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Pulsed laser‑assisted additive 
manufacturing of Ti‑6Al‑4V 
for in‑situ grain refinement
Hansol Yoon 1,2,3, Peipei Liu 2,4, Yejun Park 5, Gwanghyo Choi 5,6, Pyuck‑Pa Choi 5 & 
Hoon Sohn 2,4*

Metal additive manufacturing (AM) enables rapid customization of complex parts. However, it leads 
to forming of columnar grain structures which give the AM parts anisotropic properties. In this study, 
we propose a pulsed laser-assisted AM (PLAAM) technique for in-situ grain refinement of Ti-6Al-4V 
parts. A nanosecond pulsed laser was focused onto a melt pool to generate a favorable environment 
for the promotion of fine equiaxed grains. The PLAAM technique provided an average prior-β grain 
size of 549.6 μm, compared to that of 1297 μm provided by the conventional AM technique. Moreover, 
the maximum value of multiples of uniform distribution of the β phase decreased from 16 to 7.7 when 
using the PLAAM technique, which indicates a weakened crystallographic texture. These changes 
confirm that the proposed PLAAM technique promotes finer and more equiaxed prior-β grains. 
Furthermore, because the proposed technique is a non-contact technique, it can be applied to existing 
processes without adjusting tool paths.

Metal additive manufacturing (AM) is a widely used layer-by-layer process for rapid prototyping and manu-
facturing of complex three-dimensional metallic structures1. However, the disadvantageous anisotropic tensile 
and fatigue properties of coarse columnar grain structures of AM parts inhibit the widespread use of AM in 
the manufacturing industry2,3. In typical AM processes, thermal gradients are steeply formed inside small melt 
pools, leading to strong epitaxial growth of columnar grains along the build direction2,3.

Among various metal AM materials, Ti-6Al-4V is the most researched material owing to its excellent appli-
cability in the biomedical and aerospace industries1. However, because typical Ti-6Al-4V AM parts have coarse 
columnar prior-β grains, they exhibit anisotropic tensile properties1. Therefore, the promotion of fine equiaxed 
grains in AM parts has become an important research topic for improving their tensile properties3.

Various techniques have been proposed for introducing equiaxed grains in the AM parts. Introducing addi-
tional particles to assist active nucleation has been proven to be effective in promoting columnar-to-equiaxed 
transition, although changes in material composition are inevitable4–6. Post-processing techniques, such as inter-
pass rolling7, machine hammer peening8, ultrasonic impact treatment9 and laser shock peening10,11, have also 
been proposed. However, because these techniques are applied after the solidification of layers, they require more 
processing time and might limit the complexity of the AM parts. Ultrasound-assisted AM resolves this problem 
by delivering high ultrasound energy to the melt pool12. However, an ultrasound transducer must be attached to 
the bottom of the base plate to efficiently deliver sufficient energy to agitate the melt pool. To apply this contact-
type technique, implementation problems must be solved, because it is difficult to ensure stable effects on the 
moving melt pool with its three-dimensional trajectory. Recently, delivering localized ultrasound energy inside 
the melt pool via intensity-modulated laser irradiation was investigated for in-situ grain refinement13. As a proof 
of concept, the technique was verified on a stainless-steel plate, showing that the intensity-modulated laser 
can simultaneously perform surface melting and ultrasound generation. Meanwhile, a synchronous induction 
heating-assisted AM has been proposed recently for in-situ microstructural control. However, the task of stably 
applying the technique for arbitrary-shaped parts remains14.

In this study, we propose a pulsed laser-assisted AM (PLAAM) technique to refine the prior-β grains of 
Ti-6Al-4V parts during laser-directed energy deposition (DED). A nanosecond pulsed laser was incorporated 
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into a DED system to deliver high pulsed energy to the melt pool during AM. Because PLAAM is an in-situ and 
non-contact technique that affects the melt pool, it can be applied to the AM of complex objects with arbitrary 
sizes and shapes. Inspired by the contact-type ultrasound technique12 and the well-established pulsed laser effects 
on liquids15, the proposed technique exploits laser-induced shock waves, cavitation, and accelerated Marangoni 
flow inside the melt pool to create a favorable environment for the formation of a fine equiaxed prior-β grain 
structure.

We experimentally demonstrate that the parts manufactured by PLAAM have finer and nearly equiaxed 
prior-β grain structures. In addition, we present a physical explanation of how the application of a pulsed laser 
can alter the prior β-grain structure of the deposited layers.

Results
Pulsed laser‑assisted additive manufacturing.  The PLAAM technique is illustrated in Fig. 1. To pin-
point the melt pool and directly deliver the pulsed laser energy during AM, the pulsed laser was focused onto 
the melt pool using a fiber-guided focal module attached to the DED nozzle. The focal module was fixed to the 
DED positioning frame so that the foci of the pulsed laser and DED laser coincided during AM. Although an 
off-axis configuration was adopted in this study, the pulsed laser can be coaxially designed with the DED laser 
using a dichroic mirror for full integration16.

The pulsed laser effects are illustrated in Fig. 1b. The wavelength and pulse duration of the pulsed laser were 
532 nm and 10 ns, respectively. The focal size and pulse power density were selected as 2.8 × 10−3 cm2 and 0.41 
GW/cm2, respectively, such that shock waves and cavitation could be generated inside the melt pool. With the 
given power density higher than the dielectric breakdown threshold of titanium, 0.36 GW/cm217, an avalanche 
process of ionization, also known as the dielectric breakdown, occurred in the melt pool with audible ablation 
sound and bright visible plasma sparks. These phenomena are known to be followed by plasma formation, shock 
wave propagation, and cavitation generation15. In addition, the selected pulsed laser parameter values were suf-
ficient to accelerate the Marangoni flow inside the melt pool16. Change in the material composition was expected 
to be negligible because the laser ablation depth is in the order of the pulsed-laser wavelength (532 nm)15. A 
detailed explanation of these pulsed laser effects on the refinement of the prior-β grains is provided afterwards 
in the “Discussion” section.

The DED process parameters were selected to maintain a 250 μm target layer height during multilayer AM. 
With the chosen DED parameters, the energy density was calculated as 100 J/mm2, which can assure the total 
volume fraction of pores below 0.1%18. Because the averaged input power increased by the additional puled-laser 
excitation was only 1.15%, such small extra input power had little effect on the selection of the DED laser power. 
With a 300-mm/min scanning speed and a 100 Hz repetition rate of the pulsed laser, the distance between the 
two consecutive pulsed excitations during PLAAM was 50 μm. Because typical Ti-6Al-4V AM samples feature 
columnar prior-β grains of several millimeters in the building direction and several hundreds of micrometers 
in the scanning direction2,12, the given vertical (250 μm) and lateral (50 μm) excitation intervals were an order 
of magnitude smaller than the prior-β grain size. Thus, the pulsed laser could effectively alter the prior-β grain 
structure. Further study on optimizing the pulsed laser parameters is required to maximize grain refinement.

Prior‑β grain refinement.  As shown in the optical microscopy (OM) images of Fig.  2a,b, the PLAAM 
sample exhibited finer and more equiaxed prior-β grains distributed over the entire build height of 30 mm, 
compared to the conventional AM sample with large columnar prior-β grains. The prior-β grain boundaries 
were manually traced for further analysis using the ImageJ software19. The number of prior-β grains per unit area 
of the PLAAM sample (6.91 mm−2) was 3.78 times that of the conventional AM sample (1.83 mm−2), meaning 

Figure 1.   Pulsed laser-assisted AM (PLAAM). (a) Off-axis configuration of a PLAAM system. (b) The pulsed 
laser induces shock waves, cavitation, and accelerated Marangoni flow inside the melt pool, providing a 
favorable environment for grain refinement.
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that the PLAAM sample had finer prior-β grains. In addition, the lengths and aspect ratios of the prior-β grains 
are presented in histograms to statistically show the changes in the grain structure (see Fig. 2c,d). Using the 
PLAAM technique, the mean length of the prior-β grains decreased from 1297 to 549.6 μm, and the mean aspect 
ratio decreased from 3.5 to 2.5. Moreover, the variation in the prior-β grain size and shape was smaller using 
PLAAM than with conventional AM. These results indicate that the PLAAM sample exhibits finer equiaxed 
prior-β grains than the conventional AM sample.

For a closer inspection of the prior-β grains, electron backscatter diffraction (EBSD) analysis was conducted 
on the samples, as shown in Fig. 3. The inverse pole figure maps for the β phase (Fig. 3a,c) show that the PLAAM 
sample had a nearly equiaxed prior-β grain structure, compared to the conventional AM sample with a colum-
nar prior-β grain structure along the build direction. The inverse pole figure maps were reconstructed using an 
open-source MATLAB toolbox MTEX20. Contoured pole figures for the β phase of the two samples (Fig. 3b,d) 
were also calculated to quantitatively visualize the texture change with multiples of uniform distribution (MUD) 
values. The PLAAM sample had a maximum MUD of 7.7, which was less than half that of the conventional AM 
sample (16). Compared to a strong crystallographic texture in the < 001 > direction shown in the AM sample, 
a weak texture is observed in the PLAAM sample. These results confirm that the PLAAM sample had a more 
isotropic structure of finer prior-β grains compared to the conventional AM sample.

Discussion
The pulsed laser parameters were chosen to (1) accelerate the Marangoni flow in the melt pool by instantaneous 
and localized heating on the surface16; (2) generate shock waves; and (3) create cavitations in the melt pool fol-
lowing dielectric breakdown15. Here we discuss how these effects enhance equiaxed nucleation in the melt pool. 
Equiaxed nucleation can be promoted by increasing constitutional supercooling21. To increase constitutional 
supercooling, either the melting temperature should be increased, or the thermal gradient should be decreased.

The melting temperature can be increased by high-pressure shock waves impinging on the melt pool. Based 
on the Clausius–Clapyron equation, the relationship between the melting temperature elevation and pressure 
change can be expressed as follows:

where Tm is the melting temperature (K), P is the pressure (Pa), V  is the volume change upon melting (m3), and 
H is the latent heat of fusion (J/kg). Based on Eq. (1) and the material properties of Ti-6Al-4V summarized in 
Table 1, a shock pressure of 100 MPa produced by cavitation22, for example, leads to a melting-temperature 
increase of 8.66 K. Moreover, with a power density of 0.41 GW/cm2, the pulsed-laser-induced shock waves 
impinged upon the melt pool create pressures up to 336.2 MPa according to Lindl’s Equation23,24:

(1)
1

Tm

dTm=
V

H
dP,

Figure 2.   Change in prior-β grain structure. OM images along the build direction of conventional AM (a) and 
PLAAM (b) samples. z and x are the build and transverse directions, respectively. Histograms of the length (c) 
and aspect ratio (d) of the prior-β grains observed in (a) and (b). The overlapped histograms are shown in a 
darker color.
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where P is the generated shock pressure (GPa), I is the laser power density (1015 W/cm2), and λ is the wavelength 
of the laser (μm). This high pressure leads to a melting-temperature increase of 29.31 K. This increase in the 
melting temperature is directly translated to the increase in constitutional supercooling25. With increased con-
stitutional supercooling, initial nuclei are likely to be activated near the cavitations and shock wave fronts. These 
events can suppress the epitaxial growth of columnar grains by competition. Previous works have experimen-
tally demonstrated a similar mechanism using ultrasound-induced cavitations to promote equiaxed nucleation 
in welding25 and in AM12,21. The performance of PLAAM can be compared to a recent study26 about alloying 
yttria-stabilized zirconia (YSZ) for grain-refined AM of Ti-6Al-4V. The authors showed that adding 5% YSZ 
to Ti-6Al-4V increased constitutional supercooling by 112 K and decreased the average length of the prior-β 
grains from > 2 mm to 118 μm.

In PLAAM, the pulsed laser effects further increased constitutional supercooling by decreasing the thermal 
gradient inside the melt pool. Because of the opposing directions of the Marangoni flow and pulsed laser-induced 
shock waves as illustrated in Fig. 1b, a vigorous turbulent flow is created inside the melt pool16. Moreover, 
cavitation-induced shock waves generate sporadic and instantaneous turbulence inside the melt pool. In this 

(2)P = 4× 103 ×

(

I

�

)2/3

,

Figure 3.   EBSD analysis of the conventional AM (a, b) and PLAAM (c, d) samples. Inverse pole figure maps 
for the β phase along the build direction (a, c). Contoured pole figures for the β phase (b, d). z and (x,y) are the 
build direction and transversal plane, respectively.

Table 1.   Properties of the Ti-6Al-4V alloy27.

Property (unit) Value

Molar mass (g/mol) 446.0697

Solid density (kg/m3) 4420 – 0.154 (T – 298 K)

Liquid density (kg/m3) 3920 – 0.680 (T – 1923 K)

Liquidus temperature (K) 1923

Latent heat of fusion (J/kg) 2.86 × 105
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environment, nuclei activated by increased constitutional supercooling are distributed in the melt pool. Hence, 
the epitaxial growth of large columnar prior-β grains is further subjected to competition.

Conclusion
In summary, we have demonstrated in-situ grain refinement of Ti-6Al-4V parts using a hybrid AM technique 
named as PLAAM. The proposed technique exploits a high-power-density pulsed laser to create a favorable 
environment for the growth of equiaxed prior-β grains. Because the technique is a non-contact type, it can be 
applied to any existing AM equipment without adjusting the arbitrary tool path. Microstructural assessments 
show that the PLAAM sample has smaller and more equiaxed prior-β grains compared to the conventional AM 
sample having large columnar prior-β grains. Also, the maximum value of MUD of the β phase decreased from 
16 to 7.7 when using the PLAAM technique, indicating a weakened texture and refined prior-β grains. A detailed 
explanation of the pulsed laser effects on the melt pool is also presented for further adaptation of the proposed 
approach. Because the equiaxed prior-β grain structure is known for its isotropic and high tensile properties, the 
proposed technique is expected to be extensively studied for producing high-quality metal AM parts.

Methods
A Q-switched Nd:YAG pulsed laser (Centurion+, Quantel) was incorporated into a laser metal powder DED 
system (MX-400, InssTek) equipped with a continuous-wave Yb-fiber DED laser, as illustrated in Fig. 1a. The 
working distances of the pulsed laser and DED laser were 43 mm and 9 mm, respectively. The power and focal 
diameter of the DED laser, powder feed rate, and flow rate of coaxial argon gas were set to 100 W, 800 μm, 1 g/
min, and 6.0 L/min, respectively.

Walls with dimensions of 30 × 30 × 1.3 mm (height × width × thickness) made of 120 layers were fabricated by 
both the conventional AM and PLAAM techniques. Commercial-grade 23 Ti-6Al-4V powder (AP&C) with a 
diameter ranging from 45 to 150 μm was used to deposit the layers. The samples were separated from the substrate 
for post-fabrication grain structure inspection. The samples were polished and etched using a Kroll’s etchant 
(4 mL of HF, 6 mL of HNO3, and 90 mL of H2O). The structure and shape of the prior-β grains were examined 
via OM (Stemi 508, ZEISS). The microstructure texture was examined by EBSD using a detector (QUANTAX 
EBSD, Bruker) operated with an acceleration voltage of 20 kV and a step size of 4.2 μm.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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