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Active learning for ordinal 
classification based on expected 
cost minimization
Deniu He 

To date, a large number of active learning algorithms have been proposed, but active learning 
methods for ordinal classification are under-researched. For ordinal classification, there is a total 
ordering among the data classes, and it is natural that the cost of misclassifying an instance as an 
adjacent class should be lower than that of misclassifying it as a more disparate class. However, 
existing active learning algorithms typically do not consider the above ordering information in 
query selection. Thus, most of them do not perform satisfactorily in ordinal classification. This study 
proposes an active learning method for ordinal classification by considering the ordering information 
among classes. We design an expected cost minimization criterion that imbues the ordering 
information. Meanwhile, we incorporate it with an uncertainty sampling criterion to impose the query 
instance more informative. Furthermore, we introduce a candidate subset selection method based on 
the k-means algorithm to reduce the computational overhead led by the calculation of expected cost. 
Extensive experiments on nine public ordinal classification datasets demonstrate that the proposed 
method outperforms several baseline methods.

Ordinal classification (OC) is a particular case of multi-class classification task where the output variables come 
along with a natural total ordering, i.e., the instances are labeled by ordinal  scales1,2. Since an ordered relation 
exists among the classes in many real situations, ordinal classification has a wide range of applications. For 
instance, clinical  treatment3–5 in the medical field, bank failure  prediction6,7 in the financial field, facial age 
 estimation8,9 in the computer vision field, and so forth. As a supervised learning task, OC usually relies on a 
sufficient amount of labeled data to train an ordinal prediction model or induce the rules. However, the label 
acquisition for ordinal instances is usually expensive and time-consuming due to the dependence on human 
preference and domain  expertise10,11, prohibiting the collection of a large number of labeled instances. In this 
situation, one can use the active learning (AL)  technique12–14 to train an ordinal  classifier15,16. Active learning aims 
to reduce the labeling cost by selectively labeling a small set of valuable instances. Therefore, the fundamental 
issue of an AL method is critical instance selection (also called query selection). The query selection strategy is 
usually designed based on an existing prediction model. In each iteration of an AL process, the query selection 
strategy is used to select the most valuable unlabeled instances. Then, the AL algorithm queries the labels of 
these instances and retrains a prediction model. This work aims to design an effective AL method for ordinal 
classification.

In the past few decades, many well-established multi-class AL methods have been designed, but little atten-
tion has been paid to the AL problem for ordinal classification. Existing multi-class AL methods usually perform 
unsatisfactorily in ordinal classification scenarios because they are typically designed for nominal multi-class 
classification problems. In ordinal classification, the cost of misclassifying an instance as an adjacent class should 
be lower than that of misclassifying it as a more disparate  class2,3,5. We call this principle the ordering informa-
tion among the ordinal classes. For example, in the financial field, customers’ credit scores can be categorized as 
“bad”, “fair”, “good”, and “excellent”5. It is clear that the cost or risk of misclassifying a “bad” customer as “excel-
lent” is higher than misclassifying this customer as “fair”. Several studies have confirmed that the above ordering 
information between labels benefits constructing more accurate ordinal prediction  models1,2,17–20. Such as the 
cost-sensitive ordinal classification models based on absolute or quadratic  cost1,17,19.

In this paper, we introduce an expected cost minimization criterion that imbues the ordering information to 
guide critical instance selection in AL for ordinal classification. Therefore, we call our method active learning 
for ordinal classification based on expected cost minimization (abbreviated as AOCECM). Our method follows 
a one-step-look-ahead manner and chooses the instance that, if labeled, the base learner can obtain a minimal 
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expected misclassification cost on the unlabeled instance set. We use the absolute misclassification cost to rep-
resent the ordering information and estimate the expected cost. Furthermore, to enforce the selected instance 
more informative, we integrate the expected cost minimization with a margin-based uncertainty sampling crite-
rion. Thus, the critical instances can be selected in a complementary way. Our AL method employs the recently 
proposed kernel extreme learning machine-based ordinal classification model  (KELMOR1) as the base learner. 
There are multiple models for ordinal classification in the literature (e.g.,  SVOR21,  KDLOR22, and so on), and 
KELMOR is one of them. The KELMOR model is used as the base learner because it can achieve incremental 
updates and has competitive ordinal classification performance.

In our method, the calculation of expected cost is computationally intensive, which may lead the algorithm 
intractable in implementation. To mitigate this dilemma, we present a candidate subset selection method based 
on the k-means  algorithm23 from a granular computing perspective. Granular computing usually follows a 
scheme of divide and conquer, thus making a complex problem simple and  feasible24. By borrowing this idea, we 
divide the data into multiple granules with k-means clustering according to the number of labeled instances in 
each iteration of our active learning method. Thus, the instances can be divided into “described granules” and 
“undescribed granules”. If a granule contains labeled instances, we refer to it as a described granule. Conversely, 
if a granule only contains unlabeled instances, we call it an undescribed granule. It is known that the centroid 
point of a granule is generally representative of a granule. Moreover, the centroid points from different granules 
maintain the property of diversity. Therefore, in each iteration of our algorithm, we select the centroid point of 
the undescribed granules as the candidate instances. Conducting query selection in the candidate subset can 
substantially reduce the computational overhead and simultaneously endow the selected instances with the 
properties of representative and diversity.

For the sake of brevity, the main contributions of this work are summarized as follows.

• This paper proposes a novel active learning method for ordinal classification. We design an expected cost 
minimization criterion by considering the ordering information between ordinal classes. This criterion guides 
the algorithm to select the instances that are most likely to reduce the expected misclassification cost of the 
base learner. Moreover, we incorporate this criterion with an uncertainty sampling criterion to select valuable 
instances in a complementary way.

• We design a candidate subset selection method based on the k-means algorithm, which greatly reduces the 
computational overhead of calculating the expected cost and endows the selected instances with representa-
tive and diversity.

• Extensive experiments on nine public ordinal datasets demonstrate that the proposed method is superior to 
the competitors.

The remainder of this paper is organized as follows. Section 2 reviews the related work from the aspect of 
active learning and recalls the base learner used in our AL method. Section 3 provides the technical details of the 
proposed method. The experiment setting and experimental results are reported in Sect. 4. Finally, conclusions 
and future work are discussed in Sect. 5.

Background
This section briefly reviews literature in the active learning field related to our work. In addition, we also recall 
the basic structure of the kernel extreme learning machine-based OC  model1 because it is used as the base 
learner in our method.

Related work. AL benefits many machine learning settings where a large amount of unlabeled data is avail-
able or easy to collect but labeling them is expensive, time-consuming, or exhausting. An active learner generally 
consists of a base learner (a prediction model) and a query selection strategy. The critical issue of the AL study is 
developing a query selection strategy to determine which candidate instances are most valuable if labeled. Tradi-
tional AL strategies mainly focus on assessing the informativeness or representativeness of candidate instances.

The AL strategies concerning instance’s informativeness include uncertainty  sampling25–27, query by 
 committee28,29, expected  change30–32, and so on. Uncertainty sampling follows a confidence-estimation heuristic 
and selects the instance for which its current prediction is maximally  uncertain25. In multi-class classification 
scenarios, the following three criteria are commonly utilized to measure uncertainty: (1) Least  confidence26, 
which defines the most valuable instance as the one with the lowest maximum posterior estimate among all 
classes. (2) Margin-based  sampling27, which selects the instance closest to the decision boundary or with the 
lowest discrepancy in its top two class predictions. (3) Maximum  entropy25, which chooses the instance with the 
largest information entropy based on the posterior estimates over all classes. Although the uncertainty sampling 
methods are susceptible to selecting redundant instances and outliers, they are the most commonly used AL 
schemes and have been shown to work  well33. Query-by-committee (QBC) trains a set of prediction models, 
and the unlabeled instances with the greatest disagreement in model decisions are  selected29. This approach 
benefits from multiple classifiers providing different views of the input  data34. The fundamental issue of the QBC 
scheme is how to quantify the disagreement to define a strategy to select the new instances. The QBC can apply 
to multi-class settings by employing multiple multi-class classification models, but a potential bias introduced 
by the induced models may limit its performance. The expected change-based AL scheme follows a decision-
theoretic manner, which estimates the change in the model caused by an unlabeled instance being assigned to 
one of the possible labels and weights the change by an estimate of its  probability13. This AL scheme includes 
expected model  change35, expected error  reduction31, expected performance  change32, and so on. However, most 
expected change-based AL methods are computationally expensive. In this paper, to use the ordering information 
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to guide the query selection, we borrow the expected change-based AL scheme to compute the expected cost 
minimization. Considering the prohibitive computational cost of this scheme, we design a candidate subset 
selection method to reduce the computational overhead significantly.

Representativeness-based AL strategy aims to select the instances that can represent the data distribution. 
The most frequently used methods of this type include experimental  designs15,36,37 and clustering assumption-
based AL  methods38–40. The experimental design aims to minimize the model parameter variances by relying on 
a certain data reconstruction  framework41. The clustering-based active learning methods explore the clustering or 
manifold structure of the data and select the instances that represent the intrinsic geometry of the data. Although 
the clustering-based AL approaches are suitable for multi-class classification AL tasks, their major drawback is 
that the performance depends on the quality of the clustering  results39. Many regression-oriented AL methods 
prefer to consider the representativeness of candidate  instances42–44. Active regression methods that do not rely 
on regression models usually select key instances by considering the diversity of instances, such as the methods 
 in42,43. In an ordinal classification setting, informative instances are usually distributed between adjacent classes, 
but these regression-oriented methods fail to capture the informative instances in ordinal data. The regression 
AL methods that depend on regression models include experimental design-based  methods36, expected model 
change-based  methods45, and so on. Although ordinal classification is also referred to as ordinal regression, it is 
essentially a multi-class classification problem. In particular, ordinal classification models are typically specially 
designed. Therefore, these AL methods that rely on specific regression models usually perform unsatisfactorily 
for ordinal classification.

In the AL community, there is no doubt that AL methods that consider multiple query selection criteria typi-
cally perform better than those using only a single criterion. For instance, it has been suggested to incorporate 
the clustering techniques into conventional active learning strategies, thus providing complementary information 
for query  selection37,46.  In47, the authors combined the information density weight with an uncertainty sampling. 
While the study  in48 has stated the importance of sampling diversity in uncertainty sampling. In this paper, we 
simultaneously consider the ordering information and uncertainty sampling-based informativeness in the query 
selection. In addition, the k-means-based adaptive candidate subset selection can impose our algorithm to select 
representative and diverse instances.

Although much progress has been made in AL  algorithms49,50, little attention has been focused on ordinal 
classification. Soons and  Feelders51 first build an AL method for ordinal classification, which selects instances by 
exploiting the monotonicity constraints in the data. But, this method is only applicable to monotonic classifica-
tion  problems52 and cannot scale up to the general ordinal classification problem. Xue and  Hauskrecht32 proposed 
an AL method by querying ordinal scale labels, but this method is actually aimed at the active learning problems 
for binary classification. Recently, Li et al.15 introduced an A-optimal experimental design method for ordinal 
classification based on an adjacent category logistic model. However, this method needs to calculate the inverse 
of a large matrix. The prohibitive computational cost limits its usability in practice. In the imbalanced ordinal 
classification study, Ge et al.16 employed a margin-based uncertainty sampling strategy in ordinal classification 
to achieve oversampling. It is clear that this method is susceptible to the problems of uncertainty sampling, such 
as sampling redundancy, selecting outliers, and so on. To the best of our knowledge, the above two works are the 
only two AL methods in the context of ordinal classification. However, the above two methods fail to consider 
the ordering information in query selection. The above situation motivates this study to design a more effective 
AL method for ordinal classification.

Ordinal classification based on kernel extreme learning machine. Our active learning approach 
employs the recently proposed kernel extreme learning machine-based OC model  (KELMOR1) as the base 
learner. Thus, it is essential to recall it as preparatory knowledge briefly.

Given a training set {(xi , yi)}ni=1 , where xi ∈ R
d denotes the i-th instances, d is the dimension of the data, 

yi ∈ Y = {C1, C2, . . . , CK } is the label corresponding to xi , and K is the number of classes. Compared with stand-
ard nominal multi-class classification, ordinal classification maintains an ordered relationship among the classes. 
Such as C1 < C2 < · · · < CK , where the notation “<” represents a certain ordering relation or grading relation. 
In this context, Ck is only adjacent to Ck−1 and Ck+1 . Generally, ordinal classification aims to learn a model that 
can map an unobserved instance to a label as close to the true label as possible.

The KELMOR model adopts an encoding-learning-predicting-decoding procedure. In the KELMOR model, 
each class label is firstly encoded based on a quadratic cost encoding scheme. Hence, the k-th class label is 
encoded as

Then, the training set of {(xi , yi)}ni=1 is transformed into {(xi , yi)}ni=1 , where yi ∈ {t1, . . . , tK } is an encoded 
label vector. Thus, we obtain an encoded target matrix T ∈ R

n×K concerning the training instances. The i-th 
row of T is the encoded label vector of the training instance xi . The benefit of using a quadratic cost encoding 
scheme is that it can imbue the ordering information between labels and enlarge the cost-sensitive distance.

In the learning phase, the KELMOR model learns a weight matrix β̂ ∈ R
n×K that can project an unobserved 

instance from the feature space into a K dimensional output vector. The weight matrix β̂ is computed as

(1)tk = [(1− k)2, (2− k)2, . . . , (K − k)2],

(2)β̂ =

(

1

C
I+ K

)−1

T ,
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where I ∈ R
n×n is an identity matrix, C is a trade-off between the training error and the generalization abil-

ity, and K ∈ R
n×n is a kernel matrix. The kernel matrix can be computed by using a certain kernel function 

Kij = K(xi , xj) , such as the RBF kernel.
In the predicting phase, the predicted output of the KELMOR model for an unobserved instance x is for-

mulated as

where k(x) = [K(x, x1),K(x, x2), . . . ,K(x, xn)] , and f(x) ∈ R
K is the predicted output.

To obtain x ’s the ordinal scale label, the predicted output f(x) should be decoded as follows

where �·�1 denotes the l1-norm of a vector, tk is the encoding label vector that corresponds to the k-th class. 
Eq. (4) is referred to as the decoding process. For more details about the KELMOR model, readers can refer to 
 reference1. The time complexity of training a KELMOR model is cubic with the number of training instances. In 
Sect. 3.4, we will introduce how to update the KELMOR model incrementally. Therefore, we can incrementally 
retrain the KELMOR model when a newly observed instance is added to the training set. The time complexity 
of incrementally retraining the KELMOR model is quadratic with the number of training instances.

The proposed method
Method overview. The framework of the proposed method is depicted in Fig. 1. In the considered AL set-
ting, let L = {(xi , yi)}

n
i=1 be the initial training set and U = {xi}

N
i=n+1 be the pool set. Our AL method consists 

of two main components. One component is candidate subset selection, and the other is query selection. In each 
iteration, our method selects a set of candidate instances S from the unlabeled pool U ; then, a query instance is 
selected from S to query the annotator. After the query instance and its label are added to L , we retrain the base 
learner. The above process is repeated until the given query budget is exhausted.

The candidate subset S in each iteration is selected based on a k-means clustering-based candidate subset 
selection method. The query selection strategy is designed by integrating an expected cost minimization crite-
rion and a margin sampling criterion. The ordering information between classes is imbued in the expected cost 
minimization criterion. Since the candidate subset selection serves the query selection, we will first describe the 
query selection method in the following subsections.

Query selection. In the context of ordinal classification, a prediction model mainly focuses on minimizing 
the misclassification cost in prediction by considering the ordering information among classes. Inspired by this, 
we design an expected cost minimization criterion to select candidate instances that, if labeled, can minimize 
the base learner’s misclassification cost on the unlabeled instances. We use the absolute misclassification cost to 
calculate the expected cost. Thus, the ordering information is imbued into the query selection.

According to the above idea, we can calculate the expected cost of the KELMOR model for each unlabeled 
instance in a one-step-look-ahead manner. Given a training set L , denote by PL(Ck|x) the probability estimate for 
a particular candidate instance x ∈ U based on the KELMOR model, where k = 1, . . . ,K . Suppose the candidate 
instance x is assigned a possible label Ck and added into the training set. We use PL∪{(x,Ck)}(Cr |xi) to denote the 
probability estimate for an unlabeled instance xi ∈ U/{x} with the KELMOR model trained on L ∪ {(x, Ck)} , 
where r = 1, . . . ,K . Thus, the expected cost by labeling x ∈ U can be defined as

(3)
f(x) = k(x)β̂

= k(x)(
1

C
I+ K)−1T,

(4)ŷ = argmin
Ck∈{C1,...,CK }

�f(x)− tk�1 ,

Figure 1.  Framework of the proposed method.
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where Chr = |h− r| is the absolute misclassification cost and h = argmax
r∈{1,...,K}

PL∪{(x,Ck)}(Cr |xi) , which means xi has 

the highest probability estimate at the h-th class. Ideally, the misclassification cost should be determined based 
on a priori knowledge. However, in most cases, a priori knowledge does not  exist2. Therefore, we use the absolute 
cost as the proxy for the ordering information among classes. According to the principle of the expected cost 
minimization, we can determine the critical instances as follows

To fully use of the available information and make the query selection more effective, we combine a margin-
based uncertainty sampling criterion with the expected cost minimization criterion. In ordinal classification 
data, the informative instances are usually distributed in the regions between adjacent classes. The margin-based 
sampling criterion tends to query instances in those regions. By introducing the margin-based sampling crite-
rion, the expected cost minimization criterion can be promoted to select valuable instances close to the decision 
boundaries, which benefits quickly improving the prediction model. Besides, the margin-based sampling runs 
fast and its computational cost is almost negligible compared with the expected cost minimization. Given a 
candidate instance x ∈ U , the margin sampling criterion is computed as

where ŷ1 and ŷ2 are the first and second most likely predictive labels about instance x . The margin sampling 
chooses the instance with the minimum value of MS(x) . Therefore, to simultaneously consider the above two 
criteria, we define the acquisition function as

where 0 ≤ � ≤ 1 is a constant which controls the contributions of expected cost minimization and uncertainty 
sampling criteria.

The calculation of expected cost relies on the probability estimate of class membership for the unlabeled 
instances. However, the KELMOR model does not yield the probability estimate. Therefore, We design a method 
based on the softmax function to obtain the probability estimate. We define NR(Ck|x) = �f(x)− tk�1 as the rejec-
tion degree of x belongs to class Ck , where f(x) is the predicted output vector of the KELMOR model, and tk is 
the encoded label vector of the k-th class label. Thus, the probability estimate about instance x can be defined as

According to Eq. (5), we can see that the calculation of expected cost for all the unlabeled instances is compu-
tationally intensive. Not only does it require computing the misclassification cost over U  for each unlabeled 
instance, but the KELMOR model should be retrained by adding each possible query instance with all possible 
labels into the training set. The time complexity for calculating the expected cost for all the unlabeled instances 
is O(|U | · |L|3 + |U |2 · |L| · K) . To reduce the computational cost of query selection, we shall reduce the candi-
date set in each iteration. Therefore, we introduce a candidate subset selection method in the next subsection.

Candidate subset selection. To reduce the computational overhead of the above query selection, we 
design an adaptive candidate subset selected method based on the k-means  algorithm23.

Before commencing a query selection, we first perform k-means algorithm on the whole instances L ∪ U 
and cluster them into (|L| + 1) granules. Therefore, there will be at least one granule that does not contain any 
labeled instances. Then, the centroids of granules that do not contain any labeled instances are collected as the 
candidate subset. As we mentioned before, we refer to those granules that do not contain any labeled instances 
as undescribed granules. In practice, some granules may contain more than one labeled instance; thus, there is 
usually more than one undescribed granule. The k-means algorithm is employed because of its low computational 
cost. In addition, it typically produces spherical shape granules with relatively uniform  sizes53. Since candidate 
instances come from the centers of different spherical granules, they are typically diverse and representative.

Figure 2 shows an example of candidate subset selection on a three-class synthetic ordinal dataset, which cur-
rently includes 9 labeled and 791 unlabeled instances. According to the above description, we need to divide the 
800 instances into 10 granules by performing the k-means algorithm. Then, we obtain 4 undescribed granules. 
Therefore, the current candidate subset contains 4 representative instances. Consequently, in the current iteration, 
we only need to calculate the margin sampling criterion and the expected cost minimization criterion on the 4 
candidate instances rather than on the 791 unlabeled instances. Taking into account the cost of clustering and 
finding a candidate subset, it is computationally more cost-effective to perform query selection by first finding a 
subset of candidates than by performing query selection directly on the unlabeled instance set. We will discuss 
the time complexity of the proposed method in Sect. 3.5.

(5)EC(x) =

K
∑

k=1

PL(Ck|x)
1

|U/{x}|

|U/{x}|
∑

i=1

K
∑

r=1

PL∪{(x,Ck)}(Cr |xi)Chr

(6)x∗ = argmin
x∈U

EC(x) .

(7)MS(x) = PL(ŷ
1|x)− PL(ŷ

2|x) ,

(8)x∗ = argmin
x∈U

�EC(x)+ (1− �)MS(x),

(9)
P(Ck|x) =

e−NR(Ck |x)

K
∑

j=1
e−NR(Cj |x)

, k = 1, . . . ,K .
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KELMOR model incremental update. In the active learning process, we must retrain the KELMOR 
model after each new instance is added to the training set. As aforementioned, the time complexity of training 
a KELMOR model is cubic with the number of training instances. This subsection introduces an incremental 
update method for the KELMOR model. Based on the incremental update method, the time complexity of incre-
mentally retraining a KELMOR model is quadratic with the number of training instances.

Suppose there are n instances in the current training set L . Let T and K be the encoded target matrix and 
kernel matrix corresponding to L , respectively. When a new instance x∗ is labeled, and its encoded label vec-
tor is t∗ , the expanded training set becomes L̄ = L ∪ {(x∗, t∗)} . Thus, the new weight matrix of the KELMOR 
model can be formulated as

where k(x∗) = [K(x1, x
∗), . . . ,K(xn, x

∗)] and K(·, ·) is a kernel function.
The time complexity of directly computing β̄ is O((n+ 1)3) . Since (K + 1

C In)
−1 is available, we can compute 

β̄ based on the block matrix inversion  principle54. For conciseness, we reformulate β̄ as:

where

According to the block matrix inversion principle, the updated model can be represented as:

where

(10)

β̄ = (K̄ +
1

C
In+1)

−1

[

T
t∗

]

=

[

K + 1
C In k(x∗)

k(x∗)T K(x∗, x∗)+ 1
C

]−1 [
T
t∗

]

,

(11)β̄ =

[

A11 A12

AT
12 A22

]−1 [
T
t∗

]

,

(12)

A11 = K +
1

C
In ,

A12 = k(x∗) ,

A22 = K(x∗, x∗)+
1

C
.

(13)β̄ =

[

B11 B12

B21 B22

] [

T
t∗

]

,

Figure 2.  Example of candidate subset selection. Subfigure (a) shows a three-class synthetic ordinal dataset of 
800 instances, with 9 labeled instances in the current iteration. To obtain a candidate subset, we use the k-means 
algorithm to divide the data into 10 clusters. Then, we take the centroids of clusters containing no labeled 
instances as candidate instances. Subfigure (b) shows the result of candidate subset selection. We can see that 
there are 4 candidate instances in the current iteration.
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Suppose K ≪ n , based on the above formulations, the computational complexity of calculating β̄ is therefore 
reduced to O((n+ 1)2K) = O(n2).

Algorithm and time complexity analyses. 

The algorithmic procedure of the proposed active learning method is summarized in Algo-
rithm 1.

Suppose N is the number of all instances, n is the number of current labeled instances, and has n ≪ N . In 
the pseudocode, lines 3 to 9 correspond to the procedure of candidate subset selection. Performing the k-means 
with k = n+ 1 requires O(N(n+ 1)t) time, where t denotes the number of iterations. Finding the undescribed 
granules in the worst situation requires O(Nn) time. Searching the representative point in undescribed granules 
in the worst situation requires O( Nn

n+1 ) time. In summary, the time complexity of candidate subset selection is 
O(N(n+ 1)t) . Line 10 to line 16 correspond to the procedure of query selection. Suppose we encounter the 
worst situation, i.e., there are |S| = n candidate instances in the current iteration. Update the KELMOR model 
incrementally in line 10 takes O(K(n+ 1)2) time. Suppose the kernel matrix is pre-calculated. Thus, in line 12, 
calculating the margin sampling criterion for the n candidate instances takes O(n logK) time, where K is the 
number of classes. In line 13, the main cost of calculating the expected cost is the (n× K) times of re-training 
the KELMOR model, which requires O(nK2(n+ 1)2) time. In summary, the time complexity of the proposed 
method for one query selection in the worst situation is O(N(n+ 1)t + nK2(n+ 1)2).

In the case without the procedure of candidate instance selection, the time complexity of the algorithm will 
become O((N − n)K2(n+ 1)2) . According to the above analysis, we can conclude that the proposed method 
will be more efficient than the case without candidate subset selection if the number of clustering iterations t 
satisfies the following condition:

(14)

B11 = A−1
11 + A−1

11 A12(A22 − AT
12A

−1
11 A12)

−1AT
12A

−1
11 ,

B12 = −A−1
11 A12(A22 − AT

12A
−1
11 A12)

−1 ,

B21 = −(A22 − AT
12A

−1
11 A12)

−1AT
12A

−1
11 ,

B22 = (A22 − AT
12A

−1
11 A12)

−1 .
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In ordinal classification, the number of classes K is typically equal to or larger than three. In an active learning 
setting, there is usually at least K labeled instance at the initial moment, and the number of labeled instances is 
increasing. Therefore, the inequality in Eq. (15) usually holds in practice. It is worth pointing out that the cluster-
ing results can be pre-calculated before active learning. From this point of view, the candidate subset selection 
brings an undeniable advantage in terms of computational time.

Experiments
Datasets. In the experiments, nine public ordinal classification datasets are employed. Table 1 summarizes 
the information of the used datasets. The datasets Thyroid, Knowledge, and Obesity are from the UCI machine 
learning repository. The other six datasets are from  reference2. Before experiments, all the datasets are standard-
ized by the following Z-score standardization:

where xij denotes the j-th attribute value of instance xi , and mean(xj) and std(xj) are the mean value and the 
standard deviation of the j-th attribute, respectively.

Experimental configurations. To validate the effectiveness of the proposed method AOCECM, we com-
pare it with the following eleven state-of-the-art baseline methods.

• Random is the random sampling method. This method chooses the query instances randomly from the pool 
set. Therefore, it is also referred to as passive learning.

• USME is the uncertainty sampling method based on the KELMOR model and the entropy maximization 
 strategy25.

• USLC is the uncertainty sampling method based on the KELMOR model and the least confidence  strategy26.
• USMS is the uncertainty sampling method based on the KELMOR model and the margin-based sampling 

 strategy26,55.
• MCSVMA50 is the SVM-based multi-class active learning method, which selects the instances by considering 

the criteria of rejection, compatibility, and uncertainty.
• McPAL49 is the multi-class probabilistic active learning method, which selects the instances with maximal 

probabilistic gain.
• iGS44 is an improved greedy sampling-based AL method. This method selects unlabeled instances to increase 

the diversity in both input and output spaces.
• FISTA41 is an extended transductive experimental design method based on an exclusive sparsity norm.
• ALCE56 is a multi-class active learning algorithm based on a cost embedding approach.
• LogitA15 is the A-optimal experimental design method for ordinal classification, which tends to query rep-

resentative instances.
• ALOR16 is an uncertainty sampling-based AL method for ordinal classification based on the REDSVM 

 model57. This method queries the instance with the smallest distance to the nearest separating hyperplane 
in each iteration.

In the experiment, each dataset is split by using the five-fold stratified cross-validation six times. Thus, there 
are a total of 30 splits, and each split corresponding to an independent experiment. In each split, a dataset is 
split into an unlabeled pool (80% of the data) and a testing set (20% of the data). The initial training set contains 
instances randomly selected one from each class in the unlabeled pool. The AL methods perform query selection 
in the unlabeled pool, and tested on the testing set. Finally, we report the average results of 30 runs. We simulate 

(15)t <
(N − 2n)K2(n+ 1)

N
≈ K2(n+ 1) .

(16)xij =
xij −mean(xj)

std(xj)
,

Table 1.  Information of the used datasets. https:// archi ve. ics. uci. edu/ ml/ index. php.

No. Datasets #Instances #Features #Classes Distribution

1 Newthyroid2 215 5 3 [30, 150, 35]

2 Balance-scale2 625 4 3 [288, 49, 288]

3 Thyroid1 7000 6 3 [166, 368, 6666]

4 Knowledge1 403 5 4 [50, 129, 122, 102]

5 Machine2 209 6 5 [42, 42, 42, 42, 41]

6 Housing2 506 13 5 [102, 101, 101, 101, 101]

7 Computer2 8192 12 5 [1639, 1639, 1638, 1638, 1638]

8 Obesity1 2111 16 7 [272, 287, 290, 290, 351, 297, 324]

9 Stock2 950 9 10 [95, 95, 95, 95, 95, 95, 95, 95, 95, 95]

https://archive.ics.uci.edu/ml/index.php
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the annotator to provide the ground-truth labels of selected instances. The query budget for each dataset is set 
as 20K, where K is the number of classes.

In each iteration of active learning, we use labeled instances to train a KELMOR model and a REDSVM 
 model57. We evaluate the ordinal classification performances of the two models on the testing set and record 
the average evaluation result. The parameter C in the KELMOR is fixed as 100. The kernel function K(·, ·) is set 
as the RBF kernel, and the γ in the kernel function is set as 0.1 for all the datasets. For the trade-off parameter 
� , we tune it from [0.1, 0.2, . . . , 1.0] and report the best results. The evaluation metrics involve the Mean Zero-
one Error (MZE), Mean Absolute Error (MAE), and Mutual Information (MI). The metrics MZE and MAE 
are longstanding benchmark metrics for ordinal  classification2, while MI is a classical metric used to evaluate 
classification  performance58. MZE denotes the error rate of a classifier:

where yi is the true label, ŷi is the predicted label, and Nt is the number of instances in the testing set. I[·] is an 
indicator function that returns 1 if the argument is true and 0 otherwise. MZE considers a zero-one cost for 
misclassification. The MAE represents the average deviation in the absolute value of the predicted rank R(ŷi) 
from the true one R(yi):

The MAE uses the absolute cost by considering the order between classes. Mutual information is used to meas-
ure the degree of coincidence between the true labels and the predicted labels, and which is formalized as follows:

where pij =
|{x∈T |y=Ci}∩{x∈T |ŷ=Cj}|

Nt
 , pi =

|{x∈T |y=Ci}|
Nt

 , pj =
|{x∈T |ŷ=Cj}|

Nt
 , and T  is the testing set. Unlike the 

previous two metrics, the higher the value of MI, the better the classification performance.
To quantitatively compare the different methods, the commonly used metric Area Under Learning Curve 

(AULC)59 is employed. Let B be the query budget and π be a particular classification performance metric. Thus, 
the AULC about π is computed with the following trapezoidal approximation:

where π(i) denotes the value of the metric π in the i-th iteration. In the experiments, we will report the results of 
AULC about MZE (AULC-MZE), AULC about MAE (AULC-MAE), and AULC about MI (AULC-MI), respec-
tively. In general, the lower the value of AULC-MZE and AULC-MAE, the better the performance of the AL 
algorithm. In contrast, the larger the value of AULC-MI, the better performance of the AL algorithm.

The experiments were implemented on Windows 10 64-bit operating system with 32GB RAM and an Intel(R) 
Core(TM) i7-8700 CPU@3.20GHz processor. The programming language is Python. The implementation of 
McPAL and ALCE relies on the active learning tool scikit-activeml60. The source codes are available at https:// 
github. com/ Deniu He/ AOCECM.

Experimental result. To visually compare the proposed method with the eleven baseline methods, we plot 
the learning curves of the different methods on metrics MZE, MAE, and MI in Figs. 3, 4, and 5, respectively. In 
the above three figures, some learning curves inevitably overlap or cross since the comparison involves multiple 
compared methods. But, we can still clearly observe that the proposed method outperforms other methods in 
terms of the three metrics on most data sets.

For quantitative comparison, we report the evaluation results of the twelve methods on metrics AULC-MZE, 
AULC-MAE, and AULC-MI in Table 2. The best results are highlighted in boldface. We also show the average 
rank (denoted as “AvgRank”) of the compared methods in Table 2. To detect whether a baseline method performs 
significantly different from the AOCECM, we perform the Wilcoxon signed-rank  test61 between the AOCECM 
and the baseline methods at a confidence level of α = 0.05 . The marker “ ∗ ” denotes that there is a statistically 
significant difference. To present the above statistical results more clearly, we summarize the win/tie/loss counts 
of the proposed method versus the baseline methods base on the Wilcoxon signed-rank test in Table 3. A win 
(or loss) is recorded when the proposed method is significantly better (or worse) than the compared method on 
a dataset in the Wilcoxon signed-rank test; otherwise, a tie is counted.

The results in Table 2 show that the proposed method performs better than the competitors on most datasets 
in terms of the metrics AULC-MZE, AULC-MAE, and AULC-MI, respectively. Although the AOCECM does not 
perform best on some of the data, the results of the Wilcoxon test in Table 3 show that the AOCECM significantly 
outperforms most of the compared methods on most datasets. Furthermore, the results of the average ranks in 
Table 2 show the proposed method is among the top performers.

In the compared methods, USME, USLC, and USMS are three different uncertainty sampling strategies. We 
instantiate these strategies based on the KELMOR model. The USME selects the query instance with the highest 

(17)MZE =
1

Nt

Nt
∑

i=1

I[ŷi �= yi],

(18)MAE =
1

Nt

Nt
∑

i=1

|R(ŷi)−R(yi)|,

(19)MI =

K
∑

i=1

K
∑

j=1

pij log

(

pij

pi × pj

)

,

(20)AULC =

B
∑

i=1

π(i),

https://github.com/DeniuHe/AOCECM
https://github.com/DeniuHe/AOCECM


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:22468  | https://doi.org/10.1038/s41598-022-26844-1

www.nature.com/scientificreports/

information entropy. The USLC queries the instance with the lowest maximum in predictions over all classes. 
The USMS queries the unlabeled instance with the lowest discrepancy in its top two class predictions. From 
Table 2, we can see that USLC and USMS perform better than USME. The performances of USMS are compa-
rable to USLC on the metric AULC-MAE, but USMS performs better on the metric AULC-MZE. In ordinal 
data, the informative instances are usually distributed in the regions between adjacent classes. The margin-based 
sampling criterion in USMS tends to query instances in those regions. Therefore, our method incorporates the 
margin-based sampling criterion with the expected cost minimization criterion. This combination imposes 
our method to select query instances from those informative regions that can reduce the KELMOR model’s 
misclassification cost.

The method MCSVMA selects instances based on rejection, compatibility, and uncertainty criteria. However, 
these criteria are designed based on an SVM model with the one-versus-rest scheme. Therefore, this method is 
more suitable for nominal multi-class classification problems rather than ordinal classification problems. McPAL 
also only considers the nominal multi-class classification settings. Therefore, its performance on ordinal data is 
inferior to the proposed method. The method iGS is an AL method for regression problems. This method per-
forms query selection by considering the diversity of both input and output spaces. However, since this method 
relies on a regression model, it cannot capture informative instances in ordinal data. FISTA is a transductive 
experimental design-based method that queries representative unlabeled instances based on a data reconstruction 
mechanism. Since it does not rely on a prediction model, it failed to consider the informativeness of the query 
instances. ALCE performs query selection based on a cost-embedding uncertainty criterion. Since this approach 
tends to select the instances with the highest misclassification cost in the current prediction model, this approach 
is susceptible to sampling bias in the ordinal classification setting. Although the method LogitA is designed for 
ordinal classification, the overall performance of LogitA is not well. This is because the A-optimal experimental 
design-based criterion tends to query representative instances but fails to select the discriminative ones. The 
ALOR method performs query selection based on a threshold-based ordinal classification model and a margin-
based sampling criterion. This method selects the informative instances distributed between adjacent classes 
and performs similarly to the USMS. However, there is no mechanism to maintain the diversity of the selected 
instances, which leads to this method suffering from sampling redundancy. Multiple factors bring the outstanding 
performance of the proposed method. On the one hand, we simultaneously consider the ordering information 
and the margin-based uncertainty criterion, ensuring our method selects more informative instances. On the 

Figure 3.  Learning curves of MZE for the twelve compared methods.
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other hand, the k-means clustering-based candidate instance selection ensures the selected instances have the 
properties of representative and diversity. This makes the critical instances selection more effective.

The proposed method integrates the expected cost minimization criterion and the margin sampling criterion 
with a trade-off parameter � . To examine which criterion is more important and how to set the value of � , we 
set � = [0.1, 0.2, . . . , 1.0] and record the average rank of the AOCECM methods with different � values on the 
metrics AULC-MZE, AULC-MAE, and AULC-MI, respectively. We present the results of the average rank in 
Table 4. From the results, we can see that the appropriate values of � concerning MZE, MAE, and MI are 0.7, 0.9, 
and 1.0, respectively. Since ordinal classification focuses more on the evaluation metric MAE, we recommend 
setting the value of � to 0.9 or a relatively large value in practice. The results illustrate that the expected cost 
minimization criterion is more important. Although the average rank results with � = 0.9 are close to that with 
� = 1.0 , it does not indicate the margin-based sampling has no contribution to our algorithm because, on most 
datasets, the participation of margin-based sampling in our algorithm brings a positive impact on the results. 
However, how to adaptively determine the optimal value of � is a problem that needs further study.

To examine whether the AOCECM method is sensitive to parameter � , we conduct the paired t-test between 
the AOCECM methods with different � values at a confidence level of 0.05. We show the p-values of the paired 
t-tests on metrics AULC-MZE, AULC-MAE, and AULC-MI in Fig. 6. We can see that the p-values in the three 
sub-figures are larger than 0.05 in most cases. Therefore, the proposed method is almost insensitive to the 
parameter �.

Execution time is an important concern for active learning methods. Therefore, the average time consumption 
of the different methods by performing 20K query selections on the nine datasets was recorded and summarized 
in Table 5. We do not show the time consumption of the random sampling method (Random) because its time 
consumption is almost negligible. In Table 5, the AOCECM∗ is the method AOCECM without candidate subset 

Figure 4.  Learning curves of MAE for the twelve compared methods.
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selection. We can see that the time consumption of AOCECM is significantly lower than that of AOCECM∗ . This 
illustrates that the candidate subset selection is effective in reducing the computational burden of AOCECM.

Conclusion and future work
This paper studies the problem of active learning for ordinal classification. The present study innovatively takes 
the ordering information into account in query selection by designing an expected cost minimization criterion. 
To fully use the available information, we integrate the expected cost minimization with the margin-based uncer-
tainty sampling criterion to select query instances in a complementary way. Considering the computationally 
intensive of calculating the expected cost, we make it tractable by introducing a k-means clustering-based can-
didate subset selection method. This method substantially reduces the computational overhead of our algorithm 
and endows the query instances with the properties of representative and diversity. Extensive experiments on nine 
public datasets demonstrate that the proposed AL method can achieve better performance than the competitors.

The following four works merit further investigation: (1) It is interesting and practical to consider the mis-
classification and labeling costs simultaneously. Therefore, proposing a cost-sensitive AL method to learn a 
promising ordinal classifier with minimal comprehensive cost is worthwhile. (2) To further reduce the labeling 
cost, we would like to consider the annotator can provide low-cost instance-pair relation  information11. Thus, 
investigating active learning for ordinal classification by querying instance-pair relation information is valuable. 
(3) In practice, we cannot guarantee that the annotators can always provide the ground-truth labels. Therefore, 
it is interesting to investigate an active ordinal classification method that can use noisy labeling  sources62,63. 
(4) Ordinal classification problems in many fields may involve image data. Therefore, extending the proposed 
method to the convolutional neural networks is valuable for implementing active learning on image ordinal data.

Figure 5.  Learning curves of MI for the twelve compared methods.
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Table 2.  Results of AULC-MZE , AULC-MAE, and AULC-MI for the twelve compared methods on the nine 
datasets.

Metric Dataset Random USME USLC USMS MCSVMA McPAL iGS FISTA ALCE LogitA ALOR AOCECM

AULC-
MZE

Newthy-
roid 7.82±2.85∗ 7.08±3.02∗ 6.43±2.64∗ 6.57±2.72∗ 5.82±3.00 6.71±3.90∗ 6.69±3.40∗ 8.07±2.68∗ 6.23±3.00∗ 7.51±3.08∗ 6.98±2.63∗ 5.38±2.83

Balance-
scale 15.24±3.33∗ 16.03±3.35∗ 14.01±3.18∗ 12.19±3.14 12.56±2.87 12.55±2.36 14.94±2.58∗ 15.45±3.13∗ 12.68±2.65 17.83±5.06∗ 11.79±2.70 12.43±2.65

Thyroid 8.21±2.53 15.17±8.50∗ 10.55±5.32∗ 8.79±2.66 9.60±3.82∗ 18.03±10.09∗ 19.95±11.06∗ 8.43±2.42 13.55±8.01∗ 15.20±10.51∗ 7.42±2.54∗ 8.17±2.89

Knowl-
edge 13.40±3.87∗ 13.58±3.84∗ 11.90±3.60 12.18±3.52∗ 12.56±3.74∗ 11.84±3.58 14.60±3.52∗ 12.95±3.69∗ 13.36±3.92∗ 14.15±3.97∗ 11.99±3.38∗ 11.14±3.12

Machine 49.85±6.02∗ 48.01±6.64∗ 48.68±7.18∗ 48.86±6.63∗ 49.35±6.44∗ 46.55±6.73 47.11±7.01∗ 49.49±6.87∗ 49.94±6.74∗ 49.93±6.43∗ 48.58±6.73∗ 45.66±6.88

Housing 50.20±5.92∗ 50.98±4.56∗ 49.58±5.31∗ 50.59±5.41∗ 49.94±5.04∗ 49.39±6.00∗ 48.08±5.40 50.67±5.65∗ 51.60±5.53∗ 53.56±5.19∗ 50.77±5.49∗ 47.43±5.11

Com-
puter 52.71±2.88∗ 57.04±5.06∗ 53.94±4.28∗ 52.42±2.96∗ 54.31±3.62∗ 60.05±4.64∗ 59.62±4.42∗ 52.67±2.99∗ 55.64±4.20∗ 57.23±5.00∗ 52.65±3.18∗ 49.63±2.72

Obesity 67.69±4.79∗ 67.80±6.07∗ 64.22±4.58∗ 64.31±4.81∗ 70.25±4.62∗ 91.30±5.20∗ 86.39±5.84∗ 68.13±4.72∗ 74.40±6.44∗ 83.12±6.31∗ 64.42±4.86∗ 62.45±4.36

Stock 81.81±5.95∗ 78.06±5.91∗ 77.58±6.23∗ 77.32±6.00 83.11±7.66∗ 82.02±7.19∗ 76.96±6.08 81.87±6.25∗ 80.30±6.44∗ 78.89±5.79∗ 78.56±6.35∗ 75.56±6.32

AvgRank 7.44 8.11 4.78 4.33 6.56 7.11 7.44 7.89 8.11 10.33 4.56 1.33

AULC-
MAE

Newthy-
roid 7.82±2.85∗ 7.09±3.04∗ 6.44±2.64∗ 6.58±2.73∗ 5.82±3.01 6.72±3.91∗ 6.70±3.42∗ 8.08±2.69∗ 6.24±3.01∗ 7.51±3.09∗ 7.00±2.66∗ 5.38±2.83

Balance-
scale 17.80±4.06∗ 17.64±4.00∗ 15.58±3.57∗ 13.94±3.80 14.47±3.47 14.03±2.72 16.52±2.99∗ 18.07±3.96∗ 15.14±3.45 21.45±7.49∗ 13.56±3.15 14.09±3.19

Thyroid 8.66±2.59 16.01±9.26∗ 11.01±5.44∗ 9.20±2.71 10.11±4.13∗ 18.70±10.49∗ 20.52±11.17∗ 8.84±2.50 14.22±8.09∗ 15.64±10.54∗ 7.81±2.69∗ 8.52±2.95

Knowl-
edge 13.49±3.97∗ 13.71±3.95∗ 12.04±3.73 12.30±3.63∗ 12.65±3.83∗ 11.92±3.65 14.69±3.61∗ 13.06±3.79∗ 13.45±3.99∗ 14.24±4.07∗ 12.11±3.48∗ 11.22±3.20

Machine 59.44±8.75∗ 56.19±9.22∗ 57.09±9.93∗ 57.61±9.66∗ 57.61±8.95∗ 54.13±9.37 54.73±9.52∗ 59.33±10.59∗ 57.39±9.30∗ 58.70±9.08∗ 57.63±9.78∗ 52.78±9.74

Housing 60.84±8.75∗ 62.37±7.31∗ 60.94±8.32∗ 61.92±8.50∗ 58.66±7.50∗ 57.94±9.26∗ 57.00±7.99 61.83±9.48∗ 61.68±8.56∗ 64.17±8.05∗ 61.60±8.47∗ 56.01±7.74

Com-
puter 63.84±4.97∗ 70.92±8.64∗ 65.29±6.67∗ 63.71±5.10∗ 65.77±6.92∗ 77.37±10.87∗ 77.36±11.07∗ 63.56±4.84∗ 66.66±7.27∗ 69.96±9.96∗ 63.86±5.37∗ 59.62±4.62

Obesity 90.74±8.06∗ 88.68±8.89∗ 85.57±6.86∗ 85.89±7.39∗ 94.33±7.96∗ 129.51±9.81∗ 118.48±10.88∗ 91.04±7.71∗ 98.52±10.38∗ 111.97±10.23∗ 86.16±7.98∗ 80.28±6.84

Stock 95.15±9.12∗ 88.08±8.66∗ 87.86±8.32∗ 87.51±8.17 97.83±11.82∗ 94.43±9.98∗ 86.59±8.59 95.60±8.98∗ 92.61±9.80∗ 88.60±7.89∗ 89.89±9.18∗ 84.22±8.01

AvgRank 7.78 8.11 4.89 4.89 6.33 6.78 7.44 8.22 7.11 9.89 5.11 1.44

AULC-
MI

Newthy-
roid 25.26±6.72∗ 28.79±7.07∗ 29.83±6.77∗ 29.34±6.75∗ 32.88±6.70 33.79±6.44∗ 33.46±6.05∗ 24.51±6.56∗ 32.35±6.44∗ 26.89±7.05∗ 28.21±6.31∗ 33.52±6.87

Balance-
scale 26.53±4.87∗ 30.23±4.64∗ 31.12±4.11∗ 31.73±4.95 31.13±4.51 31.75±3.51 28.85±4.01∗ 26.17±4.89∗ 30.05±4.27 23.80±7.95∗ 32.06±4.18 30.87±4.34

Thyroid 3.65±1.18 3.53±1.00∗ 4.25±0.94∗ 3.79±1.04 4.10±1.01∗ 3.33±1.01∗ 3.51±0.87∗ 3.99±1.16 3.57±0.87∗ 2.78±1.36∗ 4.49±1.07∗ 4.42±0.96

Knowl-
edge 72.22±8.42∗ 73.06±7.75∗ 75.73±8.20 75.17±7.77∗ 74.16±8.56∗ 75.89±8.25 71.25±6.42∗ 73.33±7.85∗ 72.37±8.50∗ 72.89±7.20∗ 75.39±7.55∗ 76.78±7.25

Machine 64.20±8.35∗ 68.21±9.50∗ 66.78±9.54∗ 66.43±9.19∗ 65.92±8.63∗ 71.44±9.00 70.21±9.39∗ 65.30±10.00∗ 66.42±9.57∗ 67.38±9.16∗ 66.08±8.89∗ 72.59±9.42

Housing 55.52±8.40∗ 53.66±6.96∗ 55.27±8.29∗ 54.63±7.99∗ 58.53±7.57∗ 61.35±7.95∗ 61.33±7.69 54.76±8.57∗ 55.43±8.34∗ 53.51±8.17∗ 54.71±8.39∗ 61.44±7.74

Com-
puter 47.50±4.59∗ 43.37±7.13∗ 47.01±5.66∗ 47.84±4.42∗ 46.71±6.01∗ 41.42±6.91∗ 41.77±6.63∗ 47.91±4.29∗ 46.55±6.18∗ 44.84±7.93∗ 47.68±5.14∗ 52.80±4.14

Obesity 129.63±8.26∗ 130.69±9.86∗ 135.04±8.24∗ 134.62±7.64∗ 127.17±7.43∗ 92.56±8.44∗ 101.46±9.19∗ 130.41±8.21∗ 120.20±9.67∗ 108.64±8.84∗ 134.93±7.98∗ 137.76±8.08

Stock 280.21±9.53∗ 286.94±10.07∗ 288.01±10.33∗ 288.72±10.24 278.42±11.86∗ 281.62±10.16∗ 289.16±10.35 279.56±9.87∗ 282.99±11.14∗ 287.85±9.18∗ 286.57±10.65∗ 293.74±9.67

AvgRank 8.67 7.56 4.67 5.33 6.56 5.89 7.11 8.11 7.78 9.33 5.22 1.78

Table 3.  Win/tie/loss counts of the proposed method versus the baseline methods based on the Wilcoxon 
signed-rank test at a 5% confidence level.

Random USME USLC USMS MCSVMA McPAL iGS FISTA ALCE LogitA ALOR

AULC-MZE 8/1/0 9/0/0 8/1/0 6/3/0 7/2/0 6/3/0 7/2/0 8/1/0 8/1/0 9/0/0 7/1/1

AULC-MAE 8/1/0 9/0/0 8/1/0 6/3/0 7/2/0 6/3/0 7/2/0 8/1/0 8/1/0 9/0/0 7/1/1

AULC-MI 8/1/0 9/0/0 7/1/1 6/3/0 7/2/0 5/3/1 7/2/0 8/1/0 8/1/0 9/0/0 7/1/1
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Data availability
The datasets used in this study are available at https:// github. com/ Deniu He/ AOCECM.
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