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Measurement of temporal 
and spatial parameters of ice 
hockey skating using a wearable 
system
Aminreza Khandan , Ramin Fathian , Jason P. Carey  & Hossein Rouhani *

Ice hockey is a dynamic and competitive sport that requires a high level of neuromuscular and 
cardiovascular function. An objective assessment of skating helps coaches monitor athletes’ 
performance during training sessions and matches. This study aimed to estimate the temporal 
and spatial parameters of skating by proposing an optimized configuration of wearable inertial 
measurement units (IMUs) and validating the system compared to in-lab reference systems. Ten 
participants were recruited to skate on a 14 m synthetic ice surface built in a motion-capture lab. 
Eight original event detection methods and three more adopted from gait analysis studies were 
implemented to detect blades-off and skate-strikes. These temporal events were detected with high 
accuracy and precision using skate-mounted IMUs. Also, four novel stride length estimation methods 
were developed to correct the estimated skaters’ position using IMUs’ readouts. The stride time, 
contact time, stride length, and stride velocity were obtained with relative errors of 3 ± 3%, 4 ± 3%, 
2 ± 6%, and 2 ± 8%, respectively. This study showed that the wearable IMUs placed on skates and 
pelvis enables the estimation of temporal and spatial parameters of skating with high accuracy and 
precision, which could help coaches monitor skaters’ performance in training.

Ice hockey requires high levels of aerobic and anaerobic fitness, well-coordinated body motion, and efficient 
functioning of the neuromuscular and cardiovascular  systems1–4. Players with higher neuromuscular and car-
diovascular abilities, capable of starting quickly and skating at higher speeds, are more likely to possess the puck 
and win face-to-face competitions in  matches5. Accurate assessment of hockey players’ skating movements dur-
ing training sessions can help coaches continuously monitor players’ performance with the aim of improving it 
during training. Spatial [e.g., stride length (SL) and velocity (SV)] and temporal [e.g., stride time (ST) and ice 
contact time (CT)] parameters of skating serve as mobility  biomarkers6,7 and are recognized as significant metrics 
to characterize any repetitive activity like forward ice striding. These parameters, traditionally, were obtained 
in human motion laboratories using stationary motion-capture (MoCap) systems. However, the application of 
these instruments is limited since they are not available in every ice rink, and their captured volume is confined 
to a small part of the ice rink, which can disrupt the natural skating patterns of ice  skaters8–10. Thus, wearable 
and garment-embedded technologies are preferable for on-ice skating performance  assessments11–13.

Buckeridge et al. used a portable system composed of accelerometers, EMG modules, and force sensors to 
assess on-ice hockey player  performance14. Also, Stetter et al. studied the feasibility of using wearable acceler-
ometers to identify skating parameters such as ST and CT to differentiate players in terms of their skill  level5,15. 
However, these studies investigated the skating parameters using 3D accelerometers rather than inertial meas-
urement units (IMU). IMU has been applied to measure human motion for clinical outcome  evaluation16–18, 
sport biomechanics  evaluations19–25, and movement modalities  detection10,26. They have the potential to obtain 
temporal and spatial parameters during hockey skating.

The computation of the temporal and spatial parameters, in the first step, requires the detection of skating 
temporal events. The accuracy of event detection using IMUs can vary significantly depending on the extraction 
method  used27,28. The second step is to estimate the participant’s trajectory in each stride necessary to calculate 
the spatial  parameters29. Finally, temporal and spatial parameters can be calculated by the detected temporal 
events and the participants’ trajectories. Participants’ trajectory can be calculated using double-time integration 
of the participant’s acceleration in a global reference frame. However, due to the cumulative error in the numerical 
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integration of IMU readings, the obtained trajectory can be drifted and  erroneous30. There are two types of error 
in calculating the stride length: the noise on the acceleration time series and the drift in the sensor orientation 
(used for double-integration of acceleration to estimate trajectory) obtained by the gyroscope readouts. In gait 
analysis application, it has been suggested to correct foot velocity and, subsequently, foot trajectory time series 
by assuming zero velocity and minimum foot height during foot-flat  periods6. However, a similar period to the 
foot-flat with zero velocity in all directions is absent in ice hockey skating strides, making foot velocity and tra-
jectory estimation more challenging in hockey skating than on-land gait. This study addresses these challenges 
toward improving the accuracy of on-ice measurement of spatial and temporal parameters of ice skating using 
a set of IMUs fixed on the participant’s skates, shanks, and pelvis on a synthetic ice surface. Synthetic ice surface 
as an alternative to real ice with comparable forward skating  mechanism31 has the potential to be used in in-lab 
testing and training, particularly where ice access is limited.

The objective of this study is to: (1) detect temporal events of skating using skate-mounted IMUs, (2) estimate 
the skate trajectory using IMUs, (3) calculate the temporal and spatial parameters of skating using the obtained 
temporal events and corrected skate trajectory, and (4) experimentally validate the obtained results against those 
measured by in-lab motion-capture systems on a synthetic ice surface.

Methods
Participants. Ten able-bodied individuals (age 25 ± 8  years, height 179 ± 9  cm, body mass 78 ± 11  kg; 
mean ± standard deviation (SD) among participants, six male and four female) were recruited to participate in 
this study. All participants were free from injury and capable of skating comfortably. The study was approved 
by the research ethics board of the authors’ current institution (Pro00092821), and all methods were performed 
in accordance with the relevant guidelines and regulations. All participants were informed of the experimental 
procedures and gave informed written consent before the test.

Experiments. Tests were carried out at an indoor synthetic ice rink ( 14× 2m2 ). Five IMUs (Xsens 
 Technologies32, NL, full-scale ranges are: acceleration: ±160m/s2 , angular velocity: ±2000deg/s , and magnetic 
field: ±1.9Gauss ) were placed on the pelvis, shanks, and two skates of the participants. No sensor-to-segment 
calibration was used, and sensors’ readouts were directly used to extract the temporal events. The participants 
were asked to wear tight-fitting pants or shorts, and the sensors were placed on the skates and skin of the par-
ticipants or on the fitted pants to minimize the garment-to-skin motion artifact. Two reflective markers were 
placed on the two posterior superior iliac spines (PSIS) of the body, as demonstrated in Fig. 1. As a reference 
system for temporal event detection, plantar pressure insoles (Pedar-X33, Novel, DE) were placed in the skates 
(Fig. 1) to measure the ground reaction force magnitudes and thus detect the instances of skate contacts on the 

Figure 1.  Five IMUs (orange boxes) were placed on the participants’ pelvis, shanks and skates. Also, two 
pressure insoles placed in the skates and two retro-reflective markers on the PSISs (red circles) were used as a 
reference system for temporal event detection and stride length estimation, respectively.
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ice. The pressure insoles were calibrated at the beginning of each session as a standard practice instructed by the 
manufacturer to remove the offset error. As the reference system for spatial parameters, 12 motion-capture cam-
eras (eight Vero and four Bonita,  Vicon34, UK) were used to track the trajectory of retro-reflective markers. After 
10 s of standing still, the participants skated forward alongside the synthetic ice rink for 14 m. At the end of the 
forward skating trial, they also stood for 10 s quietly. During each trial, the IMUs, motion-capture cameras, and 
pressure insoles recorded their motions and ground reaction forces simultaneously. All the systems’ sampling 
frequencies were 100 Hz, and each skating trial was repeated five times.

Temporal event detection. First, the IMU readouts measurements were filtered using a low pass 4th 
order Butterworth filter using 15 Hz. We developed eight original methods to detect skate strike (SS) and blades-
off (BO) instants using the IMUs’ readouts. In addition to the originally proposed methods of temporal event 
detection, described in Table 1, three highly-cited gait event detection methods in  literature28,35,36 were adopted 
and implemented to detect the temporal events in skating. These 11 methods were implemented in MATLAB 
(Mathworks, USA) and obtained the events during five trials of each participant. These detected SS and BO were 
validated against those detected using the pressure insoles, with a 5 N threshold (Fig. 2). 

Skater’s stride length estimation. The spatial parameters were calculated using the IMUs placed on 
the skates, shanks and pelvis. Any inherent signal bias in the sensor readouts is prone to be accumulated in the 
integration process and corrupt the obtained velocity and trajectory of the skater. In the gait analysis application, 
the zero-velocity update (ZUPT) technique has been used to force the foot velocity to be zero during the station-
ary foot-flat period in each  stride6. However, during contact time in ice skating, the skate keeps sliding on ice, 
making the ZUPT algorithm impractical in this application. In this study, four novel methods were proposed to 
eliminate the accumulating errors in the calculated velocity and trajectory of skaters:

(i) The accelerometer readout was transferred into the north-east-up (NEU) reference  frame37,38, using the 
IMU orientation obtained by the Xsens software package,

(ii) The gravitational acceleration was subtracted from the transformed acceleration to obtain the free accelera-
tion of the sensor in the NEU frame,

Table 1.  Description of the methods originally proposed (T1–T8) and adopted from the literature and 
modified (T9–T11) for detection of Skate Strike (SS) and Blade off (BO) instants during forward skating using 
the readouts of IMUs placed on the shanks or skates. Similar to the original gait analysis studies (T9–T11), it 
was assumed that the participant starts skating from a stationary position, and thus, starts by a BO (toe-off 
in original studies). Therefore, the odd negative peaks indicate BO (toe-offs in original studies), and the even 
peaks indicate SS (heel-strike in original studies).

Methods Time series used Event Features used in time series

T1 Upward acceleration of skate
BO Positive peaks of the time series

SS The minimum of the time series occurred between two consecutive BOs

T2 Horizontal acceleration of skate
BO The minimum of the time series occurred before the positive peaks

SS The maximum of the time series occurred between two consecutive BOs

T3 Upward velocity of skate
BO Negative peaks of the time series

SS Positive peaks of the time series

T4 Norm of skate acceleration
BO The last minimum of the time series occurred before the dominant positive peaks

SS The maximum of the time series occurred between two consecutive BOs

T5 Shank angular velocity
BO Negative peaks in the sagittal plane angular velocity

SS Positive peaks in the frontal plane angular velocity

T6 Norm of shank angular velocity
BO The minimum of the time series occurred before the dominant peak

SS The minimum of the time series occurred between two consecutive BOs

T7 Norm of skate acceleration
BO Odd numbered positive peaks in wavelet coefficients in the highest energy concentration frequency obtained by a CWT 

(continuous wavelet transform) utilizing Coiflet wave shape

SS Even numbered positive peaks in wavelet coefficients in the highest energy concentration frequency obtained by a CWT 
utilizing Coiflet wave shape

T8 Norm of skate acceleration
BO Positive peaks in the 3rd approximation of the time series in a DWT (discrete wavelet transform) using Coiflet wave shape

SS The minimum of the time series occurred between two consecutive BOs

T921 Shank angular velocity
BO Odd-numbered negative peaks of the time series

SS Even-numbered negative peaks of the time series

T1022 Norm of skate acceleration
BO Odd-numbered negative peaks of the time series

SS Even-numbered negative peaks of the time series

T1119 Norm of skate acceleration
BO Local positive peaks of the time series

SS Local negative peaks of the time series
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(iii) The skater’s velocity was obtained using time integration of the free acceleration. The obtained velocity, 
however, was not zero in the resting periods due to the accumulated error of the IMU readouts,

(iv) The accumulated error was removed, and the obtained velocity and acceleration time series were corrected 
using the assumption of zero velocity and acceleration in the resting periods. To this end, four original 
methods were developed and implemented. These methods removed sensors’ acceleration bias (S1), accel-
eration bias and estimated noise profile (S2 and S3), and estimated velocity error time series (S4) using the 
assumption of zero acceleration and velocity in the resting periods (Table 2),

(v) The corrected velocity was used to obtain the skater position trajectory used to obtain the SL for each stride 
(see “Temporal and spatial parameters estimation” below).

All these four algorithms (S1–S4) used IMU readouts during the resting period. The effect of resting period 
duration was investigated on the stride length estimation error to recommend a minimum resting period 
duration. To this end, IMU readouts collected during time windows from 0.1 to 10 s, by the increment size 
of 0.1 s, out of the two 10-s resting periods originally considered for data collection before and after the 
motion, were used in S1–S4. Then, the shortest resting period duration that would not significantly affect 
the stride length estimation error compared to longer resting periods was explored.

Temporal and spatial parameters estimation. ST was computed from one SS to the subsequent SS of 
the same skate, and CT, the time when the skate is in contact with the ice, was calculated from one SS to its sub-
sequent BO. Also, SL in each stride was calculated using the estimated sensor trajectory. SL, then, was defined as 
the two norms of a 2D vector containing the travel distance in the mediolateral ( pML ) and anteroposterior ( pAP) 
directions in each stride (Eq. 1).

SL was calculated using each of the four proposed velocity and acceleration correction methods. Finally, 
SV is calculated based on the corrected velocity time series obtained by the stride length estimation methods.

Data analysis. To compare the ability of the proposed methods against pressure insole in detecting the tem-
poral events, the accuracy (mean) and precision (SD) of the errors were computed. To compare the SL estimated 
by the methods described in “Skater’s stride length estimation”, the mean and SD of the relative error in addition 

(1)SL =

√

p2ML + p2AP .
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Figure 2.  Exemplar recorded time series of skate upward and horizontal acceleration measured by the skate-
mounted IMU in a skating trial. The figure also shows the temporal events (SS: skate strike and BO: blade off) 
detected by algorithms T1 and T2 and the actual events detected using the pressure insoles (gold-standard), 
based on a 5-N threshold on the vertical ground reaction force. Actual SS and BO were obtained from the first 
data points after the vertical ground reaction force passed the 5-N thresholds.
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to the error against the camera recording were calculated. There was no significant difference between the stride 
length obtained based on the markers on the pelvis and that obtained based on markers on the skate (rank-
sum test (r = 0.98) indicated a failure to reject the null hypothesis at the 5% significance level). Additionally, 
unlike the markers on skates, markers on the pelvis have smoothers motion and would be a reliable reference 
for stride length measurement during each stride. Therefore, the reference SL is taken as the average travel dis-
tances of the PSIS markers in a stride. Finally, the set of best temporal event detection and SL estimation meth-
ods were selected to estimate the temporal and spatial parameters using IMU readout. These parameters were 
cross-validated against those calculated by in-lab reference systems recordings presented as the mean and SD of 
the relative error. Furthermore, a Bland–Altman plot modified for repeated  measures39,40 has been provided to 
explore the agreement between the temporal and spatial parameters obtained by IMUs and those obtained by 
the reference parameters using Stata Statistical Software: Release  1741. Figure 3 shows the flowchart to calculate 
the temporal and spatial parameters using IMU readouts and validate the obtained parameters against the ones 
obtained by pressure insole data and camera recordings.

Approval for human experiments. This study was approved by the research ethics board of the authors’ 
current institution (Pro00092821), and all methods were performed in accordance with the relevant guidelines 
and regulations. All participants were informed of the experimental procedures and gave informed written con-
sent before the test.

Results
Temporal event detection. In total, 184 SS and 186 BO were identified and then compared with those 
obtained by the pressure insole. The finding from method T4 revealed that temporal event detection with an 
average 0.01-s error using IMU readouts is achievable, equivalent to one sampling period (Table 3). Also, T9, 
adopted from gait analysis studies, obtained comparably ’accurate’ results in skating event detection applications, 
i.e., an average error of 0.04 s and 0.05 s for detecting SS and BO, respectively. Yet, other event detection methods 
adopted from gait analysis studies (T1–T8, T10, T11) could not detect temporal events, particularly SS, with 
high precision, as indicated by the relatively high SD of the obtained errors. The mean ± standard deviation (SD) 
of the errors among study participants, reported in Table 3, suggest that the most effective methods in finding 
SS events were T1 ( 0.00± 0.03s ), T2 ( −0.01± 0.03s ), and T4 ( −0.01± 0.04s ). Also, T3 ( −0.00± 0.05s ), T2 
( −0.05± 0.04s ), and T1 ( −0.03± 0.08s ) were more effective in detecting BO events in skating (Table 3). The 
negative errors indicate the SS or BO were detected before the actual event identified by the reference system 
(i.e., pressure insoles).

Stride length estimation. The skaters’ speed was 1.71± 0.61m/s and ranged from 0.88 to 2.63 m/s among 
this study’s participants. The relative errors of SL estimation using IMU readouts based on the methods described 
in Table 2 compared to the ones obtained by motion-capture cameras were investigated. S1–S3 required only a 
0.5-s resting period right before the motion to correct the velocity, and longer resting periods did not enhance 
their performance (rank-sum test (r = 0.96)). They decreased the SD of the relative error to the range of 19–25% 

Table 2.  The skater’s velocity and trajectory are obtained by time integration and double-time integration of 
the free acceleration obtained by the IMUs. Methods were originally proposed (S1–S4) to remove the drift in 
these integration processes.

Method Procedure

S1

(i) Calculate the mean of free acceleration value in the 0.5-s window resting period at the beginning of the trial right before the 
motion and subtract its representation in sensor frames from the raw acceleration time series and store it as corrected accelera-
tion time series
(ii) Calculate the corrected free acceleration (during motion) using the corrected acceleration time series (output of S1.i) and the 
sensor orientation
(iii) Obtain trajectory using double-time integration of the corrected free acceleration

S2

(i) Similar to S1.i
(ii) Generate white Gaussian noise using a MATLAB wgn function (input arguments: the signal-to-noise ratio: − 15 decibels 
(dB), and its length equal to the sensor acceleration time series). Then scale it to match the corrected sensor acceleration ampli-
tude range in the selected resting period. Afterward, subtract the obtained output from the corrected sensor acceleration time 
series and store it as corrected acceleration time series
(iii) Calculate the corrected free acceleration (during motion) using the corrected acceleration time series (output of S2.ii) and 
the sensor orientation
(iv) Similar to S1.iii

S3

(i) Similar to S1.i
(ii) Apply DWT (discrete wavelet transform) to the corrected sensor acceleration (output of S3.i). Then, remove the first three 
DWT’s details coefficients utilizing Coiflet wavelet basis function from the whole time series and store it as corrected accelera-
tion time series
(iii) Calculate the corrected free acceleration (during motion) using the corrected acceleration time series (output of S3.ii) and 
the sensor orientation
(iv) Similar to S1.iii

S4

(i) Calculate velocity using time integration of free acceleration
(ii) Estimate the noise profile using two resting periods at the beginning and end of each trial (right before and after the motion 
and with a length of at least 3 s), using piecewise cubic Hermite interpolating polynomial curve fitting and subtract it from the 
output of S4.i and store it as corrected velocity
(iii) Obtain trajectory using time integration of corrected velocity (output of S4.ii)
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(compared to 47% when no correction method was implemented) when the free acceleration of pelvis-mounted 
IMU was used (Table 4). On the other hand, the velocity correction method (S4) required at least two 3-s rest-
ing periods right before and after the motion to correct the velocity, and longer resting periods did not enhance 
its performance [rank-sum test (r = 0.99)]. However, S4 was able to decrease the relative error from 7± 47% , 
obtained without any correction, to a range of 2± 6% based on pelvis IMU readout (Table 4). In this method, 
the velocity was corrected by making the velocity time series to be zero in the resting periods.

Temporal and spatial parameters. ST and CT were calculated based on the temporal events identified 
by T1 and T3: the best methods in detecting SS and BO, respectively. Also, SL was calculated based on the trajec-
tory estimated by the velocity correction method (method S4: the best method in SL estimation). Finally, SV was 
calculated as the average of the sensor velocity estimated by method S4. Using the IMU readout, ST, CT, SL, and 
SV were estimated with 3 ± 3%, 4 ± 3%, 2 ± 6%, and 2 ± 8% relative error, respectively, compared to those obtained 
from in-lab reference systems’ recordings. Other than the bias errors mentioned above, the Bland–Altman plot 
(Fig. 4) suggested no apparent relationship between the errors of the IMU-based developed methods and the 
magnitude of the temporal and spatial parameters.

Figure 3.  Flowchart of the measurement of temporal and spatial parameters of ice skating using IMU readouts 
and comparing it with the ones obtained by stationary in-lab reference systems. Here, sqrt stands for square 
root, and pML and pAP respectively are the travel distance in the mediolateral and anteroposterior directions in 
each stride.

Table 3.  Accuracy and precision of the developed and adopted methods in detecting 184 Skate strikes (SS) 
and 185 Blades offs (BO). The results are expressed as mean and standard deviations (SD) of the errors (in 
second, across participants) obtained by all methods described in Table 1 for detected temporal events using 
IMUs against those obtained using pressure insoles.

Methods SS BO

T1 0.00± 0.03 −0.03± 0.08

T2 −0.01± 0.03 −0.05± 0.04

T3 −0.17± 0.09 0.00± 0.05

T4 −0.01± 0.04 −0.10± 0.04

T5 0.03± 0.20 0.09± 0.03

T6 −0.12± 0.06 −0.05± 0.07

T7 −0.19± 0.11 −0.06± 0.05

T8 −0.03± 0.04 −0.08± 0.04

T9 0.04± 0.18 0.05± 0.22

T10 0.04± 0.29 −0.09± 0.13

T11 −0.25± 0.23 −0.05± 0.04
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Discussion
In this study, for the first time, the measurements of the wearable IMUs were used to obtain the temporal and 
spatial parameters of forward skating (ST, CT, SL, and SV) using various methods, and the results were validated 
against those obtained by the reference system, i.e., pressure insole and motion-capture cameras. 11 methods 
were implemented to obtain the temporal events with high accuracy and precision in forward striding in ice 
skating using wearable IMU readout. Also, four methods were implemented to correct the stride length estima-
tion using IMU readout. The accuracy of temporal and spatial parameters in skating (on average less than 4% of 

Table 4.  The mean and standard deviation (mean ± SD) for errors and relative errors of the stride length (SL) 
obtained by IMUs’ readout against the SL calculated based on markers trajectory captured by the motion-
capture cameras. The errors were calculated with and without applying the velocity correction methods (S1–S4, 
described in Table 2) using IMUs placed on the participants’ pelvis, shank, and skates.

Method

Error (cm) Relative error (%)

Pelvis IMU Shank IMU Skate IMU Pelvis IMU Shank IMU Skate IMU

No correction −39± 109 −6± 58 −1± 106 −7± 47 −4± 26 −2± 41

S1 14± 53 14± 51 23± 47 9± 19 6± 22 9± 17

S2 14± 53 12± 49 19± 42 6± 23 6± 21 8± 16

S3 14± 53 14± 52 24± 47 7± 25 6± 23 9± 17

S4 3± 14 15± 30 −12± 40 2± 6 7± 13 −6± 14

Figure 4.  Bland–Altman plot modified for the repeated measures plotted for the ST (a), CT (b), SL (c), and 
SV (d) "estimated" by the IMU readouts against the "actual" ones obtained by the reference systems (pressure 
insoles for ST and CT, and motion capture system for SL and SV). Also, the lines of bias, upper 95% LOA (limits 
of agreement), lower 95% LOA, and the line of equality (i.e., line of zero error) are shown. The plot suggests 
no apparent relationship between the errors of the IMU-based developed methods and the magnitude of the 
temporal and spatial parameters.
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relative error) in this study was comparable with those reported in gait analysis (less than 2% relative  error29,42). 
Also, almost the same accuracy in calculating ST has been obtained compared to the other studies on long-track 
speed skating (3.6%)11. Finally, the accuracy of CT and ST obtained by IMU in this study was comparable with 
those reported in a previous study on ice  skating15 investigating the accuracy of CT and ST estimated on the real 
ice (on average, 1% and 2%, respectively). The relatively higher errors in this study compared to the previously 
mentioned study were due to three factors:

a. Lack of a foot-flat period in ice skating: The proposed methods for skater position estimation benefited from 
velocity correction only once at the end of each measurement trial, while the ZUPT technique in gait analysis 
can be implemented during the foot-flat period in each gait  cycle6.

b. Lack of familiarity with the synthetic ice: The skaters, even higher calibre skaters, may not have much experi-
ence with synthetic ice skating, and thus, they skated less consistently compared to real ice.

c. Skating on a shorter skating area requires faster acceleration and deceleration compared to skating on a 
standard ice  rink31, where the players tend to skate. Hence, skating on a 14 m-length ice rink could result in 
more inconsistency in the participants’ skating.

Due to the factors above, the performance of the proposed methods implemented for estimating the spatial 
and temporal parameters of ice skating was more inconsistent compared to gait or real ice skating. Thus, the 
standard deviation of the obtained errors was larger than those previously reported for gait or real ice skating. 
Finally, similar to the findings in a gait analysis  study29, skate acceleration was the most effective time series for 
on–off ice event detection. Also, to estimate spatial parameters, the suggested methods work more precisely on 
the pelvis-mounted IMU readouts compared to the readouts from shank- and skate-mounted IMUs. Therefore, 
only the three IMUs mounted on the skates and pelvis are recommended for estimating the temporal and spatial 
parameters of ice skaters in forward striding.

Temporal parameters estimation using skate-mounted IMUs. IMU-based systems have been 
widely used for temporal event detection in gait analysis and have advantages over other devices such as pressure 
 insoles29. The pressure insole has been validated for force measurement and temporal event detection during 
 gait33,43, and in this study, we carefully placed them in skates and used them as a reference for short-term trials. 
Yet, the insoles might not be suitable for long-term skating trials due to (i) their slippage in the skates during 
long-term dynamic motions and (ii) the inconvenience of carrying a data logger and batteries in a belt connected 
to the insoles via cables.

The temporal events (SS and BO) detected using IMU readouts showed high accuracy and precision (errors, 
on average, around one sampling period obtained by T1, T2, and T4 to detect SS and T3 in detecting BO). 
The methods (T1–T4) that used the upward and forward accelerations of the skate to detect SS and BO were 
more effective than those that used angular velocities to detect SS and BO (T5, T6, T9, and T10). Implemented 
methods from gait analysis (T9 and T10) strongly depend on the false positive or false negative detection and 
the chain of the events detected by these methods. Although these methods were comparably precise in skating 
event detection, false positive or false negative detection (T9 and T10) of one event influence the proceeding 
event detections. As a result, the effectiveness of these methods (T9 and T10) requires a repetitive skating pattern 
leading to repetitive time series all over the trial, which may not be easily achievable, particularly in lower calibre 
players. In summary, the most effective methods were T1, T2, and T4 in finding SS events and T3, T2, and T1 in 
detecting BO events in skating when skate-mounted IMUs’ readouts were used. Also, the skate-mounted IMUs’ 
readout outperformed the shank-mounted IMUs’ readout in temporal events detection (i.e., T1–T4, T7, T8, and 
T10 compared to the others). As a result, only the two skate-mounted IMUs are recommended for detecting 
bilateral skating temporal events.

Spatial parameters estimation using a pelvis-mounted IMU versus skate-mounted IMUs. Four 
methods were proposed and implemented to remove drifts in the acceleration and velocity time series toward 
estimating the skater’s trajectory using the IMUs recorded on the skater’s body. Methods S1–S3 improved the 
precision of SL estimation by up to 60% compared to no correction scenario. Also, they required only a 0.5-s 
resting period, making them implementable when there is only one short quiet standing before the motion. On 
the other hand, Method S4, which removed drifts and corrected the velocity of the pelvis-mounted IMU using 
the resting periods at the beginning and end of each trial, outperforms the other methods. The relative error 
obtained by S4 was comparable to those reported in the literature for gait analysis using the ZUPT  algorithm6,29,38. 
Furthermore, removing the acceleration’s DC offset (calculated at the beginning of the trial in S1) considerably 
reduced the SL estimation error, and none of the added noise estimation methods, i.e., removing white noise 
and discreet wavelet transform (DWT) details, in S2 and S3 further reduced the SL estimation errors. This was 
evident by the Pearson’s correlation coefficient of 0.99 between SL obtained by S1 and SL obtained by S2 and S3. 
In summary, the acceleration obtained by the pelvis-mounted IMU corrected by S4, among the other IMUs and 
methods, obtained the most precise SL estimation. Also, according to the Bland–Altman plots (Fig. 4), none of 
the observed estimation errors were a function of the magnitude of the temporal and spatial parameters. In sum-
mary, to estimate the temporal and spatial parameters in skating, two skate-mounted IMUs—for temporal event 
detection—and one pelvis-mounted IMU—for spatial parameter estimation—are recommended.

Limitations. Development and validation of the proposed methods to estimate the temporal and spatial 
parameters of ice skating have potential limitations. First, unlike event detection algorithms developed for gait 
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 analysis29, the norm of acceleration and angular velocity measured by IMUs were less effective in detecting the 
temporal events of skating. Therefore, acceleration time series were used in the forward or upward directions for 
temporal event detection, and thus, the obtained accuracy and precision can be affected by the misalignment of 
the IMUs relative to the skate. Second, extrinsic factors such as temperature, which is different on ice compared 
to the lab’s temperature, can influence the value of IMU readouts. However, they can hardly affect the negative 
and positive peaks of the IMU  readouts29) used in the developed event detection methods. Third, our proposed 
methods were validated only in 14-m trials and forward skating slower than 2.63 m/s. Future studies are needed 
to investigate the validation of our proposed methods for the measurement of temporal and spatial parameters 
of ice skating in longer distances, faster skating, and other skating types such as turning. Yet, this study showed 
that methods S1–S3 by using only 0.5-s resting periods could significantly enhance the stride length estimation 
precision, at least in short-term (i.e., 8 s) forward striding experiments. Fourth, identification, modelling, and 
eliminating other sources of error during skating can promise better precision and accuracy in IMU position 
estimation in miscellaneous skating types in longer experiments. Finally, the effectiveness of IMU pelvis-based 
methods for temporal event detection can be further investigated in future studies.

Conclusion
For the first time, novel methods were proposed for estimating the temporal and spatial parameters of ice skat-
ing using wearable IMUs and their accuracy and precision were validated against the in-lab reference systems. 
Among different sensor configurations, the optimal set of IMUs for this purpose consists of two skate-mounted 
IMUs (for temporal parameters measurement) and one pelvis-mounted IMU (for spatial parameters measure-
ment). The proposed methods estimated the ST, CT, SL, and SV of the ice skaters with relative errors close to 
those previously reported for gait analysis. The proposed methods detected SS and BO within 0.01-s accuracy 
using a skate-mounted IMU readout. We improved the SL estimation precision between 53 and 88% using a 
pelvis-mounted IMU readout. The next step toward developing this wearable technology is to validate the 3D 
joint angles obtained by the IMUs and validate the measurements on ice. In summary, IMU technology can be 
utilized for developing metrics for real-time performance assessment of ice hockey players during training ses-
sions and matches. This assessment can potentially help athletes, trainers and coaches by continuously monitoring 
skating performance and potentially reducing the risk of injuries.

Data availability
Generated datasets are available by request to the corresponding author.
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