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Automated monitoring of honey 
bees with barcodes and artificial 
intelligence reveals two distinct 
social networks from a single 
affiliative behavior
Tim Gernat 1,2, Tobias Jagla 2, Beryl M. Jones 1,5,6, Martin Middendorf 2 & 
Gene E. Robinson 1,3,4*

Barcode-based tracking of individuals is revolutionizing animal behavior studies, but further progress 
hinges on whether in addition to determining an individual’s location, specific behaviors can be 
identified and monitored. We achieve this goal using information from the barcodes to identify 
tightly bounded image regions that potentially show the behavior of interest. These image regions 
are then analyzed with convolutional neural networks to verify that the behavior occurred. When 
applied to a challenging test case, detecting social liquid transfer (trophallaxis) in the honey bee hive, 
this approach yielded a 67% higher sensitivity and an 11% lower error rate than the best detector 
for honey bee trophallaxis so far. We were furthermore able to automatically detect whether a 
bee donates or receives liquid, which previously required manual observations. By applying our 
trophallaxis detector to recordings from three honey bee colonies and performing simulations, we 
discovered that liquid exchanges among bees generate two distinct social networks with different 
transmission capabilities. Finally, we demonstrate that our approach generalizes to detecting other 
specific behaviors. We envision that its broad application will enable automatic, high-resolution 
behavioral studies that address a broad range of previously intractable questions in evolutionary 
biology, ethology, neuroscience, and molecular biology.

Barcode-based tracking makes it possible to automatically distinguish hundreds of individuals in digital videos, 
and to record their location and heading direction over long time periods at a high spatiotemporal  resolution1–4. 
This is otherwise not possible, and has already generated a wealth of individualized data that is transforming 
how ethologists study the behavior of animals, especially for species that naturally interact in large collectives, 
such as ants and honey  bees4–8.

In addition to knowing where individuals are located, it is often necessary to also know what they are doing, 
to understand both individual and group-level behavior and its neural and molecular underpinnings. However, 
with the exception of locomotion, barcodes are unable to automatically generate behavioral information directly. 
When studying other behaviors, researchers therefore tend to resort to proxies that infer coarse-grained behav-
ioral states from changes in the location and orientation of an individual’s barcode, and social interactions from 
the relative position of individuals to each  other2–7,9. Such proxies have a limited capacity for distinguishing 
specific  behaviors10 and may thus result in high error rates.

Convolutional neural networks (CNNs) are a promising technology for developing detectors for specific 
behaviors. They can be trained to accurately identify digital images that show a particular object, and learn 
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independently which features of the object are most  diagnostic11. CNNs have been used for tracking  animals12–14, 
estimating their  pose15–18, and detecting behaviors performed in  isolation19,20 or in small  groups20,21. However, 
they have not yet been widely employed to identify behavior in videos showing hundreds of closely interacting 
individuals. Obstacles to more widespread adoption of CNNs include issues that arise when detecting small 
objects in large  scenes22, detecting dense or partially occluded  objects22, and assigning detected behaviors to 
the correct individuals.

We present a method that combines CNNs with barcode-based tracking to accurately identify specific behav-
iors in large animal collectives. Complementing the innovations in ref.23,24, our key contribution lies in combining 
tracking information, such as an animal’s location and orientation, with domain knowledge about the behavior of 
interest to perform a precise yet computationally inexpensive region proposal that acts as an attention mechanism 
for the CNN. In addition, we leverage information from the barcodes to simplify the behavior classification task 
by rotating the proposed image regions to correspond to a predefined reference frame. Using this approach, we 
designed a proof-of-principle detector for mouth-to-mouth liquid transfer (trophallaxis) and then used it to 
gain new insights into this still poorly understood behavior. We also designed a detector for egg-laying to show 
that our methodology can be applied to very different behaviors.

Results and discussion
Trophallaxis is an important social behavior during which two adult worker honey bees touch each other with 
their antennae while orally transferring liquid containing  food25 and signaling  molecules26 (Fig. 1a). This behav-
ior is challenging to detect automatically because honey bee colonies contain hundreds to tens of thousands of 
individuals densely crowded together (Fig. 2a). Moreover, owing to the small size of the honey bee, a detector 
needs to focus on millimeter-sized body parts, such as the mouthparts, to distinguish trophallaxis from visually 
similar behaviors, such as antennation.

To identify trophallaxis, our automatic detector first uses location and heading direction, obtained from each 
bee’s barcode, to select pairs of bees that are in the proper position relative to each other to perform the behavior 
(Supplementary Fig. 1). For each pair, the detector then estimates a rectangular image region that shows only 

Figure 1.  Examples of trophallaxis and egg-laying, illustrating the stark differences between these two 
behaviors. (a) In honey bees, trophallaxis is a social behavior during which two individuals orally exchange 
a liquid containing nutrients, hormones, and signaling molecules. One of the two bees (green) acts as the donor 
while the other bee (magenta) acts as the recipient. These roles are maintained for the duration of the behavior. 
Our automatic trophallaxis detector identifies this behavior by recognizing that the recipient has placed her 
proboscis (A) between the open mandibles (B) of the donor. In this image, only one of the donor’s mandibles 
is clearly visible. The other one is partially hidden by her right antenna. To distinguish donor and recipient, 
our detector may take advantage of the fact that the mandibles (C) of the recipient are closely aligned with her 
proboscis while those of the recipient are wide open. In addition, the head of the recipient appears to be bigger 
and shaped differently, because she has tilted it back to be able to extend her proboscis. Note that the proboscis 
and a cell wall of the plastic honeycomb look very similar; whether the mandibles are visible depends on how 
a bee holds her head and antennae. Scale bar, 2 mm. (b) Egg-laying is a solitary behavior during which an 
individual bee (yellow) places an egg inside a honeycomb cell. To position the egg, the bee inserts her abdomen 
into a cell and remains stationary while releasing the egg. Our automatic detector identifies this behavior by 
distinguishing bees whose abdomens are hidden (A) from those whose abdomens are visible (B). Note that 
under more crowded conditions than in this image it will be more challenging to make this distinction, because 
the space behind an egg-layer might be (partially) occupied by the abdomen of another bee. Scale bar, 5 mm.



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1541  | https://doi.org/10.1038/s41598-022-26825-4

www.nature.com/scientificreports/

the bees’ mouthparts and head (Fig. 2a,b), which will be examined to verify trophallaxis. This region proposal 
excludes 97.9 ± 1.0% (mean ± standard deviation, n = 300) of a video frame from further consideration, thus 
increasing the detector’s computational efficiency and reducing its false positive rate. Image regions are then 
independently preprocessed and scored with a CNN that was trained to estimate the probability of a region show-
ing trophallaxis (Supplementary Table 1 and Fig. 2c). During post-processing, these probabilities are integrated 
across successive video frames to determine when trophallaxis begins and ends.

Performance measurements (Table 1) showed that our trophallaxis detector outperforms the state of the 
 art8,24. Its Matthews correlation coefficient (MCC) is 0.89, 0.28 higher than that of the best automatic honey bee 
trophallaxis detector so  far8. Most of this improvement is due to a 67% higher sensitivity and an 11% higher 
positive predictive value, which means that our detector identifies more trophallaxis interactions and gener-
ates fewer false positives. Unlike other honey bee trophallaxis  detectors8,9, it also accurately scores interactions 
between adult worker bees and the queen. Moreover, at 55 megapixel/s, it processes videos 16 times faster than 
the reference  detector8, and thus enables larger-scale experiments.

When studying social behavior, it is often important to know the role played by each individual, i.e., who is the 
“donor” and who is the “recipient” of a particular behavioral interaction. For honey bee trophallaxis, this involves 
distinguishing the individual that has only opened her mouthparts (donor) from the one that has also extended 
her proboscis (recipient) (Fig. 1). Previously described automatic trophallaxis detectors are either unable to 
determine the direction of liquid  transfer8,9,23 or require fluorescence-labeled liquids and a more complex track-
ing system to do  so24. To establish the liquid transfer direction directly from videos, we trained a second CNN 
(Supplementary Table 1 and Fig. 2d) that identifies the liquid recipient, and operated it in parallel with the CNN 
that detects the occurrence of trophallaxis. When applied to automatically identified trophallaxis partners, this 
CNN has a MCC of 0.97, which means that in almost all cases it correctly determined a bee’s trophallactic role.

To verify that our trophallaxis detector generates plausible results, we used it to monitor three honey bee colo-
nies, each consisting of ~ 1,000 barcoded individuals, at 1 frame/s for five consecutive days. We then employed 
a temporally explicit epidemiological model to perform undirected spreading simulations on the bees’ trophal-
laxis networks (Table 2). Because these simulations ignore the direction of liquid transfers, they can be used 
to study information and disease transmission via physical contacts that take place during trophallaxis, such 
as antennation or touch, but not how the exchanged liquid flows through the colony. Consistent with previous 
 results8, we found that undirected spreading through the observed networks of physical contacts was faster than 
through temporally randomized counterparts (Fig. 3a, Supplementary Figs. 2a and 3a) until most individuals 

Figure 2.  Automatic trophallaxis detection and recipient identification. (a) Typical image captured by the 
honey bee tracking rig, showing barcoded bees inside the observation hive. Rectangles outline image regions 
identified by our barcode-based region proposal procedure for trophallaxis. Scale bar, 5 cm. (b) Zoom-in on the 
magenta region proposal in (a), which shows the head, forelegs and part of the thorax of two bees that engage in 
trophallaxis. Scale bar, 5 mm. (c) CNN input image created from the region proposal in (b) superimposed with a 
map of the output of the CNN for detecting the occurrence of trophallaxis, as a function of the position of a grey 
square that occludes some pixels (see “Methods”). A false negative from the input image is more likely if pixels 
corresponding to the mouthparts and proboscis are obscured, indicating that the CNN is able to distinguish 
salient features of trophallaxis from the background. Scale bar, 1 mm. (d) The same input image as in (c) but 
superimposed with a map of the correct class probability for recipient identification. This map suggests that the 
CNN for identifying the recipient relies on visual cues obtained from the mouthparts of the recipient, which, 
unlike those of the donor, are always visible and closely aligned with the proboscis. Scale bar, 1 mm.

Table 1.  Detailed detection and runtime performance estimates. Note that the runtime estimate for 
trophallaxis detection includes detecting the occurrence of trophallaxis as well as identifying the recipient. PPV 
positive predictive value, NPV negative predictive value.

Detector F1 score Sensitivity Specificity PPV NPV Speed (MP/s)

Trophallaxis 0.89 0.89 1.00 0.90 1.00 55.38

Egg-laying 0.75 0.63 1.00 0.93 1.00 20.87
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were “infected”, confirming that the temporal structure of these contacts can accelerate the transmission of 
information or  disease8.

Knowledge of the direction of liquid transfers allowed us for the first time to also perform directed spreading 
simulations, which model the flow of liquid through the colony (Table 2). These simulations showed that liquid 
flow was much slower than undirected spreading via physical contacts (Fig. 3, Supplementary Figs. 2, 3), most 
likely because in directed simulations a recipient cannot “infect” a donor. Moreover, relative to temporally and 
directionally randomized counterparts, spreading through the observed liquid exchange network was acceler-
ated only during the early phase of the spreading process (Fig. 3b, Supplementary Figs. 2b, 3b); once 0.30 ± 0.05 
(mean ± standard deviation) individuals were “infected”, liquid flow was inhibited. By randomizing only either 
the directionality or the temporal structure of trophallaxis we showed that the temporal structure of trophal-
laxis is the predominant driver of this dynamic, while its directional nature acts to always inhibit the flow of 
liquid (Fig. 3b, Supplementary Figs. 2b, 3b). This finding sheds light on the forces that shape the dynamics of 
this important social behavior in honey bee colonies.

To demonstrate that our approach to automatic behavior detection generalizes to other behaviors, we also 
developed a detector for egg-laying (Fig. 1b), a solitary behavior performed by worker honey bees when the 
colony has lost its queen and is unable to replace  her27. Because, unlike for the above case, we included no proxy 
for identifying bees that are likely to lay an egg in the region proposal procedure for this detector, it is applied 
to all bees in an image and therefore generates more false positives. We addressed this problem by adding to the 
detector a second CNN that was trained to identify and filter out false positives generated by the first CNN. This 
approach increased the detector’s MCC from 0.64 to 0.76 (see Table 1 for additional performance values). These 
results demonstrate that our method can be applied to automatically detect very different behaviors.

Conclusion
We demonstrated that barcode-and-CNN-based detectors accurately identify specific behaviors even under the 
challenging condition of a dense and populous society. We achieved this by combining information obtained 
from an individual’s barcode with domain knowledge about the behavior of interest, and showed that our 
approach can be used to detect very different behaviors.

Behavioral data obtained with one of our new detectors revealed that trophallaxis results in two distinct 
social networks, each with different transmission dynamics. One network represents physical contacts during 
trophallaxis and the other network represents liquid transfers among bees. Trophallaxis is a complex behavior 
that involves multiple sub-behaviors, such as antennation and liquid transfer, and each of these behaviors could 
serve as a separate transmission channel. Moreover, trophallaxis is known to be involved in different biological 
processes, such as social  learning28, the regulation of division of  labor29, and disease  transmission30. It is thus 
not surprising that it results in multiple social networks. However, our finding that the two trophallaxis-related 
networks exhibit different transmission dynamics was unexpected, and sheds light on how trophallaxis might 
mediate multiple biological processes simultaneously.

Our approach to automatically detecting behavior can be applied to all animals that perform visually recogniz-
able behaviors, and whose position can be tracked. We therefore envision that this method will make it possible 
to perform quantitative analysis of behavior in a variety of species, including those that live in large collectives, 
such as ants, bees, and birds. This will enable automatic, high-resolution behavioral studies that address a broad 
range of previously intractable questions in evolutionary biology, ethology, neuroscience, and molecular biology.

Methods
Honey bee tracking. Colonies were established as in ref.8. Briefly, up to 1,370 one-day-old adult honey bee 
workers (Apis mellifera) were individually outfitted with a barcode by chilling them until they stopped moving 
and then gluing a bCode barcode to their thorax. For recording trophallaxis interactions, we also barcoded an 
unrelated, naturally mated queen.

All barcoded bees passing quality control checks of barcode placement and readability were moved into a 
glass-walled observation hive, which was placed in a dark, climate-controlled room and connected to the outside 
environment via a plastic tube to enable normal foraging. The observation hive held a 348 mm × 232 mm white 
plastic honeycomb, one side of which was inaccessible to the bees. The other side was provisioned with enough 
honey and pollen for the duration of the experiment and was covered by an exchangeable glass window. The 

Table 2.  Trophallaxis network properties. For each trial we show the number of nodes (V), edges (E), and 
trophallaxis interactions (I), the smallest spreading speedup  (smin), the biggest spreading speedup  (smax), 
and the mean prevalence when the speedup of spreading is zero  (ps=0) for the undirected and the directed 
spreading simulations. In the case of directed spreading,  smin,  smax, and  ps=0 were computed with respect to the 
temporally and directionally randomized reference networks.

Trial V E I

Undirected Directed

smin smax ps=0 smin smax ps=0
1 1050 115,269 150,859 − 0.00 6.81 0.97 − 0.19 1.50 0.29

2 902 97,591 132,591 − 0.01 4.99 0.95 − 0.23 1.00 0.26

3 815 60,540 84,164 − 0.04 3.40 0.84 − 0.13 1.18 0.36
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distance between this window and the honeycomb was short enough to ensure that the bees formed a monolayer, 
which does not affect their  behavior8 and prevented them from obscuring their barcodes.

Trophallaxis interactions and egg-laying events were monitored with the tracking systems described in ref.30 
(Supplementary Fig. 5) and ref.8, respectively. Video of the honeycomb was captured for up to 7 consecutive 
days at a frequency of 1 frame/s with a computer-controlled 29 megapixel monochrome machine vision camera 
under infrared light, invisible to the bees, and stored on hard drives for later processing. Barcode detection and 
decoding was performed on a compute cluster, using the software and procedures described in ref.8.

Figure 3.  Simulated spreading though honey bee trophallaxis networks. Panels show data from Trial 1; 
see Supplementary Figs. 2, 3 for Trial 2 and 3, respectively, which yielded similar results. (a) Undirected 
spreading results, modeling transmission via physical contacts during trophallaxis. Top panel: Average fraction 
of “infected” bees (prevalence) as a function of spreading duration. Black line, prevalence in the observed 
trophallaxis network; magenta line, mean prevalence, averaged across 5 temporally randomized reference 
networks; magenta band, point-wise 95% confidence interval. Bottom panel: Spreading speedup, corresponding 
to the normalized difference between the prevalence in the observed network and the mean prevalence across 
the 5 temporally randomized reference networks, as a function of spreading duration. The spreading speedup 
is positive if the prevalence in the observed trophallaxis network is higher than in the randomized reference 
networks, zero if there is no difference, and negative if it is lower. Simulation results indicate that the temporal 
pattern of trophallaxis accelerates undirected spreading. (b) Directed spreading results, modeling liquid flow. 
Panels as in a. Green, prevalence and spreading speedup in directionally randomized reference networks; 
turquoise, prevalence and spreading speedup in temporally and directionally randomized reference networks. 
Simulation results indicate that the temporal pattern of trophallaxis accelerates directed spreading during the 
early phase of the spreading process, but inhibits it later. The directional nature of trophallaxis inhibits directed 
spreading throughout. Inset: Spreading speedup as a function of spreading duration until, like for undirected 
spreading, almost all bees are “infected”, showing that all three spreading speedups remain negative for longer 
spreading durations (corresponding prevalence curves in Supplementary Fig. 4a).
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Ground truth. To create a ground truth for the trophallaxis detector, we manually annotated images of pairs 
of bees that were in the proper position to perform this behavior. For each image we recorded whether the two 
bees were engaged in trophallaxis and, if so, which bee was the recipient.

The first set of images consisted of the image library L1 described in ref.8. These images show random bee pairs 
that were selected solely based on whether they were within reach. To determine if two bees are within reach, the 
coordinate of their mouthparts was estimated by translating the barcode center of each bee by a fixed distance 
in the direction of her barcode orientation vector, which was assumed to be parallel to her anteroposterior axis 
(Supplementary Fig. 1). If the distance between these coordinates was shorter than 7 mm, which is the maximum 
proboscis length of a honey  bee31, the image was annotated. An image was considered to show trophallaxis if 
the proboscis of one bee touched the head of the other bee close to her mouthparts (Fig. 2b). Otherwise, it was 
annotated as not showing trophallaxis.

Examination of the images in library L1 revealed that only approximately 1 in 40 images showed trophallaxis. 
Because CNNs learn to classify images better if the number of positive and negative examples is more  balanced32, 
and manual annotation is labor intensive, additional images were selected by also requiring that bees needed to 
face each other, which is necessary for trophallaxis. Whether two bees faced each other was established similar 
to ref. 8: We calculated the angle between the barcode orientation vector of each bee and a line through the 
mouthpart location of both bees (Supplementary Fig. 1). If the sum of the two resulting angles was less than 104 
degrees, the image was annotated. This criterion captures 95% of the trophallaxis contacts in L1. Using this filter 
as a proxy for identifying trophallaxis, we annotated an additional 6045 random bee pair images.

To evaluate the performance of the trophallaxis detector when its predictions are integrated over time, we 
furthermore used the trophallaxis proxy to annotate all bee pairs in 600 random triples of successively recorded 
images of the entire observation hive. Each bee pair was annotated by three annotators to be able to reduce 
annotation errors. Consensus among the three annotators was reached through majority voting. A subset of the 
resulting annotations was previously published as image library L28.

The ground truth for the egg-laying detector was created by manually annotating 1323 random images of 
the entire hive. Bees that either had inserted their abdomen into a honeycomb cell (Supplementary Fig. 6) or 
appeared to be in the process of doing so were called egg-layers. All other bees were annotated as having laid 
no egg. In addition, we annotated each egg layer in up to two images that were recorded before and after these 
hive images.

The final trophallaxis and egg-laying ground truths consisted of 142,182 images of bee pairs and 723,995 
images of individual bees, respectively. Both ground truths were split into disjunct training, calibration, and test 
data sets as shown in Supplementary Table 4.

Region proposal. To identify image regions that are likely to show bees engaged in trophallaxis, we lever-
aged the trophallaxis proxy described earlier (Supplementary Fig.  1). For each pair of potential trophallaxis 
partners identified by this proxy, we extracted the region showing the heads of both bees by translating the 
barcode center of each bee by a fixed distance in the direction of her barcode orientation vector. The midpoint 
of the line segment defined by these two coordinates was used as the center point of a 96 px × 160 px region of 
which the longer sides were parallel to the aforementioned line segment (Fig. 2b). The top edge of this rectangle 
was defined to be the short edge closest to the head of the bee with the bigger ID.

For detecting egg-layers, the image region focusing on the abdomen of a bee was extracted by translating 
the center of a bee’s barcode by a fixed distance in the opposite direction of her barcode orientation vector. The 
resulting coordinate was used as the midpoint of one edge of a 130 px × 130 px region of which the top edge was 
parallel and closest to the lower edge of the bee’s barcode (Supplementary Fig. 6). The image region showing 
the entire bee as well as her immediate surroundings was obtained by first translating the center of her barcode 
by a fixed distance in the direction of the barcode orientation vector. The resulting coordinate was then used 
as the top-right corner of a 256 px × 256 px region of which the diagonal between the top-right corner and the 
bottom-left corner passed through the barcode center (Supplementary Fig. 6).

Image preprocessing. CNN input images were created by extracting the proposed image region and rotat-
ing it “upright”, so its top edge was on the x-axis of the image coordinate system. Pixel intensities were then 
clamped at a value of 200 to remove bright details in the background that we did not expect to provide informa-
tion about the behavior of interest, such as the honeycomb structure and specular reflections in the honeycomb 
cell contents (Fig.  2c). For trophallaxis detection, we furthermore filled the bounding box of the focal bees’ 
barcode with a uniform color to prevent the CNN from associating parts of the barcode pattern with a behavior 
(Fig. 2c). Finally, pixel intensities were mean-centered and scaled to [-1, 1] to provide a consistent input range 
for the CNNs.

CNN architecture and training. Images of potential trophallaxis partners and egg-layers were classified 
with two CNNs each. While the exact details of these CNNs varied, they had a similar architecture, consisting 
of 2 or 3 convolutional layers, max-pooling layers, and 2 fully connected layers (Supplementary Tables 1, 2, and 
3). The output of convolutional layers was standardized with batch normalization before being passed to a recti-
fied linear unit activation function, and the output of the final activation function was transformed by a softmax 
function, so it can be interpreted as the probability of the input image showing the behavior of interest.

CNN training consisted of initializing the weights of the network to values drawn from a normal distribu-
tion with a mean of 0 and a standard deviation of 1, truncated at 2 standard deviations. Network weights were 
then optimized for 10,000 iterations, using the Adam algorithm, which was configured as recommended by its 
authors (alpha = 0.001, beta1 = 0.9, beta2 = 0.999, epsilon = 0.0000001)33, with a cross-entropy loss function. We 
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used batches of 256 images, which were augmented as shown in Supplementary Table 5 and normalized to mean 
zero and unit variance. To avoid overfitting, we applied a L2 weight decay of 0.005 and a dropout of 0.5 in the 
first fully connected layer.

The CNNs for detecting the occurrence of trophallaxis and whether a bees’ abdomen was inserted into a hon-
eycomb cell were trained on all positive examples and a matching number of random negative examples from the 
trophallaxis and egg-laying training data set, respectively. For training the CNN that identifies the recipient, we 
used all positive examples of the trophallaxis training data set and a corresponding number of random negative 
examples. The CNN that uses an image of the entire bee to identify false positives was trained on the 4044 false 
positives generated by the CNN that checks for the visual absence of a bee’s abdomen and a matching number 
of random positive examples from the egg-laying training data set.

Behavior detection. To detect trophallaxis or egg-laying in individual images, we first performed the cor-
responding region proposal to obtain image regions that potentially show the behavior of interest. Each of these 
regions was extracted, preprocessed as described above, and independently scored by the two CNNs that had 
been trained to detect the behavior. This approach is computationally less efficient than a strictly serial opera-
tion where, for example, the CNN for identifying the recipient processes the input image only if the score for the 
occurrence of trophallaxis exceeds a specified threshold. It was nevertheless chosen because it makes it possible 
to store both CNN scores in a file, which can later be post-processed to yield behavior predictions of varying 
stringency without having to process the video again.

Successive per-image trophallaxis and egg-laying detections were thresholded and linked together to yield 
behavior predictions that are easier to analyze. Linked predictions were filtered to improve their quality. For 
trophallaxis, this procedure is identical to the post-processing steps described in ref.8. Briefly, detections between 
the same two individuals were concatenated if they occurred in successive video frames. Concatenated detections 
shorter than 3 s were discarded, because such short trophallaxis interactions may not always result in the transfer 
of  liquid34. The remaining interactions were merged if they were less than 60 s apart, and discarded if their total 
duration exceeded 180 s. The former threshold is based on the personal observation that trophallaxis partners 
typically do not engage in trophallaxis again during this time period, while the latter threshold was chosen to be 
slightly longer than the longest trophallaxis interaction reported in ref.35.

For egg-laying, linking and filtering consisted of concatenating the thresholded detections from successive 
video frames into egg-laying events. Concatenated egg-laying events shorter than 3 s were discarded. The remain-
ing events were merged if they involved the same bee, occurred within 10 s of each other, and the distance of the 
average position of the events was shorter than 11.2 mm (the width of two honeycomb cells). These conditions 
ensured that egg-laying predictions were only merged if they appeared to belong to the same real event.

Detector calibration. The trophallaxis detector and egg-laying detectors each have free parameters. For 
the trophallaxis detector, these parameters are the minimum and maximum distance between a pair of bees, the 
maximum sum of the angle between the bees’ orientation vector and a line through their estimated mouthparts 
location, a threshold for the output of the CNN that determines which scores correspond to the occurrence of 
trophallaxis, and a threshold for the output of the CNN that identifies the recipient. For the egg-laying detec-
tor, free parameters are the CNN thresholds that determine which output scores identify a (potential) egg layer.

To fix the free parameters of each behavior detector, we applied it to the calibration data set of its ground truth. 
We then performed a grid search on the parameter space of the detector, and chose the parameter combination 
that maximized the product of the detector’s sensitivity and positive predictive value.

Detector evaluation. We estimated the fraction of an image that the trophallaxis detector’s region proposal 
procedure excludes from automatic visual inspection by applying it to the “center” image of all 300 observa-
tion hive image triples from which the detector’s test data set was created. We then added the number of pixels 
inside the proposed image regions and divided the total by the number of pixels per image and by the number 
of observation hive images.

To test if the CNNs for detecting the occurrence of trophallaxis and for identifying the recipient are sensitive 
to salient features of the behavior, we performed an occlusion sensitivity  analysis36. We systematically moved 
a 41 px × 41 px big grey square (occluder) over the CNN input image, restricting the occluder center to pixels 
inside the image. For each occluder position, we processed the altered input image with the respective CNN 
and recorded the CNN’s output. CNN outputs were then spatially coarse-grained into 12 × 20 square bins by 
averaging over all outputs inside a bin. Bins with a low mean score represent occluder positions that lead to a 
misclassification of the altered input image.

Detector performance was evaluated by applying each detector to its respective test data set, using the param-
eters we had obtained during detector calibration. This results in an estimate of a detector’s performance on 
images of the entire hive, since the prevalence of trophallaxis and egg-laying in the respective test data sets is the 
same as in hive images. These performance estimates are conservative, because the test data sets consist of 3 s 
long segments of behavior occurrences that likely lasted longer. Longer behavior occurrences consist of multiple 
such segments and are therefore more likely to be detected. Moreover, due to the high positive predictive value 
of both detectors on individual images, the probability of a spurious detection decreases sharply as the duration 
of the detected behavior increases.

Image processing time was measured by averaging detector runtime across the 900 (545) hive images 
from which the trophallaxis (egg-laying) test data set was created. These measurements were performed 
on a cluster with 2.9 GHz Intel Core i9-7920X CPUs and a RAID 6 storage array consisting of 6 HGST 
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H3IKNAS800012872SWW hard drives. During runtime measurements, both detectors were restricted to a 
single hardware thread and had access to 2 GB RAM.

Trophallaxis networks. We constructed one temporal network from the trophallaxis detections of each 
colony. Nodes in these networks represent one bee. Pairs of distinct nodes were connected with a directed edge 
if the corresponding bees exchanged liquid at least once. A list of elapsed times, counting from the beginning 
of the experiment, was assigned to each edge to specify when the liquid transfers were initiated. These contact 
initiation times had a resolution of 1 s and enabled our spreading simulations to maintain the precise time-order 
of transfer events.

Spreading simulations. To simulate the transmission of information, pathogens, and liquid, we employed 
a temporally explicit version of the deterministic susceptible-infected  model37. This model assumes that indi-
viduals are in one of two states, “susceptible” or “infected.” Simulations begin by setting all bees to susceptible, 
choosing a trophallaxis interaction uniformly at random, and “infecting” the two bees involved in this interac-
tion, independent of how long they had interacted. Spreading dynamics were then simulated over an 8 h time 
window. During this time, an infected donor infects a susceptible recipient with a probability of 1 when they 
engage in trophallaxis (directed transmission). For models of undirected transmission, the trophallactic role of 
individuals was ignored, which means recipients were also able to infect donors.

For each simulation, we recorded the fraction of infected individuals f(t) = i(t)/S(t), where i(t) is the number 
of infected bees alive at time t after the first infection, and S(t) is the colony size at time t. To obtain a more robust 
estimate of the fraction of infected individuals, we averaged it over R = 1000 simulation runs and calculated the 
prevalence p(t) =

∑R
r=1fr (t)
R .

To establish whether the prevalence for an observed interaction sequence, p ̂(t), is greater than expected by 
chance, we compared it to the prevalence for N = 5 randomized interaction sequences. For undirected spreading 
simulations, randomized interaction sequences were created with the PTN null  model38, which shuffles the 
contact times among the observed interactions while ensuring that no individual gets assigned an interaction 
after its time of death. For directed spreading simulations, interaction sequences were randomized by reversing 
the direction of trophallaxis with a probability of 0.5 before the PTN null model was applied. To separately study 
the effect of the directional nature and of the temporal structure of trophallaxis on directed spreading, we per-
formed only one of these randomizations, respectively. Spreading dynamics where characterized by calculating 
the spreading speedup s(t) =

(

p̂(t)− p(t)
)

/min
(

p̂(t), p(t)
)

 , where p(t) =
∑N

n=1

pn(t)
N , is the mean prevalence 

across the N randomized interaction sequences.

Data availability
The datasets generated and analyzed during the current study are available in Zenodo, https:// doi. org/ 10. 5281/ 
zenodo. 55827 79.

Code availability
Computer code for detecting trophallaxis and egg-laying is available in Zenodo, https:// doi. org/ 10. 5281/ zenodo. 
55841 31.
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