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Developing OCHROdb, 
a comprehensive quality checked 
database of open chromatin 
regions from sequencing data
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Nader Hosseini Naghavi 2,3, Justin Foong 9, Michael Brudno 9,10* & Chris Cotsapas 11,12*

International consortia, including ENCODE, Roadmap Epigenomics, Genomics of Gene Regulation and 
Blueprint Epigenome have made large-scale datasets of open chromatin regions publicly available. 
While these datasets are extremely useful for studying mechanisms of gene regulation in disease 
and cell development, they only identify open chromatin regions in individual samples. A uniform 
comparison of accessibility of the same regulatory sites across multiple samples is necessary to 
correlate open chromatin accessibility and expression of target genes across matched cell types. 
Additionally, although replicate samples are available for majority of cell types, a comprehensive 
replication-based quality checking of individual regulatory sites is still lacking. We have integrated 828 
DNase-I hypersensitive sequencing samples, which we have uniformly processed and then clustered 
their regulatory regions across all samples. We checked the quality of open-chromatin regions 
using our replication test. This has resulted in a comprehensive, quality-checked database of Open 
CHROmatin (OCHROdb) regions for 194 unique human cell types and cell lines which can serve as a 
reference for gene regulatory studies involving open chromatin. We have made this resource publicly 
available: users can download the whole database, or query it for their genomic regions of interest and 
visualize the results in an interactive genome browser.

In recent years, multiple international consortia-based projects, such as  ENCODE1, NIH Roadmap Epigenomics 
Mapping Consortium (REMC)  Project2, NHGRI Genomics of Gene Regulation (GGR)  Project3 and Blueprint 
 Epigenome4 have made several large scale chromatin accessibility datasets publicly available. ENCODE, GGR 
and REMC datasets contain DNase-I sequencing for hundreds of primary cell types, stem cells, cell lines and tis-
sues. Blueprint Epigenome project has also made open chromatin data available for hundreds of haematopoietic 
cell types. These datasets are extremely useful for studying mechanisms of gene regulation in different contexts, 
including disease and cell development. However, current regulatory region identification pipelines process 
samples within these datasets individually, making it difficult to annotate and analyze DNase-I Hypersensitive 
Sites (DHS) across multiple samples in a study, and across studies. Accessibility of regions of open chromatin 
varies across cell types, and may even vary within biological replicates of the same cell type. The absence of a 
well-defined, reference map for genomic locations of accessible chromatin that is also consistent across replicates 
frequently poses challenges to many downstream analyses, such as investigations into the association between 
accessibility state of specific regulatory elements and the expression of the genes which they control.
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Although most epigenomics datasets such as ENCODE, GGR, REMC and Blueprint Epigenome data contain 
multiple biological and/or technical replicates of the same cell type, a comprehensive replication-based quality 
check of individual regulatory regions identified by peak calling algorithms is still lacking. Quality checking 
measurements that are used in the majority of other open chromatin databases check quality of individual 
samples and filter unreliable  samples5,6; however, they do not assess the quality of individual regulatory sites 
across multiple samples. It is already well-recognized that several peaks identified in a sample by peak calling 
algorithms may not be supported in replicate  samples7,8. Quality checking methods such as  jMOSAiCS7,  MSPC8 
and irreproducibility discovery rate (IDR)9 have been developed to compare peaks identified in pairs of replicates 
in order to identify replicable peaks in sequencing experiments with a main focus on ChIP-seq experiments. IDR 
particularly has been used in the ENCODE Project, and has been applied to various sequencing-based experi-
ments such as ATAC-seq, DNase-seq and ChIP-seq data. However, QC methods are limited by the fact that they 
compare replicates from one cell type only, and subsequently can be quite stringent at filtering true peaks in the 
absence of orthogonal information.

In order to address the above problems we designed and implemented a pipeline that obtained DNase-I 
Hypersensitive (DHS) peaks of 828 data samples obtained from multiple resources (including ENCODE, REMC, 
Blueprint Epigenome and GGR), aligned them across samples, assessed replicability of each DHS site across sev-
eral cell types using our recently developed replication  test10 and filters unreliable DHS  sites10. This has resulted 
in a quality-checked database of regions of open chromatin comprising 1,455,046 reliable DHS for 194 unique 
cell types across the autosomal genome.

In a related study, Meuleman et al. has developed a high-resolution map of DNase-I hypersensitive sites using 
the 733 biosamples from ENCODE and REMC projects. Here, we have incorporated the samples from two addi-
tional consortium-based projects (NHGRI GGR and Blueprint Epigenome), increasing the number of immune-
related cell types and states. We have also incorporated a replication test to remove false positive DHS sites and 
improve quality and reliability of the detected DHS sites. Additionally, in our analysis, DHS sites are aligned 
across different cell types and tissues, facilitating correlating DHS sites with matched gene expression data.

In summary, OCHROdb is a comprehensive DHS database obtained by (a) aligning the same regulatory 
sites across more than 800 samples from multiple public datasets and (b) checking quality of individual DHS 
sites, and it can serve as a reference for studies concerned with DHS activities and their role in gene regulation. 
This database can be accessed through our website (https:// dhs. ccm. sickk ids. ca/), where users can query and 
download the data either fully or at specific genomic regions of interest. We have also prepared an interactive 
genome browser for effective visualization of DHS sites across several cell types.

Methods
Data collection. We collected DHS data generated by multiple international consortia-based projects 
including ENCODE, REMC, GGR and Blueprint Epigenome. The data generated by ENCODE, REMC and GGR 
are hosted by ENCODE and publicly available through (https:// www. encod eproj ect. org). Blueprint DHS data 
samples from Haematopoietic Epigenomes are available at (http:// www. bluep rint- epige nome. eu). In August 
2017 we collected from these resources the following types of the data:

a. Data samples in BED format, where regions of open chromatin were identified by Hotspot peak calling 
algorithm (narrow peaks; FDR of 0.05)11. This was available for 362 samples from ENCODE, 318 samples 
from REMC, 51 samples from GGR and 97 samples from Blueprint Epigenome project (see Table S1 for a 
full list of samples).

b. Metadata describing file accession ID, cell type, project, assembly and file download URL (see metadata 
in Table S1). We used ENCODExplorer R Bioconductor  package12 to get access to and query metadata for 
ENCODE, REMC and GGR data files. The metadata of Blueprint Epigenome data was downloaded from 
ftp:// ftp. ebi. ac. uk/ pub/ datab ases/ bluep rint/ data_ index/ homo_ sapie ns/ data. index.

Data processing workflow. Step 1: Analyzing raw DNase‑I sequencing data to identify DHS peaks. All 
DHS samples released from ENCODE project website (i.e. GGR, ENCODE and REMC data samples) had previ-
ously gone through the ENCODE uniform processing pipeline for DNase-I Hypersensitive experiments (https:// 
github. com/ ENCODE- DCC/ dnase_ pipel ine/). Briefly, first a bwa index and a mappability file were produced by 
using a reference (e.g. GCRh38) fasta file and a DNase mappability file specific to a read size. Then BWA was 
used to generate bam files containing all reads mapped to the reference genome, and the bam files were merged 
and filtered to include only high quality mapped reads. At the last step, hotspot peak calling  algorithm11 was ap-
plied to the filtered bam files to identify enriched regions (i.e. peaks and hotspots). DHS data samples released 
through Blueprint Epigenome project were also analyzed following a similar procedure. First, the reads were 
mapped to human genome GCRh38 reference using BWA 0.7.7. Bam files were sorted and duplicates were 
marked using Picard  Tools13. Then, the output bam files were filtered and reads with Mapping Quality of less 
than 15 were removed. Finally, the Hotspot peak calling algorithm was applied to identify peaks and hotspots.

Step 2: Checking quality of samples. We originally obtained a total of 847 samples containing DHS peaks in 
BED format from ENCODE and Blueprint site (Fig. 1A). We found that five Blueprint data samples do not have 
a cell type and/or donor ID assigned to them in the metadata and removed them. Additionally, by considering 
distribution of number of DHS peaks per sample, we identified and removed 14 outlying samples with too many 
(> 500,000 peaks) or too few (< 40,000 peaks) DHS peaks (see Fig. 3A for distribution of number of DHS peaks 
per samples). The total number of samples remaining after the above quality checking steps was 828 (Fig. 1A). Of 
these 828 samples, 45 were mapped to GRCh37 genome reference and the rest were mapped to GRCh38 genome 

https://dhs.ccm.sickkids.ca/
https://www.encodeproject.org
http://www.blueprint-epigenome.eu
ftp://ftp.ebi.ac.uk/pub/databases/blueprint/data_index/homo_sapiens/data.index
https://github.com/ENCODE-DCC/dnase_pipeline/
https://github.com/ENCODE-DCC/dnase_pipeline/
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build. We converted GRCh37 samples to GRCh38 using the GATK  API14. Figure S1 shows a histogram of the 
number of biological and technical replicates per cell type. As shown in this figure, these 828 samples come from 
194 unique cell types. 161/194 cell types have at least two replicate samples.

Step 3: Clustering peaks. In the 828 samples, we found a total of 117,488,197 DHS peaks on the autosomes 
(i.e. excluding X and Y chromosomes). Peak calling algorithms such as  Hotspot11 and  MACS15 identify peaks 
in each individual sample separately (Fig. 1B). In order to identify the same DHS sites over multiple samples, 
we followed the method that we developed  earlier10, where we used Markov clustering (MCL)16 with its default 
parameters to cluster the peaks across multiple samples (Fig. 1C). In our application, each DHS peak is treated 
as a graph node. Similarity between the two nodes is defined as the length of intersection between the two 
peaks divided by the length of union of the intervals containing of the two peaks. Although any other cluster-
ing algorithm can be used at this stage, we chose MCL for two reasons. First, MCL does not require estimation 
of the number of clusters a priori. Second, the complexity of MCL is O(Nk2), where N is the number of nodes 
(i.e. peaks), and k is the number of resources allocated per node (a relatively small number for sparse graphs). 
The fact that MCL complexity is linear with the number of peaks makes it quite fast for our application. Using 
MCL we were able to group 117,488,197 DHS peaks across 828 samples into 4,020,940 DHS clusters across the 
autosomal chromosomes.

Figure 1.  Post processing of DNAse-I hypersensitive (DHS) data. (A) A total of 847 DHS data samples were 
collected from ENCODE, REMC, GGR and Blueprint Projects. 828/847 passed initial quality checking. (B) All 
the DNase-I sequencing data samples were already pre-processed by ENCODE and Blueprint consortia and 
narrow peaks were identified by Hotspot peak calling  algorithm11. (C) Following the method we previously 
 developed10, we clustered DHS peaks across samples and (D) checked the quality of each DHS cluster using our 
replication test.



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8106  | https://doi.org/10.1038/s41598-022-26791-x

www.nature.com/scientificreports/

Step 4: Replication‑based quality checking of DHS clusters. Both peak calling and peak clustering ignore sample 
labels (i.e. cell types of origin), so we can check DHS cluster quality by looking for evidence that DHS peaks 
are replicated in this analysis. We expect that for a DHS cluster that represents a true regulatory site, the DHS 
accessibility is consistent across replicates. We therefore employed our previously designed replication  test10 to 
assess consistency across replicates (Fig. 1D). As required by our replication test, we selected cell types with at 
least two replicates (161/194 of cell types). Since for 84/161 cell types, we had more than two replicates per cell 
type (Fig. S1), we repeated our replication test ten times, each time we randomly selected two replicates per cell 
type. We then merged the test statistics obtained from each test. The output of each run of our replication test 
follows a Chi-squared distribution with one degree of freedom (2 (df = 1))10 and thus, the sum of the test statis-
tics resulting from running our replication test ten times follows a 2 (df = 10)  distribution17. We selected DHS 
clusters that pass a nominal significance threshold of p ≤ 0.05 for the combined replication test and called them 
replicable DHS. In order to examine how many runs of replication test is required in order to obtain a stable set 
of replicable DHS, we applied the replication test 20 times. Then for any N between 1 and 19, we found a list of 
replication tests obtained by combining N replication tests. Our results indicated that the Area Under the Curve 
(AUC) obtained for sensitivity/specificity analysis remained above 0.95 after nine iterations, confirming that 
running the replication test ten times is appropriate (Fig. S2). To verify the effects of changing P value threshold 
in detecting reproducible DHS peaks, we measured the proportion of DHS peaks that might be preserved if 
we had set the p value thresholds slightly above 0.05. We found that the numbers turned out to be quite small. 
More specifically, 0 (0%) and 76 DHS peaks (0.0019%) would have been preserved, if we had considered P value 
thresholds of 0.0501 and 0.0505, respectively.

Figure S3 shows a histogram of the p-values of all DHS clusters. 1,460,986 out of 4,020,940 DHS clusters 
(36.3%) passed the combined statistical test. We reasoned that if our replication test underpowered or DHS clus-
ters were poorly detected, we would only capture about one third of the useful information across DHS peaks. 
To evaluate this, we asked if the 1,460,986 DHS clusters that pass our replication test explain a high proportion 
of disease heritability (h2g). We computed the enrichment of proportion of disease  heritability18 in each tissue 
for (1) all DHS peaks called across the sample replicates; and (2) the subset of the 1,460,986 replicable DHS 
active in that tissue. For these analyses, we used publicly available summary statistics data from genome-wide 
association studies for multiple  sclerosis19 as a test case. We found that autosomal genome covered by all DHS 
peaks and by the replicable DHS explained effectively the same disease heritability enrichment, indicating that 
our approach identifies most DHS relevant to disease pathogenesis (Fig. S4). This is consistent with our previous 
 finding10, where we showed active replicable DHSs capture the majority of proportion of disease heritability (h2g) 
explained by all DHS-detected peaks in a tissue, suggesting the non-replicating peaks are spurious. In addition, 
we overlapped our replicable DHS with the list of experimentally validated enhancers (from ENdb and VISTA 
databases) and promotors (from hsEPDnew database). We found that 80.2% and 93.7% of known enhancers 
from the ENdb and VISTA overlap replicable DHS peaks, respectively. In addition, 67.2% of known promotors 
from the hsEPDnew database overlap replicable DHS peaks. These results confirm that our replicable DHS peaks 
contain a good portion of experimentally tested enhancers and promotors from public databases; The replicable 
DHS peaks in our dataset that do not overlap the list of known promotors and enhancer (from ENdb, VISTA, and 
hsEPDnew) could be the promotors and enhancers which have not been experimentally validated yet in these 
databases. Also, these DHS peaks are likely to be specific to cell types not considered in the previous studies.

Step 5: Incorporating DHS accessibility significance. Chromatin accessibility as a quantitative measure is the 
density of mapped DNase-I cleavage at different genomic locations. Chromatin accessibility varies across rep-
licable DHS sites of the same sample. Also different samples have different accessibilities at the same replicable 
DHS site. Since DHS accessibility can be an indicator of how active a DHS site is in a particular sample, we 
incorporated DHS accessibility information to our data. To measure significance of accessibility of each replica-
ble DHS in each sample, we first identified all DHS peaks that belong to a replicable DHS, and assigned − log10(p 
value) of the most significant DHS peak of a sample to that replicable DHS in the sample of interest.

There exist batch effects in DHS intensities (i.e. − log10(p value of accessibility)) due to the fact that DHS data 
were generated and processed in multiple centres (ENCODE, REMC, Blueprint and GGR) (Fig. 2A). As the result 
of this batch effect, in the tSNE plot, samples generated by the same project grouped together disregard of their 
cell type similarity (Fig. 2B). We applied the following steps to remove these batch effects. First, we normalized 
DHS intensities within each sample by linearly scaling them between 0 and 1. The number of accessible DHS 
varied from sample to sample. We therefore randomly selected 10,000 accessible DHS sites (i.e. with non-zero 
intensities) from each sample to estimate DHS intensity distributions for each sample, and adopted a method 
similar to  ComBat20,21 to remove batch effects. Briefly, we sorted intensities of randomly selected DHS sites 
within each sample, quantile normalized them to make distributions of intensities similar across samples. We 
then interpolated intensities of the DHS sites that were not initially chosen in the random selection and estimated 
their quantile normalized values. This process resulted in removing batch effects of DHS intensities, and made 
them comparable across samples generated by different centres, and therefore samples grouped together based 
on their cell type similarity (Fig. 2C).

Finally, we collapsed DHS intensities of samples from the same cell types by measuring median intensities 
over these samples. 1,455,046 out of 1,460,986 (99.5%) replicable DHS have median intensities higher than 0.25 
in at least one cell type. We considered these 1,455,046 sites as the final replicable DHS sites to build our database 
of regions of open chromatin for 194 cell types.
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Results
Database content and statistics. We have prepared a comprehensive and quality-checked database of 
regions of open chromatin using DNase-I Hypersensitive datasets generated by REMC, ENCODE, GGR and 
Blueprint Epigenome Projects. OCHROdb contains DHS intensities for 1,455,046 DHS sites aligned over 828 
samples. These 828 samples comprise of 194 distinct cell types, including 27 immune cell types, 18 CNS, 9 mus-
cle, 57 cell lines, 10 stem cells, 6 digestive system cell types in addition to lung, cardiovascular, fibroblasts, kidney, 
extra embryo, male and female reproductive system and endothelial cell types (see Table S1 for the full list of cell 
types). tSNE plots of DHS activities of the 194 cell types shows that cell types from similar tissues group together 
confirming they have similar DHS activities (Fig. 2C).

As it is shown in Fig. 3C, the number of accessible replicable DHS varies across cell types. While number 
of DHS peaks varies across samples, majority of samples have < 200,000 DHS peaks (Fig. 3A). Additionally, the 
number of cell types where a replicable DHS is accessible can be any number between one cell type (i.e. cell-type 
specific DHS) to 194 cell types (i.e. constitutive DHS). The median number of active cell types per replicable 
DHS is eight (mean = 21.3; sd = 33.4) (Fig. 3B). Around 10.2% (148,142/1,455,046) of replicable DHS are cell-
type specific, meaning that they are active in one cell type, and only 1,773 out of 1,455,046 replicable DHS are 
constitutive, meaning that they are active in all 194 cell types. Median length of replicable DHS is 310 base pairs 
(sd = 112 bp) (Fig. 3B).

Web interface and genome browser. We developed a web interface that permits users and researchers 
access to OCHROdb by primarily utilizing React, Tabix, Node.js, and Express.js.  React22, a component-based 
JavaScript library developed by Facebook, was selected for the front-end to establish a single page application 
with high performance. React helps to render HTML for web applications without refreshing the page or web-
site templates and allows the client and server to communicate faster. Tabix is a software package that indexes 
tab-delimited files to efficiently perform queries and was developed specifically for biological data. Data index-
ing involves sorting data based on specific fields and allows a query to be completed without reading the entire 
data file, greatly reducing query speeds if implemented properly. Several actions were executed to prepare the 

Figure 2.  Removing batch effects caused by generation of data by multiple centers. (A) There exist batch effects 
in accessibility levels of replicable DHS clusters as a result of generation of data by multiple centers. (B) This 
resulted in grouping samples together based on the project that generated them disrespect of cell type similarity. 
(C) We removed batch effects and merge intensities of multiple replicates of the same cell types. After batch 
effect removal, in tSNE plot cell types grouped together based on their cell type similarities.
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DHS dataset for Tabix queries, such as sorting the files by chromosome and start position, compressing the file, 
and indexing the file with Tabix. The back-end of our web application is composed of the server-side JavaScript 
runtime environment Node.js23, in conjunction with Express.js24, a web application framework that is used for 
the web server. Node.js forms a connection between  Tabix25 and React front-end and allows the user to view and 
interact with the DHS data on the web application. Express.js is a flexible and highly documented web frame-
work built on top of Node.js and greatly simplifies the complexity of back-end code written.

We have made the metadata, entire curated DHS dataset and data specific to each chromosome download-
able from the web interface. Through the web interface, the user can also query the database by specifying a 
region of interest (i.e. entering a specific chromosome number and start and end coordinates). After submitting 
coordinates of a region of interest, an exportable table of the results matching the user input is generated by a 
JavaScript library called DataTables.net26 (Fig. S5A).

Additionally, the user can visualize the replicable DHS data through  JBrowse27, an embeddable genome 
browser, by specifying cell types of interest, and the coordinates of the genomic region or the name of the genes 
of interest (Fig. 4). To do this, a GFF (general feature format) file per cell type is generated by reading the origi-
nal BED files using a Python script. Information specific to each replicable DHS (e.g. intensity of the DHS for 
any given cell-type and genomic coordinates of the DHS) can be found in the pop-up window that opens after 
clicking on a given DHS (Fig. S5B). Replicable DHS are only visible if they are accessible (i.e. having non-zero 
intensities) at the cell types of interest. The replicable DHS that are accessible in multiple cell types get the same 
color on different tracks (each corresponding to a cell type) of the genome browser, to make adjacent DHS more 
trackable visually across several cell types. In addition, we have a track called RefSeq Genes, where users can click 
on the corresponding checkbox to add a track for the gene names and locations.

Figure 3.  Statistics on DHS data. (A) Distribution of number of DHS peaks per sample. (B) Distributions of 
length of replicable DHS and number of cell types where each replicable DHS is accessible. Average length of 
replicable DHSs is 310 base pairs. Around 10.2% of replicable DHS are active in one cell type only and a very 
small portion of DHS (1,773/1,455,046) are active in all cell types. (C) Number of replicable DHS is between 
around 40,000 to 400,000, and it varies substantially across cell types. The percentage of genome covered by 
replicable DHS per cell type is between around 0.4% to 4% depending on the cell type.
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Planned future development. Although we have explained our processing pipeline in the context of 
DHS data samples, it can also be applied to the narrow peaks obtained by other assays such as ATAC-seq. We 
therefore plan to process open chromatin datasets generated by other assays (e.g. ATAC-seq) and make these 
results available in our database. Additionally, we aim to process non-human (e.g. mouse) open chromatin data-
sets and release them separately in our open chromatin database.

Recently, the International Human Epigenome Consortium (IHEC) have collected and processed individual 
epigenome data samples from multiple large-scale international projects, such as ENCODE, REMC and Blueprint 
Epigenome. It is expected that more epigenome samples from other projects become available through IHEC 
portal. This includes the data from Deutsches Epigenome Program (DEEP), McGill Epigenomics Mapping Center, 
4D Nucleome, Hong Kong Epigenomes Project (EpiHK), Multiple MS and SYSCID. As more open chromatin 
data samples are generated and released by IHEC and other  projects28, we plan to apply our processing pipeline 
to these samples and release the processed data as part of our open chromatin database. Making a comprehen-
sive database of regions of open chromatin using the data released by IHEC project aligns with IHEC goals and 
will benefit the scientific community. We will maintain our database and release new updates every six months.

Discussion
Multiple large-scale consortia-based projects, including ENCODE, REMC, Blueprint and GGR have generated 
thousands of sequencing-based data samples that capture regions of open chromatin for the whole genome in 
hundreds of cell types. Building on this immensely informative DHS datasets, we have developed an analysis 
pipeline that gets hundreds of pre-processed DHS data samples (i.e. in narrow peaks format) as the input, aligns 
regions of open chromatin across samples, checks quality of each region using a replication-based test, and 
outputs a database of open chromatin accessibility across the whole genome.

Through applying our processing pipeline to 828 DHS data samples obtained from multiple public datasets, we 
have built a database of 1,455,046 regions across the whole genome for 828 samples consisting of 194 cell types. 
The main advantages of OCHROdb compared to previous datasets that are available publicly (e.g. ENCODE, 
REMC, Blueprint and GGR) are as follows.

(1) In the publicly available datasets, the DHS peaks are identified for each individual sample separately, while 
our method incorporates peaks from multiple samples together, aligns them across samples, and releases 
them as a coherent DHS database consisting of replicable peaks from multiple samples. Since in the previ-
ous datasets, each sample is analyzed separately, annotation of the same DHS sites across several samples 
is not available.

(2) Additionally, the batch effects that exist across samples due to the fact that multiple centers generate and 
analyze the data are not adjusted in the previous DHS datasets. In our database, we removed the batch 
effects that exist in the data samples collected from multiple centers.

(3) We have employed our replication test that considers multiple samples from a diverse range of cell types 
in order to check replicability of each DHS site. This results in identifying replicable DHS that present true 
regulatory sites (Fig. S4), while preserving regulatory sites filtered by more stringent tests such as  IDR9.

Figure 4.  Interactive genome browser. We developed a customized genome browser to visualize DHS data. 
Here users can (A) specify their genomic region of interest, and (B) select from different cell categories and 
different cell types within each category. (C) The selected cell types appear on the left side of the browser. (D) 
Genomic location of replicable DHS appears in the middle of the browser, where each replicable DHS, aligned 
across multiple cell types, appears in a different colour to make it distinguishable from other replicable DHS 
adjacent to it.
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In summary, we believe that our open chromatin database, which contains a wide range of cell types can 
serve as a reference map for regions of open chromatin and will find many applications in studies concerned 
with uncovering gene regulatory mechanisms of disease and cell development.

Data availability
OCHROdb is a database of open chromatin regions from sequencing data. All data generated are available to 
download through https:// dhs. ccm. sickk ids. ca/. Additionally, our interactive open chromatin browser is acces-
sible through the same link. A list of data samples that are analysed during this study are included in the sup-
plementary information files (Table S1).
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