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RF energy harvesting schemes 
for intelligent reflecting 
surface‑aided cognitive radio 
sensor networks
Jihong Wang * & Hongquan Yu 

Energy harvesting (EH) is a potential solution to enhance the node sustainability and prolong the 
network lifetime of cognitive radio sensor networks (CRSNs). However, CRSNs nodes can only harvest 
energy from the direct link with energy sources, and severe path loss results in low energy utilization 
ratio. To solve the above problem, intelligent reflecting surface (IRS) is introduced, and a shared 
reflection coefficient matrix-based EH scheme is proposed for IRS-aided CRSNs in this paper. An 
optimization problem with the objective of maximizing the total amount of energy harvested by all 
CRSNs nodes is formulated, and by optimally adjusting the IRS reflection coefficient, CRSNs nodes 
can harvest energy from both the direct link and the cascaded reflection link via IRS, which increases 
the amount of harvested energy. In addition, a subsurface partition-based EH scheme is proposed to 
reduce the additional computational complexity brought by increasing IRS elements or CRSNs nodes. 
Simulation results show that the proposed schemes can both dramatically improve energy utilization 
ratio, and the subsurface partition-based EH scheme will bring in less than 1 percent performance loss 
when compared with the other scheme, i.e., reasonable subsurface partition can achieve a balance 
between harvested energy and computational complexity.

Cognitive radio sensor networks (CRSNs) are smart combination of legacy wireless sensor networks (WSNs) 
and cognitive radio (CR) technology. Idle licensed spectrum can be leveraged for communication in an oppor-
tunistic manner through dynamic spectrum sensing and spectrum access1, and the spectrum shortage faced by 
legacy WSNs can be effectively mitigated2,3. However, CRSNs nodes are usually powered by limited-capacity 
battery which cannot be replaced periodically. Performing CR functions such as periodical spectrum sensing 
and decision is pretty energy-consuming, which will result in fast energy exhaustion, and the network lifetime 
will be shortened4. Energy harvesting (EH) technique enables nodes to harvest energy from natural sources such 
as solar and wind or radio frequency (RF) sources to compensate for limited battery energy and prolong their 
lifetime5,6. Therefore, EH is a promising solution to solve the energy constraint problem of CRSNs7,8, and it has 
the potential of guaranteeing stable and sustainable network operation.

Compared with instable and expensive natural sources, RF energy sources can provide ubiquitous, relatively 
stable and predictable energy supplement for CRSNs nodes, as a result, RF EH attracts widespread attention and 
has been widely applied in practice9,10. In RF EH-CRSNs, the sink acts as a dedicated energy source to radiate RF 
signal, and CRSNs nodes harvest energy from the RF signal received from the downlink. The harvested energy 
is a supplement of battery energy and is stored for future use. In addition, according to the Euclidean distance 
to the sink and the minimum received signal to noise ratio (SNR) required to guarantee successful information 
decoding at the sink, CRSNs nodes adjust their transmission power to deliver their sensed data towards the sink 
in the uplink. However, as CRSNs nodes harvest energy and transmit data only through the direct link with the 
sink, severe path loss will limit the energy harvested by nodes far away from the sink11 and require high trans-
mission power to reach the sink. Limited harvested energy and high energy consumption will accelerate node 
energy exhaustion and shorten the network lifetime. In order to solve this problem, intelligent reflecting surface 
(IRS) technique is introduced to construct an extra cascaded reflection link. Each IRS element can adjust the 
amplitude and phase shift of the incident signal independently, and in this case, signal received from the direct 
link and the cascaded reflection link via IRS can be coherently combined to improve the received power12. To 
be specific, assisted by IRS, CRSNs nodes can harvest RF energy from both the direct link and the cascaded 
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reflection link, which can increase the amount of harvested energy and improve the energy utilization ratio. 
On the other hand, assisted by the extra transmission link via IRS, CRSNs nodes can lower their transmission 
power while satisfying the minimum received SNR at the sink, which will reduce node energy consumption and 
expand node lifespan. In a word, IRS-aided EH-CRSNs have great potentials to better exploit EH to compensate 
for limited node battery and conserve energy, which is beneficial for significantly extending the network lifetime.

To further explore the impact of IRS deployment and reflection coefficient matrix configuration on EH 
performance, EH schemes which can maximize the total amount of energy harvested by all CRSNs nodes are 
proposed for IRS-aided EH-CRSNs in this paper, and the innovations are summarized as follows:

•	 IRS is introduced into RF EH-CRSNs to help enhance the energy utilization ratio during EH, and the opti-
mization problem with the objective of maximizing the total amount of energy harvested by all CRSNs nodes 
is formulated. Successive convex approximation (SCA) algorithm is applied to solve it and implement the 
shared reflection coefficient matrix-based EH scheme.

•	 To reduce the additional computational complexity caused by increasing IRS elements or CRSNs nodes and 
achieve an effective compromise between harvested energy and computational complexity, a subsurface 
partition-based EH scheme is proposed, and the relationship between network performance and the number 
of subsurface is explored. Simulation results show that the above EH schemes can both significantly increase 
the amount of harvested energy. In addition, the subsurface partition-based EH scheme further reduces the 
computational complexity at the cost of less than 1% performance loss.

Related works
As research on designing EH schemes for IRS-aided EH-CRSNs is still in its infancy, related research results in 
IRS-aided EH-nonCRSNs and EH-CRSNs without IRS are reviewed in this section to exhibit the differences 
between our works and the existing ones.

Research on IRS‑aided EH‑nonCRSNs.  Recently, IRS is widely applied to assist in enhancing the EH 
performance of various wireless communication systems, such as IRS-aided simultaneous wireless information 
and power transfer (SWIPT) system, wireless powered communication networks (WPCNs) and other systems.

In IRS-aided SWIPT system, the base station (BS)/access point (AP) transfers data and energy simultaneously 
through the downlink. To be specific, by jointly optimizing the transmitting pre-coding matrix of multi-antenna 
AP and IRS reflection coefficient matrix, while satisfying the constraint of harvested energy at energy users, 
objectives such as minimizing the transmission power of AP13, maximizing the weighted sum of power received 
by all energy users14 and maximizing the weighted sum rate of all information users15 are achieved, respectively. 
In order to better exhibit the actual characteristics of IRS-aided SWIPT system, the impact of incidence angle and 
reflection angle of electromagnetic wave on IRS reflection is further explored based on non-linear EH model16. 
IRS grouping is utilized to achieve a compromise between the system performance and computational complexity. 
In addition, IRS reflection coefficient matrix and BS beamforming vector are jointly optimized to minimize the 
transmission power of BS. Non-linear EH model and power splitting ratios of all users are taken into considera-
tion, and the energy beamforming at BS, IRS reflection coefficient matrix and power splitting ratios of all users are 
jointly optimized17. The maximum-minimum system energy efficiency is maximized by leveraging penalty-based 
algorithm and inner approximation-based algorithm to guarantee the energy efficiency fairness among users. 
Concentrating on the security performance of IRS-aided SWIPT system, artificial noise is introduced at AP, and 
the noise covariance matrix, AP beamforming vector and IRS reflection coefficient matrix are jointly optimized 
to maximize the system energy efficiency18. By applying power splitting at the receiver, the same optimization 
manner is utilized to maximize the achievable user security rate, suppress inter-user interference and balance 
the harvested energy among users19. In IRS-aided EH-CRSNs, the main traffic type is uplink data transmission 
from CRSNs nodes towards the sink, which is quite different from IRS-aided SWIPT system. Different traffic 
types determine that the above algorithms cannot be applied to IRS-aided EH-CRSNs.

In IRS-aided WPCNs, users harvest energy from the downlink and completely rely on the harvested energy 
to carry out uplink data transmission. Concentrating on IRS-aided WPCNs, alternating optimization algorithm 
is leveraged to optimize the IRS reflection coefficient matrix20. In this case, the EH efficiency of each device 
is improved, and the harvested energy is further used to transmit data towards the data BS. A non-linear EH 
model-based optimization problem is formulated for WPCNs, and the total transmission energy of power station 
(PS) is minimized by jointly optimizing the active and passive beamforming21. Based on the same non-linear 
EH model, power-splitting receiver architecture with multiple rectifiers is designed to avoid the received power 
from falling into saturation22. The energy conversion efficiency of EH circuits is promoted through interference 
suppression at the receiver. A safe and intelligent EH framework is proposed for 6G Internet of Things, and with 
the assistance of IRS, energy users can leverage the energy harvested from ambient environment to transmit the 
processed data towards the BS23. In addition, IRS-aided EH satisfaction is modeled according to users’ energy 
requirement, and a deep reinforcement learning-based resource allocation scheme is proposed with the purpose 
of maximizing the weighted sum of user satisfaction to enhance the EH efficiency. In IRS-aided EH-CRSNs, the 
energy harvested from the downlink is regarded as a supplement of the battery energy, and it will not impose 
energy causality constraint on uplink data transmission, which is totally different from IRS-aided WPCNs. Dif-
ferent objectives and constraints determine that the research results of IRS-aided WPCNs cannot be applied to 
IRS-aided EH-CRSNs.

Apart from the above research results, IRS is also applied to wireless power transfer (WPT) system and 
unmanned aerial vehicle communication system. Active and passive beamforming are jointly designed for IRS-
aided WPT system to extend EH range of the whole network24. Considering the scenario where there exist 
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eavesdroppers around legitimate users, the optimization problem with the objective of maximizing the system 
security rate and minimizing the energy harvested by eavesdroppers is formulated25. To conquer the limitations of 
fixed energy sources and increase the flexibility of energy supply, drones act as energy sources to emit RF signal26. 
The trajectory and transmission power of drones and IRS reflection coefficient matrix are jointly designed to 
maximize the sum rate of the whole system. In IRS-aided EH-CRSNs, the sink which acts as both energy source 
and data aggregation point is fixed, which is different from IRS-aided unmanned aerial vehicle communication 
system where position of drones keeps changing. Different characteristics and aims determine that the above 
research results cannot be applied to IRS-aided EH-CRSNs either. In order to show their differences more clearly, 
the characteristics of the above works are summarized in Table 1 below, and “√” and “ × ” represent whether they 
possess corresponding characteristics.

Research on EH‑CRSNs without IRS.  Existing research on EH-CRSNs mainly focuses on resource allo-
cation and management. A medium access control protocol is proposed to reduce collisions among nodes and 
improve the system throughput27. EH is leveraged to compensate for battery energy and enhance node sustain-
ability to prolong the network lifetime. Differential evolution algorithm is utilized to optimize user satisfaction 
of the whole EH-CRSNs and improve energy efficiency and spectral efficiency28. An optimal node paring and 
channel matching strategy is proposed for RF EH-CRSNs29, and according to node residual energy and channel 
availability, K-means clustering-based two-level classification algorithm is leveraged to divide nodes into catego-
ries to perform different tasks, which is beneficial for balancing the residual energy among nodes and facilitating 
successful data delivery. Aiming at conquering the limitations of solely concentrating on intra-cluster commu-
nication, an effective energy and channel assignment strategy is proposed to solve intra-cluster and inter-cluster 
energy and channel management problem30. However, each node is configured with 2 antennas for EH and data 
delivery, respectively, which is not applicable to single-antenna CRSNs nodes. A sub-channel and resource allo-
cation strategy based on spectrum lease is proposed for CRSNs, and outage probability is taken into considera-
tion to ensure network robustness in complex environment31. However, it is only suitable for single-hop CRSNs. 
A multi-hop clustering routing protocol based on non-linear RF EH is proposed, and energy control mechanism 
is introduced to manage node status32. In addition, energy level function-based cluster heads and relay selec-
tion criteria are defined to enhance the node sustainability and extend the network lifetime. However, nodes 
in the above clustering protocols and channel allocation strategies can only harvest energy from the direct link 
with energy sources. Signal propagation will suffer severe path loss, and the total amount of harvested energy is 
heavily constrained. In addition, without considering IRS reflection coefficient matrix configuration, the above 
research results cannot be applied to IRS-aided EH-CRSNs.

Table 1.   Characteristics analysis of related works.

References Application scenarios Objective functions
Whether IRS is partitioned into 
subsurface

Whether the harvested energy is 
used to supplement node battery 
energy

13 IRS-aided SWIPT system Minimize the transmission power of AP  ×   × 

14 IRS-aided SWIPT system Maximize the weighted sum of received 
power at all energy users  ×   × 

15 IRS-aided SWIPT system Maximize the weighted sum rate of all 
information users  ×   × 

16 IRS-aided SWIPT system Minimize the transmission power of BS √  × 

17 IRS-aided SWIPT system Maximize the maximum-minimum 
system energy efficiency  ×   × 

18 IRS-aided SWIPT system Maximize the system energy efficiency  ×   × 

19 IRS-aided SWIPT system Maximize the achievable user security 
rate  ×   × 

20 IRS-aided WPCNs Maximize the weighted sum rate of all 
information users  ×   × 

21 IRS-aided WPCNs Minimize the total transmission energy 
of PS  ×   × 

22 IRS-aided WPCNs Minimize the energy consumption of 
hybrid AP  ×   × 

23 6G Internet of Things Maximize the weighted sum of user 
satisfaction  ×   × 

24 IRS-aided WPT system Maximize EH range of the whole system  ×   × 

25 IRS-aided wireless system
Maximize the system security rate 
and minimize the energy harvested by 
eavesdroppers

 ×   × 

26 IRS-aided unmanned aerial vehicle 
communication system

Maximize the sum rate of the whole 
system  ×  √
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RF EH schemes designed for IRS‑aided EH‑CRSNs
As each IRS element is intelligently programmable, IRS reflection coefficient matrix configuration will affect 
the amount of energy harvested by CRSNs nodes. In this paper, 3 RF EH schemes are proposed for IRS-aided 
EH-CRSNs to reasonably configure the reflection coefficient matrix, i.e., time division-based EH scheme, shared 
reflection coefficient matrix-based EH scheme and subsurface partition-based EH scheme. In the following 
subsections, system model is firstly presented and then the 3 proposed RF EH schemes are elaborated.

System model.  K homogeneous CRSNs nodes (denoted by set K = {1,2,…,K}) are randomly distributed 
in the square monitoring area with size A × A. The single-antenna sink is located at the center and it serves as a 
dedicated energy source to emit RF signal with fixed transmission power P0. With the assistance of IRS, CRSNs 
nodes can harvest energy from the direct link and the cascaded reflection link via IRS simultaneously to com-
pensate for their limited battery energy, i.e., RF signal received from the sink is converted by internal circuits 
with conversion efficiency α and stored into battery for future use. As shown in Fig. 1, IRS is composed of N 
elements (denoted by set N) which are regularly arranged into L rows and M columns, i.e., N = L × M, and the 
size of each IRS element is dx × dy. Intervals between neighboring IRS elements are ignored. The IRS reflection 
coefficient matrix is expressed as θ = diag(θ1,…,θn,…,θN), here, θn = βne

jξn , and βn and ξn represent the reflec-
tion amplitude and phase shift of the nth IRS element, respectively. To maximize the total amount of harvested 
energy, the optimal reflection amplitude of the nth IRS element is set as βn = 1.

It has been demonstrated that IRS should be deployed close to the transmitter or the receiver33. To ensure that 
all CRSNs nodes can enjoy the array gain brought by IRS, IRS is deployed just above the sink (i.e., the transmitter) 
in this paper. Cartesian coordinate system is established as shown in Fig. 2, and all CRSNs nodes and the sink are 
located on the x–y plane. The coordinate of the sink is (x0,y0,0), while CRSNs node k(∀k ∈ K) is located at (xk,yk,0). 
IRS is deployed parallel to the x–y plane with vertical distance R, and the coordinate of its center is denoted by 
(x0,y0,R). To establish a performance upper bound for the considered system, the instantaneous channel status 
information (CSI) of the entire system is assumed to be available at the sink. Acquiring instantaneous CSI is not 
in the scope of this paper, and it can be acquired with one of the existing channel estimation schemes proposed 
for IRS-aided wireless systems. The equivalent channels between the sink and IRS, between IRS and CRSNs 
node k, between the sink and CRSNs node k are represented by g ∈ C

N×1 , hHk ∈ C
1×N and h∗d,k , respectively.

Time division‑based EH scheme for IRS‑aided EH‑CRSNs.  The time division-based EH scheme 
divides the total EH time duration T evenly into K time slots and assigns a dedicated time slot to each CRSNs 
node to enable the optimal EH. Each CRSNs node harvests energy from the RF signal emitted by the sink whose 
transmission power is P0, and its received signal power, i.e., the input power of the EH circuits of node k Pin(k) is:

In this paper, linear EH is adopted to quantify the energy harvested by CRSNs nodes, that is, the output power 
of the EH circuits will increase linearly with the input power, and the conversion efficiency is α. Therefore, the 
harvested power of CRSNs node k PEH(k) is:

(1)Pin(k) = P0 ×
∣

∣hHk θkg+h∗d,k
∣

∣

2

(2)PEH (k) = α × P0 ×
∣

∣hHk θkg+h∗d,k
∣

∣

2

Figure 1.   The schematic diagram of IRS architecture.
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Each CRSNs node harvests energy from the sink within its dedicated time duration T/K, and the amount of 
energy harvested by node k EEH(k) is:

The total amount of RF energy harvested by all CRSNs nodes Etotal is the summation of the amount of energy 
harvested by each node, as shown below:

The optimization problem with the objective of maximizing the total amount of harvested energy can be 
formulated as:

The inherent properties of the optimization problem can be exploited to obtain high-quality solutions for it. 
In the time division-based EH scheme, IRS can be reconfigured K times to serve each individual CRSNs node k 
in its dedicated time slot. In other words, the IRS reflecting coefficient matrix for node k has nothing to do with 
that for others. In this case, the optimization problem can be decomposed into K sub-problems which can be 
solved independently. According to33, the optimal IRS reflection coefficient matrix for node k should guarantee 
the coherent combination of the RF signal received from the direct link and the cascaded reflection link via IRS 
to maximize its total amount of harvested energy. Correspondingly, the optimal reflecting coefficient of the nth 
IRS element for node k is:

where ϕn,k, ζn and ςk are the phase shift introduced by the signal propagation between the nth IRS element and 
node k, between the sink and the nth IRS element and between the sink and node k, respectively.

The time division-based EH scheme enables each CRSNs node to possess its dedicated EH time slot, and IRS 
is fully leveraged to serve it during this time. However, the EH duration assigned to each node is so short that 
the harvested energy is restricted. In addition, path loss will deteriorate as the propagation distance increases. 
Therefore, the energy harvested by CRSNs nodes far away from the sink is rather limited.

Shared reflection coefficient matrix‑based EH scheme for IRS‑aided EH‑CRSNs.  To conquer 
the limitations of the time division-based EH scheme, the shared reflection coefficient matrix-based EH scheme 
enables all CRSNs nodes to harvest energy from both the direct link and the cascaded reflection link via IRS 
during T. An optimization problem with the objective of maximizing the total amount of energy harvested by all 
CRSNs nodes is also formulated, and the optimal IRS reflection coefficient matrix can be derived by solving it.

(3)EEH (k) =
T

K
× α × P0 ×

∣

∣hHk θkg+h∗d,k
∣

∣

2

(4)Etotal =

K
∑

k=1

EEH (k) =

K
∑

k=1

T

K
× α × P0×

∣

∣hHk θkg+h∗d,k
∣

∣

2

(5)(P1) : max
{θk}

K
∑

k=1

T
K × α × P0×

∣

∣

∣
hHk θkg+h∗d,k

∣

∣

∣

2

(6)s.t. 0 ≤ ξn,k ≤ 2π , ∀n ∈ N

(7)ξ∗n,k = mod(ςk − (φn,k + ζn), 2π)

Figure 2.   Network architecture of IRS-aided EH-CRSNs.
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In the shared reflection coefficient matrix-based EH scheme, the total amount of energy harvested by all 
CRSNs nodes is:

The optimization problem with the objective of maximizing the total amount of harvested energy can be 
formulated as:

It is worth noting that the hidden structure of Eq. (9) is fundamentally different from Eq. (5), i.e., θ can be 
configured only once, instead of flexibly adjusting for each individual node, as θ is shared by all CRSNs nodes. 
In addition, some nodes cannot harvest the maximum amount of energy at the optimal solution. As such, (P2) 
cannot be decomposed into K independent sub-problems to be solved optimally and independently, and the 
result in Eq. (7) is not applicable. This has non-trivial effects on the algorithm designed to solve the problem 
and calls for new algorithm design.

Problem (P2) is generally intractable due to its non-concave objective function, to be specific, its constraint 
is a convex function of ξn, but the objective is non-concave, as such, (P2) is a non-convex problem. For a non-
convex problem, there may exist multiple local optimal solutions in the feasible set, but the global optimal solu-
tion is unable to be quickly determined, i.e., exponential computational complexity is usually required to obtain 
the global optimal solution. As a result, non-convex problems are regarded as difficult and there is usually no 
standard method or algorithm to solve them. In this paper, SCA algorithm is applied to solve the non-convex 
problem (P2). SCA algorithm searches for a stationary point of the original problem by iteratively solving a 
convex problem which is similar to the original problem. To be specific, there are 4 basic steps:

1.	 A feasible point μ of the original function f is selected.
2.	 The approximate function f* is constructed for f based on μ to guarantee that f* and f share the same gradient 

at this point and f* has strong concavity.
3.	 By substituting the original objective function by f* and keeping the constraint unchanged, a next feasible 

point can be obtained by solving the newly formulated problem.
4.	 The above process is repeated until the convergence conditions are satisfied.

In order to exhibit the operation process of SCA algorithm clearly, the pseudo code is shown below:

Algorithm 1 SCA Algorithm

1: Set iteration index q=0, initial point µ(0) and error tolerance ε(0<ε≪1).

2: Repeat
3:   For given µ(q), an intermediate solution µ(q+1) is obtained by solving the newly formulated 

problem.

4:   Set q=q+1

5: until |µ(q)−µ(q−1)|≤ε

For the convenience of constructing the approximate function, the objective function in Eq. (9) should be 
simplified. As all CRSNs nodes share the same set of parameters T, α and P0, maximizing E′total is completely 

equivalent to maximizing 
K
∑

k=1

∣

∣

∣
hHk θg+h∗d,k

∣

∣

∣

2

 . In this case, the original optimization problem can be simplified 

into:

Set h∗d,k = yk , h
H
k θg = µ

Hxk , here,  µ = [µ1, ...,µn, ...,µN ]
H, µn = ejξn , xk = diag(hHk )g . The constraint in 

Eq. (12) can be equally transformed into unit module constraint |μn|= 1. Correspondingly, the above optimiza-
tion problem can be rewritten as:

(8)E′total =

K
∑

k=1

T × α × P0 ×
∣

∣hHk θg+h∗d,k
∣

∣

2

(9)(P2) : max
θ

K
∑

k=1

T × α × P0 ×
∣

∣hHk θg+h∗d,k
∣

∣

2

(10)s.t. 0 ≤ ξn ≤ 2π , ∀n ∈ N

(11)(P3) : max
θ

K
∑

k=1

∣

∣hHk θg+h∗d,k
∣

∣

2

(12)s.t. 0 ≤ ξn ≤ 2π , ∀n ∈ N

(13)(P4) : max
µ

K
∑

k=1

∣

∣µ
Hxk + yk

∣

∣

2
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The objective function in Eq. (13) can be expanded as:

Set W =
K
∑

k=1

xkx
H
k  , Eq. (15) can be transformed into:

When SCA is applied, a feasible point µ̃ of the original problem (P4) is randomly generated, and the first 
order Taylor expansion of (16) at ˜µ is leveraged to construct its approximate function. According to the first 
order condition of convex function, its first order Taylor expansion at a given point is globally lower bounded. 
Therefore, the original objective function is globally lower bounded by its concave approximate function at µ̃ . 
In this case, the newly formulated problem is:

From Eq. (17), it can be observed that the optimal μ* is related to item W˜µ+
K
∑

k=1

xky
H
k  , and the nth element 

of the next feasible solution is:

By comparing the obtained solution μ* with µ̃ , if their difference is equal to or smaller than the predetermined 
error tolerance ε (0 < ε ≪ 1), μ* is the final optimal solution of the original problem, otherwise a next feasible 
solution is iteratively generated from Eq. (19) by setting ˜µ=µ

∗.
The shared reflection coefficient matrix-based EH scheme obtains the optimal IRS reflection coefficient matrix 

by solving the corresponding optimization problem, and CRSNs nodes all harvest energy during time duration 
T. However, as the reflection coefficient of each IRS element should be determined, the complexity and time 
required to solve the optimization problem will increase as IRS elements or CRSNs nodes increase.

Subsurface partition‑based EH scheme for IRS‑aided EH‑CRSNs.  To achieve a compromise 
between the total amount of harvested energy and complexity of solving the optimization problem, the subsur-

(14)s.t. |µn| = 1,∀n ∈ N

(15)
K
∑

k=1

(µHxkx
H
k µ+ µ

Hxkyk + xHk µyk +
∣

∣yk
∣

∣

2
)

(16)µ
HWµ+

K
∑

k=1

(µHxkyk + xHk µyk +
∣

∣yk
∣

∣

2
)

(17)(P5) : max
µ

2Re{µH(W˜µ+
K
∑

k=1

xky
H
k )} − ˜µ

HW˜µ+
K
∑

k=1

∣

∣yk
∣

∣

2

(18)s.t. |µn| = 1,∀n ∈ N

(19)µ∗
n=



























1 if (W�µ+

K
�
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xky
H
k )n = 0
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K
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H
k )n/

�
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Figure 3.   Subsurface partition of IRS.
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face partition-based EH scheme is proposed to divide all IRS elements into subsurface. All elements in the same 
subsurface constitute a new IRS element with larger size. As shown in Fig. 3, IRS is divided into B subsurface 
(denoted by set B) which is composed of l rows and m columns, i.e., B = (L/l) × (M/m). All IRS elements on sub-
surface b (∀b ∈ B) are assigned the same reflection coefficient, and the coordinate of its center is (xIRS_b,yIRS_b,R), 
where b = (i − 1) × M/m + j, i(∈ [1,L/l]) and j(∈ [1,M/m]) represent the row and the column where subsurface b 
is located.

Based on the coordinate of IRS center and the size of each subsurface and element, the coordinate of the first 
subsurface center in the upper left corner can be determined, and then coordinates of other subsurface centers 
can also be figured out. The center of the first subsurface is located at (xIRS_1,yIRS_1,R) = (x0 − (M − m)dx/2,y0 + (
L − l)dy/2,R), and that of subsurface b is (xIRS_b,yIRS_b,R) = (xIRS_1 + m × 

(j − 1)dx,yIRS_1 − l × (i − 1)dy,R).
According to the above coordinates, the Euclidean distance between the sink and node k, between the sink 

and the center of subsurface b and between the center of subsurface b and node k can be calculated as below:

The equivalent channels between the sink and subsurface b and between subsurface b and node k are repre-
sented by rs_b and sb_k, respectively. In this case, the equivalent composite channels between the sink and IRS and 
between IRS and node k can be denoted by r ∈ C

B×1 and sHk ∈ C
1×B , respectively, and r = [rs_1,…,rs_b…,rs_B]T, 

sHk = [sH1_k , ..., s
H
b_k ..., s

H
B_k] . The IRS reflection coefficient matrix is denoted by O = diag(O1,…,Ob,…,OB), where 

Ob = βbe
j�b , βb and Ωb are the reflection amplitude and phase shift of subsurface b, respectively. For the subsur-

face partition-based EH scheme, the total energy harvested by all CRSNs nodes during T is:

The optimization problem which aims at maximizing the total amount of harvested energy can be formulated 
as:

As all CRSNs nodes share the same set of parameters T, α and P0, maximizing Etotal′′ is completely equivalent 

to maximizing 
K
∑

k=1

∣

∣

∣
l ×m× (sHk Or)+h∗d,k

∣

∣

∣

2
 . In this case, (P6) can be simplified into:

S e t  h∗d,k = yk  a n d  l ×m× (sHk Or) = ω
H
zk  ,  h e r e ,  ω = [ω1, ...,ωb, ...,ωB]

H, ωb = ej�b  , 
zk = l ×m× diag(sH

k
)r, ∀k . The constraint in Eq. (27) can be equally transformed into unit module constraint 

|ωb| = 1. Correspondingly, the above optimization problem can be rewritten as:

The objective function in Eq. (28) can be expanded as:

Set U =
K
∑

k=1

zkz
H
k  , Eq. (30) can be transformed into:

(20)dk0 =

√

(xk − x0)2 + (yk − y0)2

(21)db1 =

√

(

xIRS_1 +m× (j − 1)dx − x0
)2

+
(

yIRS_1 − l × (i − 1)dy − y0
)2

+ R2

(22)db,k2 =

√

(

xIRS_1 +m× (j − 1)dx − xk
)2

+
(

yIRS_1 − l × (i − 1)dy − yk
)2

+ R2

(23)E′′total =

K
∑

k=1

T × α × P0 ×
∣

∣l ×m× (sHk Or)+h∗d,k
∣

∣

2

(24)(P6) : max
O

K
∑

k=1

T × α × P0 ×
∣

∣l ×m× (sHk Or)+h∗d,k
∣

∣

2

(25)s.t. 0 ≤ �b ≤ 2π , ∀b ∈ B

(26)(P7) : max
O

K
∑

k=1

∣

∣l ×m× (sHk Or)+h∗d,k
∣

∣

2

(27)s.t. 0 ≤ �b ≤ 2π , ∀b ∈ B
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ω
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H
zk + yk

∣

∣

2
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H
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H
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∣

∣
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(31)ω
H
Uω+

∑K

k=1
(ωH

zkyk + z
H
k ωyk +

∣

∣yk
∣

∣

2
)



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22462  | https://doi.org/10.1038/s41598-022-26853-0

www.nature.com/scientificreports/

When SCA is applied, a feasible point ˜ω of the original problem (P8) is randomly generated, and the first 
order Taylor expansion of (31) at ˜ω is leveraged to construct its approximate function. According to the first 
order condition of convex function, its first order Taylor expansion at a given point is globally lower bounded. 
Therefore, the original objective function is globally lower bounded by its concave approximate function at ˜ω . 
In this case, the newly formulated problem is:

From Eq. (32), it can be observed that the optimal ω* is related to item U ˜ω +
K
∑

k=1

zky
H
k  , and the bth element 

of the next feasible solution is:

By comparing the obtained solution ω* with ˜ω, if their difference is equal to or smaller than the predetermined 
error tolerance ε, ω* is the final optimal solution of the original problem, otherwise a next feasible solution is 
iteratively generated from Eq. (34) by setting ˜ω = ω*. The optimal IRS reflection coefficient obtained for each 
subsurface is shared by all elements on it. The actual total amount of energy harvested by all CRSNs nodes can 
be derived by substituting the obtained reflection coefficients into Eq. (8).

Results and discussion
To test the performance of various EH schemes proposed for IRS-aided EH-CRSNs in this paper, Matlab is 
leveraged to compare the amount of harvested energy. The sink is located at (0,0,0), and its transmission power 
is set as 40 W34,35.The conversion efficiency of EH circuits α is set as 0.8 which is a commonly used parameter 
configuration in linear EH models36–38. IRS is usually configured with thousands of elements with sub-wavelength 
size to achieve its array gain. Here, the width of each IRS element is set as less than one half of the wavelength 
of transmission signal. The coordinate of IRS center is (0,0,5), and its other parameter settings are the same as 
in39. The detailed simulation parameters settings are listed in Table 2.

In subsurface partitioned-based EH schemes, IRS is divided into multiple regular subsurface, and each of 
them is composed of l rows and m columns. This requires that L should be divisible by l and M should be divisible 
by m. In this case, l can be set to 1, 2, 17 and 34 while m can be set as 1, 2, 5, 10, 25 and 50. Different values of 
l and m can be combined to produce 24 subsurface partition-based EH schemes, and we choose 4 representa-
tive schemes among them to illustrate the impact of the manner of subsurface partition: (1) l = 1, m = 25 means 
that IRS is divided into (34/1) × (50/25) = 68 subsurface. (2) l = 2, m = 25 represents that IRS is partitioned into 
(34/2) × (50/25) = 34 subsurface. (3) l = 17, m = 5 means that IRS is divided into (34/17) × (50/5) = 20 subsurface. 
(4) l = 17, m = 10 represents that IRS is partitioned into (34/17) × (50/10) = 10 subsurface. The amount of energy 
harvested by each CRSNs node is recorded, and the results are shown in Fig. 4.

Compared with the time division-based EH scheme, the shared reflection coefficient matrix-based EH scheme 
and the subsurface partition-based EH schemes enable each CRSNs node to harvest much more energy. The 
reasons are analyzed as follows: (1) The time division-based EH scheme divides the EH duration evenly into 
100 time slots, and each CRSNs node is only allowed to harvest energy within its dedicated time slot. As the 
amount of harvested energy is positively proportional to the EH duration, the energy harvested by each CRSNs 
node is still very limited even though IRS is optimally configured to serve the node. (2) In the shared reflection 

(32)(P9) : max
ω

2Re{ωH(U ˜ω +

K
∑

k=1

zky
H
k )} − ˜ω

H
U ˜ω +
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




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�

�

�

�

�

U �ω +

K
�

k=1

zky
H
k

�

�

�

�

�

b

otherwise

Table 2.   Simulation parameter settings.

Parameters Values

Network radius A 100 m

Total number of CRSNs nodes K 100

Transmission Power of the sink P0 40 W

Number of rows on IRS L 34

Number of columns on IRS M 50

Size of each IRS element dx × dy 0.01 m × 0.01 m

Wavelength of transmission signal λ 0.0286 m

Time duration of EH T 1 s

Conversion efficiency of EH circuits α 0.8
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coefficient matrix-based EH scheme and the subsurface partition-based EH schemes, although the optimal 
IRS reflection coefficient matrix cannot guarantee that each CRSNs node can harvest the maximum amount 
of energy, all CRSNs nodes can make full use of the total EH duration T to harvest RF energy from the sink. 
It should be noted that node 39 which is the closest to the sink can harvest more energy than others in all EH 
schemes. There are 2 reasons: Firstly, the Euclidean distance between node 39 and the sink is the smallest, which 
means smaller path loss, correspondingly, more energy can be harvested; Secondly, the optimization problems 
are formulated with the objective of maximizing the total amount of harvested energy. As the energy balance 
among nodes is not taken into consideration, the optimal IRS reflection coefficient matrix is more in favor of 
node 39. To validate the above analysis, the amount of energy harvested by CRSNs nodes at different locations 
is exhibited in the heat map shown in Fig. 5. In addition, as can be observed from Fig. 4, the harvested energy of 
the 4 subsurface partition-based EH schemes exhibits basically the same trend. However, the amount of energy 
harvested by each node decreases as the number of subsurface reduces. As all elements in the same subsurface 
share identical reflection coefficient, compared with the EH scheme which optimizes reflection coefficient for 
each element, distance between all elements on the subsurface and the sink is completely denoted by the distance 
from the subsurface center to the sink. In this case, reflection coefficients may be inaccurate so that the gains 
brought by IRS get smaller.

To further quantitatively evaluate various EH schemes, the total amount of energy harvested by all CRSNs 
nodes is shown in Fig. 6. It can be observed that there is a big gap among the EH schemes proposed in this paper. 
By optimizing IRS reflection coefficient matrix, the shared reflection coefficient matrix-based EH scheme and the 
subsurface partition-based EH schemes enable each CRSNs node to fully leverage the EH duration and enjoy the 
benefits brought by IRS. In addition, the total amount of energy harvested by the 4 subsurface partition-based 
EH schemes is 0.015%, 0.096%, 0.140% and 0.696% lower than the shared reflection coefficient matrix-based 
EH scheme, respectively, i.e., the performance loss caused by subsurface partition is relatively small. On the 
other hand, subsurface partition can dramatically reduce the complexity of deriving the optimal IRS reflection 
coefficient matrix. Therefore, the subsurface partition-based EH schemes are compromise solutions to achieve 
a good balance between EH performance and computational complexity.

Conclusions
Focusing on the low energy utilization ratio problem in legacy EH-CRSNs, IRS is introduced to form IRS-aided 
EH-CRSNs, and EH schemes are designed to increase the amount of harvested energy. The non-convex opti-
mization problem with the objective of maximizing the total amount of energy harvested by all CRSNs nodes is 
formulated. SCA algorithm is leveraged to obtain the optimal IRS reflection coefficient matrix configuration, and 
the computational complexity can be further reduced by subsurface partition. Simulation results show that there 
is a big difference in the amount of energy harvested by nodes, and the reasons are analyzed as follows: different 
Euclidean distance to the sink results in distinguished signal propagation loss, and the IRS reflection coefficient 
matrix configuration will cater more to nodes close to the sink. In addition, the subsurface partition-based EH 
schemes substitute the distance between various elements and CRSNs nodes/the sink with that between the 
subsurface center and CRSNs nodes/the sink, which will result in error. Correspondingly, compared with the 
shared reflection coefficient matrix-based EH scheme, the subsurface partition-based EH schemes will introduce 
less than 1% performance loss, and the performance loss will decrease as the number of subsurface increases. 
However, the EH schemes proposed in this paper leave EH fairness out of consideration, which may result in 
unbalanced energy distribution among nodes and shorten the network lifetime. In addition, simple linear EH 
model is leveraged to quantify the harvested energy and simplify the formulated optimization problems. In 
this case, the upper limit of EH performance achieved by IRS-aided EH-CRSNs is exhibited. In fact, non-linear 
components in practical EH circuits will lead to the non-linear characteristic of end-to-end energy conversion, 

Figure 4.   Comparison results of the amount of energy harvested by each CRSNs node.
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Figure 5.   Heat maps for exhibiting the amount of energy harvested by each CRSNs node in different EH 
schemes.

Figure 6.   Comparison results of the total amount of harvested energy.
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and non-linear EH models are more accurate. In our future work, we will propose new EH schemes to further 
consider about non-linear EH models and balancing the energy harvested by CRSNs nodes.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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