7 versus gene effects of CCNH across all 1070 cell lines in 
the DepMap data set. (e) Scatter plot showing gene effects of CDK9, CDK12 and CDK13 versus gene effects of 
CCNK across all 1070 cell lines in the DepMap data set.
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Figure 3.  tCDKs exhibit differential genetic co-dependencies with the RNAPII machinery. (a) Heatmap depicting gene effect 
correlations between tCDKs and various genes involved in RNAPII-dependent transcription. Asterisks denote significant (FDR < 0.1). 
Essential genes (red, right-side annotation) are determined by median gene effect scores of < − 0.5 across all cell lines. In the multi 
color-coded annotation to the right of the heatmap, colors indicate diverse protein complexes. Dendrograms represent results from 
unsupervised clustering analysis. (b) Scatter plot comparing gene effect scores of MED23 and MED24 across all 1070 cell lines in 
the DepMap data set. (c) Scatter plot comparing gene effect scores of POLR2H and MED6 across all 1070 cell lines in the DepMap 
data set. (d) Scatter plot comparing gene effect scores of CDK7 to NELFB and MNAT1 across all 1070 cell lines in the DepMap data 
set. (e) Scatter plot comparing gene effect scores of CDK12 and CDK13 to AFF3 across all 1070 cell lines in the DepMap data set. (f) 
Scatter plot comparing gene effect scores of CDK12 and CDK13 to AFF1 across all 1070 cell lines in the DepMap data set. (g) Scatter 
plot comparing gene effect scores of CDK8 and CDK19 to MED13L across all 1070 cell lines in the DepMap data set. (h) Scatter plot 
comparing gene effect scores of CDK9 to POLR2E and NELFCD across all 1070 cell lines in the DepMap data set. (i) Venn diagram 
comparing significant positive co-dependencies (rho > 0, FDR < 0.1) of CDK7 and CDK9 among essential (median gene effect < − 0.5) 
transcription-related genes shown in (a).
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cluster also contains a few essential subunits from TFIIA, TFIID, TFIIF, the capping complex, and the SEC 
(Fig. 3a). Interestingly, except for CDK9, all the tCDKs group within Cluster 3, which does not contain any 
RNAPII subunits and is largely dominated by non-essential accessory factors. Various associations within this 
cluster provided confidence in our analysis, including co-dependency between CDK7 and NELFB and various 
components of TFIIH including MNAT1 (Fig. 3d). Along with cyclin H, CDK7 and MNAT1 form the heterotri-
meric CDK activating kinase (CAK) complex, which activates the cell cycle-related CDKs 1, 2, 4, and 6 through 
T-loop  phosphorylation25,47. The CAK complex also associates with TFIIH wherein the kinase activity of CDK7 
regulates various transcription-related processes including CTD phosphorylation of RNAPII and the recruit-
ment of NELF to transcription start  sites48. This analysis also revealed surprising differences between closely 
related tCDK paralog pairs. For example, within Cluster 3, the strongest interaction for CDK12 is AFF3, which 
has inverse co-dependency with CDK13 (Fig. 3e). The opposite relationship is observed with AFF1, which is 
the strongest co-dependency for CDK13 in this cluster and displays an inverse co-dependency with CDK12 
(Fig. 3f). AFF1 and AFF3 encode evolutionarily divergent members of the AF4/FMR2 family of transcription 
elongation factors, which have been shown to regulate distinct target genes and have differential expression 
across tissues and throughout  development49. Taken together this could suggest context-dependent participa-
tion of CDK12/13 in transcription regulation by SECs. CDK8 and CDK19 also showed surprising differences 
regarding their interactions with members of the Mediator complex (Fig. 3a, Supplementary Fig. 3). Whereas 
CDK19 shows co-dependency with several MED genes, as illustrated by the interaction with MED13L, a com-
ponent of the Mediator kinase module and itself a paralog of MED13, this is not the case for CDK8 (Fig. 3g). 
This may indicate prominent roles for CDK8 (and by association cyclin C) in other cellular processes, beyond its 
well-documented positive and negative regulatory effects on transcription as part of the Mediator complex. This 
could also indicate Mediator-independent roles for CDK8 in transcription regulation.

Finally, CDK9 falls within Cluster 4, which contains several RNAPII subunits and essential genes from 
other key transcriptional co-factors (Fig. 3a). Consistently, CDK9 shows the strongest genetic co-dependen-
cies among the tCDKs with essential subunits from most of these transcriptional complexes as illustrated by 
POLR2E (RNAPII), NELFCD (NELF), TAF2 (TFIID) and NCBP1 (capping), among other examples (Fig. 3h, 
Supplementary Fig. 3). In line with these observations, CDK9 has been shown to play a pivotal role in control-
ling transcription elongation, in part, through regulating the interaction between the NELF complex and the 
transcription  machinery50. NCBP1 has also previously been identified as a substrate for CDK9 kinase  activity51. 
Interestingly, whereas CDK9 is co-dependent with several subunits of RNAPII, this is not the case for CDK7, 
which shows inverse co-dependency with multiple subunits (Supplementary Fig. 3). Moreover, of the 71 genes 
considered essential among this transcription-related gene set, ~ 44% show positive co-dependency with CDK9, 
whereas < 20% are co-dependent with CDK7 (Fig. 3i).

Collectively, these observations suggest that while cancer cells respond similarly, in terms of cell viability 
in vitro, to the loss of CDK9 and key factors controlling transcription, this is not the case for the majority of 
tCDKs, including CDK7. This could imply that the dependence of cancer cells on CDK7 may not be primarily 
due to its transcription-related activities.

Pathway analysis of genetic interactomes predicts novel functions for tCDKs. We next extended 
our investigation of the tCDK genetic interactome outside of the RNAPII transcription cycle by completing gene 
set enrichment analysis (GSEA) of hallmark pathways against the ranked genome-wide co-dependencies of each 
tCDK (Fig. 4a, Supplementary Data 5). Overall, each tCDK presents a unique pattern of pathway enrichment in 
its genetic interactome, with multiple examples of signaling pathways displaying significant genetic interactions 
with a single tCDK. Given the fact that CDK7 and CDK9 are more essential for cancer cell fitness relative to 
the other tCDKs, we focused on gene signatures enriched among their positive co-dependencies with potential 
oncogenic roles. Both CDK7 and CDK9 showed co-dependencies with MYC target genes, albeit with important 
differences at the gene level (Fig. 4b,c). Expectedly, many MYC target genes are essential for cancer cell fitness 
(Supplementary Fig. 4). Whereas both kinases show co-dependencies with the MYC V2 gene set, only CDK9 
shows co-dependencies with the MYC V1 set (Fig. 4a–c, Supplementary Fig. 4). In fact, CDK7 co-dependencies 
are negatively enriched for MYC V1 targets (Fig. 4a). Moreover, at the gene level, their co-dependencies with 
these oncogenic gene signatures are clearly different (Fig. 4b). For example, CDK9, but not CDK7, shows co-
dependency with PES1 (Pescadillo homolog 1), a key pro-proliferation factor involved in pre-processing of the 
60 s ribosome subunit. Additionally, CDK9, but not CDK7, shows co-dependencies with subunits of the protea-
some, such as PSMA2 and PSMA4 (Fig. 4b,c). In contrast, CDK7 but not CDK9, shows co-dependency with 
PGK1, a key MYC target gene involved in metabolic reprogramming (Fig. 4b,c). This could indicate that CDK7 
and CDK9 contribute to cancer cell fitness through regulation of different aspects of the MYC transcriptional 
network. Alternatively, it could imply different cancer cell lines maintain expression of MYC targets through 
differing means, which imparts distinct dependencies. Beyond MYC signatures, other important differences 
include significant co-dependencies between CDK9, but not CDK7, and several essential genes involved in the 
unfolded protein response (UPR) (Fig. 4a, Supplementary Fig. 4). Conversely, CDK7, but not CDK9, shows co-
dependencies with multiple essential factors in the Oxidative Phosphorylation gene signature, including subu-
nits of the electron transport chain complexes (e.g., COX7C, COX11, NDUFAB1) and several essential genes 
encoding mitochondrial proteins (e.g., TIMM10, TOMM22, and MRPS22) (Fig. 4d–f). Therefore, whereas both 
CDK7 and CDK9 may contribute to cancer cell fitness through differential interactions with the MYC network, 
they display clearly specialized relationships with other signaling pathways relevant for cancer development.

Beyond CDK7 and CDK9, this pathway analysis also identified clear distinctions between the tCDK par-
alog pairs CDK8/19 and CDK12/13 (Fig. 4a). For example, whereas the co-dependencies for CDK19 are posi-
tively enriched for several hallmark pathways, this is not the case for CDK8 (Fig. 4a). Among their top 500 
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co-dependencies, CDK8 and CDK19 have a single common interaction (Fig. 4g), the armadillo repeat domain 
containing protein 2 (ARMC2), which has been found to be essential for sperm-tail biogenesis in both humans 
and  mice52. Conversely, CDK12 and CDK13 have no common co-dependencies among their top 500 interac-
tions (Fig. 4h). Analysis of the 5 strongest positive and inverse co-dependencies for each of the paralog pairs 
demonstrated that the relationship is often opposite for the same gene (e.g., CDKN2C vs. CDK8/19, ATP5MK 
vs. CDK12/13) (Fig. 4i). Importantly, previous biochemical-based studies have documented opposite roles for 
CDK8 and CDK19 on transcriptional regulation in certain  contexts53.

Collectively, these results suggest that tCDKs have distinct and specialized genetic interactions with diverse 
signaling pathways, beyond the RNAPII transcription cycle, including within closely related kinases, which could 
potentially explain their differential contributions to cancer cell viability and cancer development.

Identification of gene signatures associated with sensitivity to pharmacological tCDK inhibi-
tion. To gain a pharmacological perspective into mechanisms of specialization among tCDKs, we investigated 
the Genomics of Drug Sensitivity in Cancer (GDSC) datasets, which contain data on the sensitivity of hundreds 
of cancer cell lines (GDSC1, n = 985; GDSC2, n = 809) to hundreds of drugs (GDSC1, n = 299; GDSC2, n = 173). 
In these datasets, the only tCDKs targeted by specific inhibitors are CDK7 (targeted by THZ-1-102-1 in GDSC1) 
and CDK9 (targeted by THZ-2-49, and KIN001-270 in GDSC1, and CDK9_5576 and CDK9_5038 in GDSC2). 
However, the datasets also contain information about inhibitors of CDK1 (RO-3306), CDK2 (AD5438), CDK4/6 
(Palbociclib), as well as broad-spectrum CDK inhibitors (e.g., PHA-793887, AT7519). Remarkably, when all 
drugs in the GDSC1 dataset are ranked by their effects on cell viability (i.e., area under the curve, AUC), the 
CDK7 inhibitor THZ-2-102-1 has the 11th strongest pharmacological effect with a median AUC of 0.49 (Fig. 5a). 
On the other hand, the four CDK9 inhibitors have a wide range of effects on cancer cell growth. Whereas the 
CDK9 inhibitor CDK9_5038 is ranked 4th among all drugs in the GDSC2 dataset (Supplementary Fig. 5), the 
compound KIN001-270 ranks 238th in GDSC1 (Fig. 5a). In line with our analysis of genetic dependency data, 
the CDK7 inhibitor THZ-2-102-1 and the CDK9 inhibitor CDK9_5038 have stronger effects than compounds 
targeting major CDKs involved in cell cycle progression such as CDK2 (e.g., AZD5438) and CDK4/6 (e.g., Pal-
bociclib), and those targeting a broad spectrum of CDKs (Fig. 5a, Supplementary Fig. 5). Nevertheless, there is a 
wide distribution of effects for all these CDK inhibitors across cancer cell lines of diverse origins (Fig. 5b), which 
enabled us to complete correlation analyses both between drug effects and versus matching gene expression data 
generated from these cell lines (Supplementary Data 6 and 7).

First, we investigated the relationship between CDK inhibitors and all other drugs in the datasets by defining 
Spearman correlations and visualizing similarities via unsupervised clustering (Fig. 5c, Supplementary Fig. 5). 
Notably, the CDK7 inhibitor THZ-2-102-1 falls within a drug cluster that includes a PLK3 inhibitor (NPK-
II-72-1), an HSP90 inhibitor (SNX-212), and several HDAC inhibitors (e.g., Belinostat, CAY-10603) including 
CUDC-101, which is reported to also target human epidermal growth factor receptors 1 and 2 (EGFR1 and 
HER2, respectively) (Fig. 5c–e). Importantly, the action of all these targets can be tied to cell cycle processes. For 
example, PLK3 is required for S-phase  entry54, HSP90 chaperones a myriad of proteins involved in cell cycle pro-
gression (including PLKs)55, HDACs repress key cell cycle regulators such as p53 and  p2156, and EGFR signaling 
activates various downstream pathways that stimulate cell cycle progression including RAS-RAF-MEK-ERK-
MAPK and AKT-PI3K-mTOR57. In contrast, the CDK9 inhibitors CDK9_5038 and CDK9_5576 associate with 
each other and within a cluster that includes a CDK2 inhibitor (AZD5438) and a broad spectrum CDK inhibitor 
(Dinaciclib, reported to target CDK1, CDK2, CDK5, CDK9) (Supplementary Fig. 5). This cluster is also com-
prised of various microtubule destabilizers (e.g., Vincristine, Vinblastine, Vinorelbine) in addition to an inhibitor 
of RNA helicase A (YK-4-279), which has also been reported to act as a microtubule  destabiliser58, and kinesin 
proteins (Eg5_9814), which are important regulators of microtubule dynamics and cell division  processes59 
(Fig. 5d,e, Supplementary Fig. 5). These results suggest that CDK7 inhibitors elicit a response in cancer cells 
similar to compounds that target regulators of cell cycle progression (PLK3, HSP90, HDACs, EGFR), whereas 
CDK9 inhibitors produce responses similar to drugs targeting mitosis (i.e., microtubule stability and dynamics).

Figure 4.  Pathway analysis of genetic interactomes predicts novel functions for tCDKs. (a) Heatmap showing 
normalized enrichment scores (NES) from Hallmark gene set enrichment analysis of ranked tCDK gene effect 
correlations. Asterisks denote significant (FDR < 0.1). Dendrograms represent results from unsupervised 
clustering analysis. (b) Heatmap showing gene effect correlations for CDK7 and CDK9 versus representative 
genes from the Hallmark MYC Target V1 and V2 datasets. Asterisks denote significance. In the color-coded 
annotation to the right of the heatmap, green denotes genes from the V1 dataset, blue denotes the V2 dataset, 
red indicates genes from both V1 and V2. (c) Scatter plots comparing gene effect scores of CDK7 and CDK9 to 
select genes from the MYC targets datasets. (d) Heatmap showing gene effect correlations for CDK7 and CDK9 
vs. representative genes from the Hallmark Oxidative Phosphorylation data set. Asterisks denote significance 
(FDR < 0.1). Dendrograms represent results from unsupervised clustering analyses. (e) Scatter plots comparing 
gene effects of CDK7 and CDK9 to select genes involved in oxidative phosphorylation. (f) Distributions of gene 
effect scores for select co-dependencies of CDK7 involved in oxidative phosphorylation. Dashed line indicates 
threshold for essential gene effect scores (− 0.5). Dotted line indicates strong killing effect (− 1.0). Box plots 
show median with first and third quartiles at hinges. Whiskers extend to largest/smallest values no further than 
1.5*IQR from hinge. (g,h) Comparison of top 500 positive gene effect correlations between the tCDK paralog 
pairs CDK8/19 (g) and CDK12/13 (h). (i) Heatmaps comparing gene effect correlations of CDK8 to CDK19 
and CDK12 to CDK13 with their top 5 positive and inverse co-dependencies. Asterisks denote significance 
(FDR < 0.1). Dendrograms represent results from unsupervised clustering analyses.
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Next, we investigated gene signatures associated with sensitivity or resistance to the various CDK inhibitors 
in the GDSC datasets. To this end, we performed pairwise Spearman correlation analyses of CDK inhibitor 
AUC versus RNA expression data for all available genes in matched cell lines (Fig. 5f, Supplementary Fig. 5, 
Supplementary Data 7). Given that lower AUC is associated with an anti-proliferative effect, genes with nega-
tive correlations to CDK inhibitor AUC were considered sensitivity genes whereas genes with positive correla-
tions were considered resistance genes. We focused this analysis on inhibitors of CDK7 (THZ-2-102-1), CDK9 
(CDK9_5038), CDK1 (RO-3306), CDK2 (AZD5438) and CDK4-6 (Palbociclib). Although data for AZD5438 and 
Palbociclib were available in both GDSC1 and GDSC2 datasets, we used those from GDSC2 as they represented 
the most up-to-date data for these drugs. Notably, this analysis demonstrated that the top resistance gene for 
THZ-2-102 is ABCC3, a well-known multi-drug resistance  gene60 (Fig. 5f). A relatively uncharacterized gene, 
FAM78A, was among the top sensitivity genes for both the CDK7 inhibitor THZ-2-102-1 and the CDK9 inhibitor 
CDK9_5038 (Fig. 5f). Additionally, both inhibitors of CDK7 (THZ-2-102-1) and CDK4/6 (Palbociclib) display 
ribosomal subunits among their top sensitivity genes (Fig. 5f, Supplementary Fig. 5). To gain a more global 
perspective of the signaling pathways associated with sensitivity or resistance to each compound, we performed 
GSEA on the AUC versus inhibitor correlations for each CDK inhibitor (Supplementary Fig. 5). For comparison 
purposes, we also included the most similar drug (by Spearman correlation) to each of these CDK inhibitors 
(i.e., NPK76-II-72-1 for THZ-2-102-1, Vincristine for CDK9-5038, JNK-Inhibitor-VII for RO-3306, Oxaliplatin 
for Palbociclib, and VSP34_8731 for AZD5438). GSEA was carried out on the inverse of the correlations so 
that positive and negative enrichment represented sensitivity and resistance genes, respectively. Unsupervised 
clustering of Hallmark GSEA results showed the CDK7, CDK9 and CDK1 inhibitors cluster closest with their 
most related drugs whereas the CDK4/6 and CDK2 inhibitor cluster closest with each other (Supplementary 
Fig. 5). However, overall, there is significant overlap between the CDK7, CDK9, CDK4/6 and CDK2 inhibitors 
regarding the most positively and negatively enriched pathways and clear non-overlap with the CDK1 inhibitor. 
Interestingly, whereas there is marked non-overlap between CDK7 and CDK9 in terms of pathways positively/
negatively enriched among their genetic co-dependencies (Fig. 4a), the overall pattern of signaling pathways 
associated with their pharmacological inhibition is more similar. This could be due to the fact that pharmacologic 
suppression only inhibits tCDK kinase activity, whereas genetic ablation also removes accessory functions of the 
tCDKs, such as scaffolding. Nevertheless, several of the gene signature pathways that were positively enriched 
among the genetic co-dependencies of CDK7 and CDK9 are also enriched among the genes associated with 
sensitivity to their pharmacologic inhibitors (Fig. 5g). For CDK7, these common signatures include E2F targets, 
MYC targets (V2) and genes involved in oxidative phosphorylation, whereas the common signatures for CDK9 
include MYC targets (V1 and V2), DNA repair, the UPR and allograft rejection (Fig. 5g). Thus, these shared 
gene signatures could be considered high-confidence modulators of the cellular response to loss of tCDK activ-
ity. An example of a gene whose expression is associated with both CDK7 genetic dependency and sensitivity to 
CDK7 pharmacological inhibition is MCM3, a subunit of the hexameric MCM (mini-chromosome maintenance) 
complex critical for initiation of DNA replication and a known E2F target gene (Fig. 5h). The analogous example 
for CDK9 is EXOSC9, a component of the RNA exosome complex involved in the UPR, which displays genetic 
co-dependency with CDK9 and whose expression is associated with sensitivity to CDK9 inhibition.

Altogether, these results highlight the existence of signaling pathways differentially associated with the activity 
of different tCDKs, with clear potential to illuminate both mechanisms of tCDK action as well as development 
of more effective tCDK-based cancer therapies.

Discussion
As a result of evolutionary divergence and specialization, mammalian cells evolved two functionally distinct 
classes of CDK, those that are involved mostly in control of the cell cycle (e.g., CDK1, -2, -4, -5, -6) and  tCDKs39. 
Despite the recognition that transcriptional addiction is a valid target for cancer therapy, the cell cycle related 
CDKs, most prominently CDK4/6, have received more attention in terms of development as therapeutic targets. 

Figure 5.  Identification of gene signatures associated with sensitivity to pharmacological tCDK inhibition. 
(a) Ranked median area under the curve (AUC) values for all drugs in the GDSC1 data set. Drugs targeting 
CDKs are color-coded and annotated. (b) Distributions of AUC values for drugs targeting CDKs across all 
cell lines in the GDSC1 and GDSC2 data sets. Box plots show median with first and third quartiles at hinges. 
Whiskers extend to largest/smallest values no further than 1.5*IQR from hinge. (c) Heatmap showing full 
matrix of correlations of AUC between all drugs in the GDSC1 dataset. Dendrograms represent results from 
unsupervised clustering analyses. Cluster containing the CDK7 inhibitor THZ-2-102-1 is blocked off in a black 
square. (d) Magnification of a cluster from (c) containing the CDK7 inhibitor THZ-2-101. Asterisks denote 
significance (FDR < 0.1). Dendrograms represent results from unsupervised clustering analyses. (e) Scatter plots 
comparing AUC of CDK7 inhibitor THZ-2-102 to PLK3 inhibitor NPK76-II-72-1 (left) and CDK9 inhibitor 
CDK9_5038 to microtubule destabilizer vincristine (right). (f) Volcano plots depicting correlations between 
CDK7 (THZ-2-102-1) and CDK9 (CDK9-5038) inhibitors versus genome-wide mRNA expression. The top 5 
sensitivity (rho < 0, FDR < 0.1) and resistance (rho > 0, FDR < 0.1) genes are shown in red and blue, respectively. 
Drug targets are highlighted in orange. (g) Scatter plots comparing normalized enrichment scores (NES) 
from Hallmark gene set enrichment analysis of ranked tCDK gene effect correlations (x-axis) versus ranked 
correlations of mRNA expression versus tCDK inhibitor AUC (y-axis). (h) Scatter plots comparing gene effect 
of CDK7 to that of MCM3 (left) and drug effect of CDK7 inhibitor (THZ-2-102-1) versus expression of MCM3 
(right). (i) Scatter plots comparing gene effect of CDK9 to that of EXOSC9 (left) and drug effect of CDK9 
inhibitor (CDK9-5038) versus expression of EXOSC9 (right).
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Recent efforts have led to identification of specific inhibitors of select tCDKs (CDK7, CDK9) as well as closely 
related paralog pairs (CDK8/19, CDK12/13), which are in various stages of clinical  development4. Nonetheless, 
several factors continue to limit the therapeutic targeting of tCDKs, including an incomplete understanding of 
their requirement for tumor development and maintenance across diverse cancer types, as well as the lack of 
helpful biomarkers of drug efficacy. To help address these knowledge gaps, we performed a cross-omic analysis 
of the functional specialization of the tCDK family in cancer cells.

In this study we used genetic dependency data, TCGA survival analysis, transcriptomics, and pharmacological 
inhibitor sensitivity data to assess the specialization of the tCDK family members in cancer. We used correlations 
of genetic dependency data (co-dependencies) to investigate relationships of the tCDK family members and 
ascribe mechanisms owing to their effects on cancer cell viability. Our analysis revealed CDK7 and CDK9 to be 
the most oncogenic tCDKs, potentially more so than CDK4 and CDK6. Whereas previous studies documented 
negative effects on cancer cell viability with  pharmacologic32,34 and  genetic31,61 suppression of both CDK7 and 
CDK9 in specific cancer models, our analysis of DepMap data indicates both kinases are essential across all 1070 
cell lines tested, with stronger average effects than both CDK4 and CDK6. The higher potency associated with 
CDK7/CDK9 inhibition was also apparent in our analysis of the drug sensitivity datasets. Our analysis of their 
genetic co-dependencies suggested the oncogenicity of CDK7 and CDK9 may be due to potentially distinct 
mechanisms. For example, whereas loss of CDK9 produces responses in cancer cells that resemble the loss of key 
components of the transcriptional machinery (e.g., RNAPII subunits), this is not the case for CDK7. This suggests 
that the oncogenicity of CDK7 may not be primarily linked to sustaining transcriptional addiction. In support of 
this notion, previous studies have shown CDK7 to be dispensable for RNAPII CTD phosphorylation and global 
mRNA  transcription62–64. Deletion of Cdk7 in mouse embryonic fibroblasts triggers cell cycle arrest, independent 
of changes in global RNAPII CTD phosphorylation  levels62. Moreover, selective inhibition of CDK7 has been 
shown to induce DNA replication stress and genomic instability causing cell cycle arrest without affecting global 
RNAPII phosphorylation in tumor  cells63. CDK7 has a unique role among the tCDK family in that it is known 
to affect both transcriptional and cell cycle related processes as part of the CAK  complex21–25. Downstream of 
CDK4/6 activation by the CAK complex, Rb-dependent repression of E2F is relieved, which triggers the expres-
sion of various genes promoting cell cycle progression. Although loss of CDK7 does not resemble the loss of the 
transcriptional machinery, our co-dependency analysis revealed resemblance to loss of E2F targets and MYC 
targets. Moreover, both signatures are enriched among genes associated with sensitivity to CDK7 inhibitors. 
Interestingly, previous studies showed suppression of CDK7 specifically hampers the expression of  E2F64 and 
MYC-driven26 transcriptional programs, imparting anti-tumorigenic effects. Our clustering analysis of drug effect 
correlations showed that the effect of THZ-2-102-1, a selective CDK7 inhibitor, had similar efficacy to drugs 
targeting key regulators of cell cycle progression. Taken together, these results could suggest the oncogenicity of 
CDK7 is more likely ascribed to its role in cell cycle progression rather than the transcription  cycle21–25.

Our analysis of genetic dependency data also suggested there may be certain contexts in which other members 
of the tCDK family would have relevance for cancer therapy. For example, we found that CDK12 is essential 
in ~ 30% of cancer cell lines with average effects that were similar to those of CDK4 and CDK6. Previous stud-
ies showed genetic suppression of CDK12 activity is anti-proliferative in colorectal  cancer65 and hepatocellular 
 carcinoma37 cells. Although our results showed CDK12 essentiality is not dependent on cancer lineage, further 
work is needed to determine genetic and/or molecular features associated with sensitivity to loss of CDK12 
activity. Interestingly, treatment with THZ531, an inhibitor of both CDK12 and CDK13, has been shown to 
elicit a synthetic lethal response in Ewing Sarcoma cells expressing the EWS/FLI  oncogene36, lending credence 
to the potential for certain genetic aberrations to dictate CDK12 essentiality. However, throughout this study we 
showed differences between CDK12 and CDK13 in terms of their effects on cancer cell fitness and their genetic 
co-dependencies. These observations were striking given that CDK12 and CDK13 share 90.5% identity in their 
kinase  domains66. The functional specialization of the paralog pairs revealed here provides important insights 
for drug development and indicates efforts should be also focused on disrupting interactions through domains 
responsible for protein–protein interactions, rather than kinase activity.

Notably, we reported several co-dependency relationships between tCDKs and unexpected cyclins. For exam-
ple, the cyclins with the strongest co-dependency against CDK12 and CDK13 are cyclins H and C, respectively. 
Similarly, for CDK19, several alternative cyclins ranked higher than cyclin C, including cyclin L2, Y, A2, O 
and YL1. Although it requires appropriate experimental validation, it is possible these unexpected genetic co-
dependencies are the result of novel physical interactions between these tCDKs and cyclins. For example, these 
relationships may represent alternative tCDK/cyclin partnerships or previously un-reported interactions of CDK/
cyclin-containing complexes. Future investigations should seek to probe these potential novel relationships.

Despite the interesting results presented in this analysis, there are some potential limitations that should be 
considered. Foremost, any conclusions about physical interactions would need to be confirmed by biochemical 
assays, as it is entirely probable that two genes could have positive genetic co-dependency without being the 
result of direct physical interaction. We also note the overall low magnitude of some of the gene effect correlations 
described. However, it is important to consider the presented findings in the context of the correlation values 
reported for well-established functional interactions. For example, CDK8 and cyclin C are well-established bio-
chemical partners, but their genetic co-dependency only reaches a rho of 0.40, which in turn is the strongest for 
CDK8 across the genome. Similarly, CDK7 and cyclin H show a rho of 0.16. Therefore, whereas these values may 
not be considered strong associations by conventional standards, they can be considered values representative of 
bona fide physical interactions. There are several potential reasons for these low rho values. One explanation is 
that these measurements were performed across 1070 diverse cancer cell types, which due to the heterogeneity 
of cancer, likely have subpopulations with genetic and/or molecular perturbations that confound these correla-
tion values. There also appears to be a limit of detection for extreme negative gene effect scores, such that genes 
with strong negative gene effects may have weaker correlations with most others due to a limited dynamic range 
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of gene effect scores. This is demonstrated by CDK7, which has a distribution of gene effect scores that cluster 
tightly around -2. Another driver of these low rho values may be that in some instances a biochemical partner-
ship role can be filled by multiple factors. For example, in the case of CDK9 which can interact with both cyclins 
T1 and T2. Indeed, it is the case that upon knockout of one of the T cyclins, the other could interact with CDK9 
in a compensatory role which could weaken both sets of gene effect correlations. Hence, it could be expected 
that knocking out both T cyclins would give a more similar effect to CDK9 depletion. The opposite scenario, 
wherein one cyclin has multiple tCDK targets, is also potentially true. This may be the case for cyclin C, which 
interacts with both CDK8 and CDK19. Finally, another type of relationship that may be missed in this analysis 
are associations between genes that could have opposite interactions, depending on context. For example, in 
the case of CDK8, the positive and negative effects on transcriptional processes may cancel out any apparent 
co-dependencies with Mediator genes.

There were several instances where we reported relationships between tCDKs that showed essentiality in at 
least some proportion of cell lines versus genes that did not produce many essential gene effect scores (less than 
− 0.5). For example, this was the case with CDK12, which is essential in ~ 30% of cancer cells, and AFF3 which is 
essential in just a few cells. It is important to note that the value of − 0.5 for essentiality is an arbitrary cutoff set 
by the DepMap consortium. This does not mean genes that produce negative gene effect scores do not have any 
net influence on cell proliferation or survival. For example, AFF3 knockout produces negative gene effect scores 
in myriad cell lines. Although few are less than − 0.5, this could be interpreted that AFF3 has an influence on cell 
proliferation and survival, but not an essential influence that causes cell death upon its knockout. The potential 
for a relationship between CDK12 and AFF3, for example, is strengthened by the fact that the correlation of gene 
effect holds true for both negative and positive gene effect scores. Together, these types of observations could be 
interpreted that in some proportion of cancer cell lines, CDK12 and AFF3 may have synergistic effects on cell 
proliferation and survival, potentially affording synthetic lethal opportunities. Although this would need to be 
rigorously examined by appropriate experimentation.

It is also important to acknowledge there is a lack of details for some of the drugs analyzed in the GDSC 
analysis. For example, the compound THZ-2-102-1, reported as a CDK7 inhibitor, was derived from a similar 
molecule (THZ1), which also inhibits CDK12 and CDK13. To our knowledge, it is unknown if THZ-2-102-1 
shares this specificity profile. Thus, there is potential that our analysis of CDK7 pharmacological inhibition may 
be confounded by off-target effects on CDK12 and/or CDK13. Moreover, despite the promise shown by the 
CDK9 inhibitors, CDK9_5038 and CDK9_5576, we were unable to find additional studies on these compounds, 
particularly those investigating their target specificity.

Overall, our cross-omics analysis of genetic dependency data from over 1000 cancer cell lines, tumor mRNA 
expression and prognosis data from the TCGA project, and pharmacologic sensitivity data from more than 800 
cancer cell lines indicates CDK7 and CDK9 are putative oncogenic tCDKs acting through diverse mechanisms. 
In contrast, CDK8, CDK10, CDK12 and CDK13 are conditionally oncogenic and future investigations are war-
ranted to determine cellular perturbations conferring their oncogenicity. These results provide a resource for 
myriad follow up investigations including those seeking to further develop tCDKs as targets in cancer therapy.

Methods
Multiple sequence alignment. Peptide sequences were downloaded from https:// www. unipr ot. org on 
03/25/22. Multiple sequence alignment and the resulting phylogenetic analysis was performed using Clustal 
Omega from the European Molecular Biology Laboratory’s (EMBL) European Bioinformatics Institute (EBI) 
web portal (https:// www. ebi. ac. uk/ Tools/ msa/). Visualizations of phylogenetic trees were downloaded directly 
from the EBI web portal.

DepMap genetic co‑dependency analysis. Chronos-corrected gene effect scores from the DepMap 
project (release 22Q1) were obtained from https:// depmap. org/ portal/ downl oad/ all/ on 03/24/2022. The 22Q1 
release covers gene effect scores of 17,386 genes across 1070 cell lines. These gene effect scores are calculated 
based on the effect size of a gene knockout normalized against the distribution of pan-essential and non-essen-
tial genes. Genes with scores less than − 0.5 are considered essential, effect scores less than -1.0 are considered 
a strong cytotoxic effect. Genetic co-dependency between genes was determined by computing pairwise Spear-
man correlations and p-values across all genes in the DepMap dataset. Benjamini–Hochberg correction was 
used to control for false-discovery rate (q-values). Significant (q < 0.1) positive Spearman correlations were con-
sidered co-dependencies, whereas significant negative correlations were considered inverse co-dependencies. 
Correlation matrices were visualized by unsupervised hierarchical clustering. Computations were performed 
in R (R v4.0.3/RStudio 1.4.1103), rankings and visualizations were made using the tidyverse (v1.3.0), ggplot2 
(v3.3.3) and ComplexHeatmap (v2.6.2) packages.

GDSC inhibitor sensitivity analysis. Area under the curve (AUC) data from fitted growth-response 
models from the GDSC project (released on 02/25/20) were obtained from https:// www. cance rrxge ne. org/ 
downl oads/ bulk_ downl oad on 07/29/21. Drug and cell line combinations with duplicate entries that had an 
AUC range of > 0.2 were removed from the analysis and mean AUC was used for subsequent analysis. Drugs 
with data from < 70% of cell lines in the datasets were excluded. Transcripts per million (TPM) RNAseq gene 
expression data for cell lines in GDSC were obtained from https:// depmap. org/ portal/ downl oad/ all/ (release 
21Q2, on 08/17/21). Pairwise Spearman correlations and p-values were computed across all drugs in the GDSC 
datasets, and for GDSC drugs against matched RNA-expression data. Benjamini–Hochberg correction was used 
to control for false-discovery rate. Genes with expression negatively correlated with drug treatment were consid-
ered sensitivity genes, whereas those that positively were considered resistance genes. Correlation matrices were 

https://www.uniprot.org
https://www.ebi.ac.uk/Tools/msa/
https://depmap.org/portal/download/all/
https://www.cancerrxgene.org/downloads/bulk_download
https://www.cancerrxgene.org/downloads/bulk_download
https://depmap.org/portal/download/all/
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visualized as heatmaps along with unsupervised hierarchical clustering. Computations were performed in R (R 
v4.0.3/RStudio 1.4.1103), rankings and visualizations were made using the tidyverse (v1.3.0), ggplot2 (v3.3.3) 
and ComplexHeatmap (v2.6.2) packages.

TCGA analysis. Clinical outcome data for TCGA patients were sourced from Liu et al.42 and normalized 
RSEM RNA-seq expression data were downloaded from the Broad GDAC (https:// gdac. broad insti tute. org/) 
on 10/11/19 using the firehose_get tool. Iterative Kaplan–Meier log-rank testing was performed as previously 
 described67 to determine optimal stratification of tumor samples into high- and low- expression strata. Starting 
at the  10th and  90th percentiles, and progressing in single-percentile iterations, we performed log-rank testing 
for differences in progression-free interval using the survminer (v0.4.6), survival (v2.44-1.1), and purrr (0.3.3) 
R packages. Tests without unique sample partitions and less than 10 events in either group (high or low) were 
excluded. To control for false-discovery rate (FDR), Benjamini–Hochberg correction was used to adjust p-val-
ues. Within each cancer type, the stratification with the lowest p-value was selected and Kaplan–Meier survival 
plots were created using the survminer (v0.4.6) package.

Gene set enrichment analysis. Pre-ranked Gene Set Enrichment Analysis (GSEA)68 with Hallmark gene 
 sets69 (obtained from Molecular Signatures Database, http:// www. gsea- msigdb. org/ gsea/ index. jsp) was per-
formed using Spearman correlations as the ranking metric. Computations were carried out in R using the fgsea 
package (v1.16.0). To account for large differences in rho values across kinases, we multiplied the normalized 
enrichment scores by the maximum absolute gene effect rho value for each kinase. These analyses were carried 
out for tCDK gene effect correlations and correlations of GDSC drug effects versus matched RNA expression. 
Heatmaps were generated using the ComplexHeatmaps package (v2.6.2).

Data availability
All data generated or analyzed during this study are included in this published article (and its supplementary 
information files). Additionally, links to publicly available datasets used are provided. Peptide sequences were 
downloaded from https:// www. unipr ot. org. Chronos-corrected gene effect scores from the DepMap project 
and transcripts per million (TPM) RNAseq gene expression data for cell lines in GDSC were obtained from 
were obtained from https:// depmap. org/ portal/ downl oad/ all/. Drug sensitivity data from the GDSC project 
were obtained from https:// www. cance rrxge ne. org/ downl oads/ bulk_ downl oad. Normalized RSEM RNA-seq 
expression data for TCGA samples were obtained from https:// gdac. broad insti tute. org.
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